[PATCH 21/32] docs/vm: slub.txt: convert to ReST format

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Signed-off-by: Mike Rapoport <rppt@xxxxxxxxxxxxxxxxxx>
---
 Documentation/vm/slub.txt | 357 ++++++++++++++++++++++++----------------------
 1 file changed, 188 insertions(+), 169 deletions(-)

diff --git a/Documentation/vm/slub.txt b/Documentation/vm/slub.txt
index 8465241..3a775fd 100644
--- a/Documentation/vm/slub.txt
+++ b/Documentation/vm/slub.txt
@@ -1,5 +1,8 @@
+.. _slub:
+
+==========================
 Short users guide for SLUB
---------------------------
+==========================
 
 The basic philosophy of SLUB is very different from SLAB. SLAB
 requires rebuilding the kernel to activate debug options for all
@@ -8,18 +11,19 @@ SLUB can enable debugging only for selected slabs in order to avoid
 an impact on overall system performance which may make a bug more
 difficult to find.
 
-In order to switch debugging on one can add an option "slub_debug"
+In order to switch debugging on one can add an option ``slub_debug``
 to the kernel command line. That will enable full debugging for
 all slabs.
 
-Typically one would then use the "slabinfo" command to get statistical
-data and perform operation on the slabs. By default slabinfo only lists
+Typically one would then use the ``slabinfo`` command to get statistical
+data and perform operation on the slabs. By default ``slabinfo`` only lists
 slabs that have data in them. See "slabinfo -h" for more options when
-running the command. slabinfo can be compiled with
+running the command. ``slabinfo`` can be compiled with
+::
 
-gcc -o slabinfo tools/vm/slabinfo.c
+	gcc -o slabinfo tools/vm/slabinfo.c
 
-Some of the modes of operation of slabinfo require that slub debugging
+Some of the modes of operation of ``slabinfo`` require that slub debugging
 be enabled on the command line. F.e. no tracking information will be
 available without debugging on and validation can only partially
 be performed if debugging was not switched on.
@@ -27,14 +31,17 @@ be performed if debugging was not switched on.
 Some more sophisticated uses of slub_debug:
 -------------------------------------------
 
-Parameters may be given to slub_debug. If none is specified then full
+Parameters may be given to ``slub_debug``. If none is specified then full
 debugging is enabled. Format:
 
-slub_debug=<Debug-Options>       Enable options for all slabs
+slub_debug=<Debug-Options>
+	Enable options for all slabs
 slub_debug=<Debug-Options>,<slab name>
-				Enable options only for select slabs
+	Enable options only for select slabs
+
+
+Possible debug options are::
 
-Possible debug options are
 	F		Sanity checks on (enables SLAB_DEBUG_CONSISTENCY_CHECKS
 			Sorry SLAB legacy issues)
 	Z		Red zoning
@@ -47,18 +54,18 @@ Possible debug options are
 	-		Switch all debugging off (useful if the kernel is
 			configured with CONFIG_SLUB_DEBUG_ON)
 
-F.e. in order to boot just with sanity checks and red zoning one would specify:
+F.e. in order to boot just with sanity checks and red zoning one would specify::
 
 	slub_debug=FZ
 
-Trying to find an issue in the dentry cache? Try
+Trying to find an issue in the dentry cache? Try::
 
 	slub_debug=,dentry
 
 to only enable debugging on the dentry cache.
 
 Red zoning and tracking may realign the slab.  We can just apply sanity checks
-to the dentry cache with
+to the dentry cache with::
 
 	slub_debug=F,dentry
 
@@ -66,15 +73,15 @@ Debugging options may require the minimum possible slab order to increase as
 a result of storing the metadata (for example, caches with PAGE_SIZE object
 sizes).  This has a higher liklihood of resulting in slab allocation errors
 in low memory situations or if there's high fragmentation of memory.  To
-switch off debugging for such caches by default, use
+switch off debugging for such caches by default, use::
 
 	slub_debug=O
 
 In case you forgot to enable debugging on the kernel command line: It is
 possible to enable debugging manually when the kernel is up. Look at the
-contents of:
+contents of::
 
-/sys/kernel/slab/<slab name>/
+	/sys/kernel/slab/<slab name>/
 
 Look at the writable files. Writing 1 to them will enable the
 corresponding debug option. All options can be set on a slab that does
@@ -86,98 +93,103 @@ Careful with tracing: It may spew out lots of information and never stop if
 used on the wrong slab.
 
 Slab merging
-------------
+============
 
 If no debug options are specified then SLUB may merge similar slabs together
 in order to reduce overhead and increase cache hotness of objects.
-slabinfo -a displays which slabs were merged together.
+``slabinfo -a`` displays which slabs were merged together.
 
 Slab validation
----------------
+===============
 
 SLUB can validate all object if the kernel was booted with slub_debug. In
-order to do so you must have the slabinfo tool. Then you can do
+order to do so you must have the ``slabinfo`` tool. Then you can do
+::
 
-slabinfo -v
+	slabinfo -v
 
 which will test all objects. Output will be generated to the syslog.
 
 This also works in a more limited way if boot was without slab debug.
-In that case slabinfo -v simply tests all reachable objects. Usually
+In that case ``slabinfo -v`` simply tests all reachable objects. Usually
 these are in the cpu slabs and the partial slabs. Full slabs are not
 tracked by SLUB in a non debug situation.
 
 Getting more performance
-------------------------
+========================
 
 To some degree SLUB's performance is limited by the need to take the
 list_lock once in a while to deal with partial slabs. That overhead is
 governed by the order of the allocation for each slab. The allocations
 can be influenced by kernel parameters:
 
-slub_min_objects=x		(default 4)
-slub_min_order=x		(default 0)
-slub_max_order=x		(default 3 (PAGE_ALLOC_COSTLY_ORDER))
-
-slub_min_objects allows to specify how many objects must at least fit
-into one slab in order for the allocation order to be acceptable.
-In general slub will be able to perform this number of allocations
-on a slab without consulting centralized resources (list_lock) where
-contention may occur.
-
-slub_min_order specifies a minim order of slabs. A similar effect like
-slub_min_objects.
-
-slub_max_order specified the order at which slub_min_objects should no
-longer be checked. This is useful to avoid SLUB trying to generate
-super large order pages to fit slub_min_objects of a slab cache with
-large object sizes into one high order page. Setting command line
-parameter debug_guardpage_minorder=N (N > 0), forces setting
-slub_max_order to 0, what cause minimum possible order of slabs
-allocation.
+.. slub_min_objects=x		(default 4)
+.. slub_min_order=x		(default 0)
+.. slub_max_order=x		(default 3 (PAGE_ALLOC_COSTLY_ORDER))
+
+``slub_min_objects``
+	allows to specify how many objects must at least fit into one
+	slab in order for the allocation order to be acceptable.  In
+	general slub will be able to perform this number of
+	allocations on a slab without consulting centralized resources
+	(list_lock) where contention may occur.
+
+``slub_min_order``
+	specifies a minim order of slabs. A similar effect like
+	``slub_min_objects``.
+
+``slub_max_order``
+	specified the order at which ``slub_min_objects`` should no
+	longer be checked. This is useful to avoid SLUB trying to
+	generate super large order pages to fit ``slub_min_objects``
+	of a slab cache with large object sizes into one high order
+	page. Setting command line parameter
+	``debug_guardpage_minorder=N`` (N > 0), forces setting
+	``slub_max_order`` to 0, what cause minimum possible order of
+	slabs allocation.
 
 SLUB Debug output
------------------
-
-Here is a sample of slub debug output:
-
-====================================================================
-BUG kmalloc-8: Redzone overwritten
---------------------------------------------------------------------
-
-INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
-INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
-INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
-INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554
-
-Bytes b4 0xc90f6d10:  00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
-  Object 0xc90f6d20:  31 30 31 39 2e 30 30 35                         1019.005
- Redzone 0xc90f6d28:  00 cc cc cc                                     .
- Padding 0xc90f6d50:  5a 5a 5a 5a 5a 5a 5a 5a                         ZZZZZZZZ
-
-  [<c010523d>] dump_trace+0x63/0x1eb
-  [<c01053df>] show_trace_log_lvl+0x1a/0x2f
-  [<c010601d>] show_trace+0x12/0x14
-  [<c0106035>] dump_stack+0x16/0x18
-  [<c017e0fa>] object_err+0x143/0x14b
-  [<c017e2cc>] check_object+0x66/0x234
-  [<c017eb43>] __slab_free+0x239/0x384
-  [<c017f446>] kfree+0xa6/0xc6
-  [<c02e2335>] get_modalias+0xb9/0xf5
-  [<c02e23b7>] dmi_dev_uevent+0x27/0x3c
-  [<c027866a>] dev_uevent+0x1ad/0x1da
-  [<c0205024>] kobject_uevent_env+0x20a/0x45b
-  [<c020527f>] kobject_uevent+0xa/0xf
-  [<c02779f1>] store_uevent+0x4f/0x58
-  [<c027758e>] dev_attr_store+0x29/0x2f
-  [<c01bec4f>] sysfs_write_file+0x16e/0x19c
-  [<c0183ba7>] vfs_write+0xd1/0x15a
-  [<c01841d7>] sys_write+0x3d/0x72
-  [<c0104112>] sysenter_past_esp+0x5f/0x99
-  [<b7f7b410>] 0xb7f7b410
-  =======================
-
-FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc
+=================
+
+Here is a sample of slub debug output::
+
+ ====================================================================
+ BUG kmalloc-8: Redzone overwritten
+ --------------------------------------------------------------------
+
+ INFO: 0xc90f6d28-0xc90f6d2b. First byte 0x00 instead of 0xcc
+ INFO: Slab 0xc528c530 flags=0x400000c3 inuse=61 fp=0xc90f6d58
+ INFO: Object 0xc90f6d20 @offset=3360 fp=0xc90f6d58
+ INFO: Allocated in get_modalias+0x61/0xf5 age=53 cpu=1 pid=554
+
+ Bytes b4 0xc90f6d10:  00 00 00 00 00 00 00 00 5a 5a 5a 5a 5a 5a 5a 5a ........ZZZZZZZZ
+   Object 0xc90f6d20:  31 30 31 39 2e 30 30 35                         1019.005
+  Redzone 0xc90f6d28:  00 cc cc cc                                     .
+  Padding 0xc90f6d50:  5a 5a 5a 5a 5a 5a 5a 5a                         ZZZZZZZZ
+
+   [<c010523d>] dump_trace+0x63/0x1eb
+   [<c01053df>] show_trace_log_lvl+0x1a/0x2f
+   [<c010601d>] show_trace+0x12/0x14
+   [<c0106035>] dump_stack+0x16/0x18
+   [<c017e0fa>] object_err+0x143/0x14b
+   [<c017e2cc>] check_object+0x66/0x234
+   [<c017eb43>] __slab_free+0x239/0x384
+   [<c017f446>] kfree+0xa6/0xc6
+   [<c02e2335>] get_modalias+0xb9/0xf5
+   [<c02e23b7>] dmi_dev_uevent+0x27/0x3c
+   [<c027866a>] dev_uevent+0x1ad/0x1da
+   [<c0205024>] kobject_uevent_env+0x20a/0x45b
+   [<c020527f>] kobject_uevent+0xa/0xf
+   [<c02779f1>] store_uevent+0x4f/0x58
+   [<c027758e>] dev_attr_store+0x29/0x2f
+   [<c01bec4f>] sysfs_write_file+0x16e/0x19c
+   [<c0183ba7>] vfs_write+0xd1/0x15a
+   [<c01841d7>] sys_write+0x3d/0x72
+   [<c0104112>] sysenter_past_esp+0x5f/0x99
+   [<b7f7b410>] 0xb7f7b410
+   =======================
+
+ FIX kmalloc-8: Restoring Redzone 0xc90f6d28-0xc90f6d2b=0xcc
 
 If SLUB encounters a corrupted object (full detection requires the kernel
 to be booted with slub_debug) then the following output will be dumped
@@ -185,38 +197,38 @@ into the syslog:
 
 1. Description of the problem encountered
 
-This will be a message in the system log starting with
+   This will be a message in the system log starting with::
 
-===============================================
-BUG <slab cache affected>: <What went wrong>
------------------------------------------------
+     ===============================================
+     BUG <slab cache affected>: <What went wrong>
+     -----------------------------------------------
 
-INFO: <corruption start>-<corruption_end> <more info>
-INFO: Slab <address> <slab information>
-INFO: Object <address> <object information>
-INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by
+     INFO: <corruption start>-<corruption_end> <more info>
+     INFO: Slab <address> <slab information>
+     INFO: Object <address> <object information>
+     INFO: Allocated in <kernel function> age=<jiffies since alloc> cpu=<allocated by
 	cpu> pid=<pid of the process>
-INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu>
-	 pid=<pid of the process>
+     INFO: Freed in <kernel function> age=<jiffies since free> cpu=<freed by cpu>
+	pid=<pid of the process>
 
-(Object allocation / free information is only available if SLAB_STORE_USER is
-set for the slab. slub_debug sets that option)
+   (Object allocation / free information is only available if SLAB_STORE_USER is
+   set for the slab. slub_debug sets that option)
 
 2. The object contents if an object was involved.
 
-Various types of lines can follow the BUG SLUB line:
+   Various types of lines can follow the BUG SLUB line:
 
-Bytes b4 <address> : <bytes>
+   Bytes b4 <address> : <bytes>
 	Shows a few bytes before the object where the problem was detected.
 	Can be useful if the corruption does not stop with the start of the
 	object.
 
-Object <address> : <bytes>
+   Object <address> : <bytes>
 	The bytes of the object. If the object is inactive then the bytes
 	typically contain poison values. Any non-poison value shows a
 	corruption by a write after free.
 
-Redzone <address> : <bytes>
+   Redzone <address> : <bytes>
 	The Redzone following the object. The Redzone is used to detect
 	writes after the object. All bytes should always have the same
 	value. If there is any deviation then it is due to a write after
@@ -225,7 +237,7 @@ Redzone <address> : <bytes>
 	(Redzone information is only available if SLAB_RED_ZONE is set.
 	slub_debug sets that option)
 
-Padding <address> : <bytes>
+   Padding <address> : <bytes>
 	Unused data to fill up the space in order to get the next object
 	properly aligned. In the debug case we make sure that there are
 	at least 4 bytes of padding. This allows the detection of writes
@@ -233,29 +245,29 @@ Padding <address> : <bytes>
 
 3. A stackdump
 
-The stackdump describes the location where the error was detected. The cause
-of the corruption is may be more likely found by looking at the function that
-allocated or freed the object.
+   The stackdump describes the location where the error was detected. The cause
+   of the corruption is may be more likely found by looking at the function that
+   allocated or freed the object.
 
 4. Report on how the problem was dealt with in order to ensure the continued
-operation of the system.
+   operation of the system.
 
-These are messages in the system log beginning with
+   These are messages in the system log beginning with::
 
-FIX <slab cache affected>: <corrective action taken>
+	FIX <slab cache affected>: <corrective action taken>
 
-In the above sample SLUB found that the Redzone of an active object has
-been overwritten. Here a string of 8 characters was written into a slab that
-has the length of 8 characters. However, a 8 character string needs a
-terminating 0. That zero has overwritten the first byte of the Redzone field.
-After reporting the details of the issue encountered the FIX SLUB message
-tells us that SLUB has restored the Redzone to its proper value and then
-system operations continue.
+   In the above sample SLUB found that the Redzone of an active object has
+   been overwritten. Here a string of 8 characters was written into a slab that
+   has the length of 8 characters. However, a 8 character string needs a
+   terminating 0. That zero has overwritten the first byte of the Redzone field.
+   After reporting the details of the issue encountered the FIX SLUB message
+   tells us that SLUB has restored the Redzone to its proper value and then
+   system operations continue.
 
-Emergency operations:
----------------------
+Emergency operations
+====================
 
-Minimal debugging (sanity checks alone) can be enabled by booting with
+Minimal debugging (sanity checks alone) can be enabled by booting with::
 
 	slub_debug=F
 
@@ -270,73 +282,80 @@ No guarantees. The kernel component still needs to be fixed. Performance
 may be optimized further by locating the slab that experiences corruption
 and enabling debugging only for that cache
 
-I.e.
+I.e.::
 
 	slub_debug=F,dentry
 
 If the corruption occurs by writing after the end of the object then it
 may be advisable to enable a Redzone to avoid corrupting the beginning
-of other objects.
+of other objects::
 
 	slub_debug=FZ,dentry
 
 Extended slabinfo mode and plotting
------------------------------------
+===================================
 
-The slabinfo tool has a special 'extended' ('-X') mode that includes:
+The ``slabinfo`` tool has a special 'extended' ('-X') mode that includes:
  - Slabcache Totals
  - Slabs sorted by size (up to -N <num> slabs, default 1)
  - Slabs sorted by loss (up to -N <num> slabs, default 1)
 
-Additionally, in this mode slabinfo does not dynamically scale sizes (G/M/K)
-and reports everything in bytes (this functionality is also available to
-other slabinfo modes via '-B' option) which makes reporting more precise and
-accurate. Moreover, in some sense the `-X' mode also simplifies the analysis
-of slabs' behaviour, because its output can be plotted using the
-slabinfo-gnuplot.sh script. So it pushes the analysis from looking through
-the numbers (tons of numbers) to something easier -- visual analysis.
+Additionally, in this mode ``slabinfo`` does not dynamically scale
+sizes (G/M/K) and reports everything in bytes (this functionality is
+also available to other slabinfo modes via '-B' option) which makes
+reporting more precise and accurate. Moreover, in some sense the `-X'
+mode also simplifies the analysis of slabs' behaviour, because its
+output can be plotted using the ``slabinfo-gnuplot.sh`` script. So it
+pushes the analysis from looking through the numbers (tons of numbers)
+to something easier -- visual analysis.
 
 To generate plots:
-a) collect slabinfo extended records, for example:
-
-  while [ 1 ]; do slabinfo -X >> FOO_STATS; sleep 1; done
-
-b) pass stats file(-s) to slabinfo-gnuplot.sh script:
-  slabinfo-gnuplot.sh FOO_STATS [FOO_STATS2 .. FOO_STATSN]
-
-The slabinfo-gnuplot.sh script will pre-processes the collected records
-and generates 3 png files (and 3 pre-processing cache files) per STATS
-file:
- - Slabcache Totals: FOO_STATS-totals.png
- - Slabs sorted by size: FOO_STATS-slabs-by-size.png
- - Slabs sorted by loss: FOO_STATS-slabs-by-loss.png
-
-Another use case, when slabinfo-gnuplot can be useful, is when you need
-to compare slabs' behaviour "prior to" and "after" some code modification.
-To help you out there, slabinfo-gnuplot.sh script can 'merge' the
-`Slabcache Totals` sections from different measurements. To visually
-compare N plots:
-
-a) Collect as many STATS1, STATS2, .. STATSN files as you need
-  while [ 1 ]; do slabinfo -X >> STATS<X>; sleep 1; done
-
-b) Pre-process those STATS files
-  slabinfo-gnuplot.sh STATS1 STATS2 .. STATSN
-
-c) Execute slabinfo-gnuplot.sh in '-t' mode, passing all of the
-generated pre-processed *-totals
-  slabinfo-gnuplot.sh -t STATS1-totals STATS2-totals .. STATSN-totals
-
-This will produce a single plot (png file).
-
-Plots, expectedly, can be large so some fluctuations or small spikes
-can go unnoticed. To deal with that, `slabinfo-gnuplot.sh' has two
-options to 'zoom-in'/'zoom-out':
- a) -s %d,%d  overwrites the default image width and heigh
- b) -r %d,%d  specifies a range of samples to use (for example,
-              in `slabinfo -X >> FOO_STATS; sleep 1;' case, using
-              a "-r 40,60" range will plot only samples collected
-              between 40th and 60th seconds).
+
+a) collect slabinfo extended records, for example::
+
+	while [ 1 ]; do slabinfo -X >> FOO_STATS; sleep 1; done
+
+b) pass stats file(-s) to ``slabinfo-gnuplot.sh`` script::
+
+	slabinfo-gnuplot.sh FOO_STATS [FOO_STATS2 .. FOO_STATSN]
+
+   The ``slabinfo-gnuplot.sh`` script will pre-processes the collected records
+   and generates 3 png files (and 3 pre-processing cache files) per STATS
+   file:
+   - Slabcache Totals: FOO_STATS-totals.png
+   - Slabs sorted by size: FOO_STATS-slabs-by-size.png
+   - Slabs sorted by loss: FOO_STATS-slabs-by-loss.png
+
+Another use case, when ``slabinfo-gnuplot.sh`` can be useful, is when you
+need to compare slabs' behaviour "prior to" and "after" some code
+modification.  To help you out there, ``slabinfo-gnuplot.sh`` script
+can 'merge' the `Slabcache Totals` sections from different
+measurements. To visually compare N plots:
+
+a) Collect as many STATS1, STATS2, .. STATSN files as you need::
+
+	while [ 1 ]; do slabinfo -X >> STATS<X>; sleep 1; done
+
+b) Pre-process those STATS files::
+
+	slabinfo-gnuplot.sh STATS1 STATS2 .. STATSN
+
+c) Execute ``slabinfo-gnuplot.sh`` in '-t' mode, passing all of the
+   generated pre-processed \*-totals::
+
+	slabinfo-gnuplot.sh -t STATS1-totals STATS2-totals .. STATSN-totals
+
+   This will produce a single plot (png file).
+
+   Plots, expectedly, can be large so some fluctuations or small spikes
+   can go unnoticed. To deal with that, ``slabinfo-gnuplot.sh`` has two
+   options to 'zoom-in'/'zoom-out':
+
+   a) ``-s %d,%d`` -- overwrites the default image width and heigh
+   b) ``-r %d,%d`` -- specifies a range of samples to use (for example,
+      in ``slabinfo -X >> FOO_STATS; sleep 1;`` case, using a ``-r
+      40,60`` range will plot only samples collected between 40th and
+      60th seconds).
 
 Christoph Lameter, May 30, 2007
 Sergey Senozhatsky, October 23, 2015
-- 
2.7.4




[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]

  Powered by Linux