Convert udf_disk_stamp_to_time() to use mktime64() to simplify the code. As a bonus we get working timestamp conversion for dates before epoch and after 2038 (both of which are allowed by UDF standard). Signed-off-by: Jan Kara <jack@xxxxxxx> --- fs/udf/udftime.c | 53 ++--------------------------------------------------- 1 file changed, 2 insertions(+), 51 deletions(-) diff --git a/fs/udf/udftime.c b/fs/udf/udftime.c index b9dadc7e5c35..14626b34d13e 100644 --- a/fs/udf/udftime.c +++ b/fs/udf/udftime.c @@ -40,52 +40,9 @@ #include <linux/kernel.h> #include <linux/time.h> -#define EPOCH_YEAR 1970 - -#ifndef __isleap -/* Nonzero if YEAR is a leap year (every 4 years, - except every 100th isn't, and every 400th is). */ -#define __isleap(year) \ - ((year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0)) -#endif - -/* How many days come before each month (0-12). */ -static const unsigned short int __mon_yday[2][13] = { - /* Normal years. */ - {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, - /* Leap years. */ - {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366} -}; - -#define MAX_YEAR_SECONDS 69 -#define SPD 0x15180 /*3600*24 */ -#define SPY(y, l, s) (SPD * (365 * y + l) + s) - -static time_t year_seconds[MAX_YEAR_SECONDS] = { -/*1970*/ SPY(0, 0, 0), SPY(1, 0, 0), SPY(2, 0, 0), SPY(3, 1, 0), -/*1974*/ SPY(4, 1, 0), SPY(5, 1, 0), SPY(6, 1, 0), SPY(7, 2, 0), -/*1978*/ SPY(8, 2, 0), SPY(9, 2, 0), SPY(10, 2, 0), SPY(11, 3, 0), -/*1982*/ SPY(12, 3, 0), SPY(13, 3, 0), SPY(14, 3, 0), SPY(15, 4, 0), -/*1986*/ SPY(16, 4, 0), SPY(17, 4, 0), SPY(18, 4, 0), SPY(19, 5, 0), -/*1990*/ SPY(20, 5, 0), SPY(21, 5, 0), SPY(22, 5, 0), SPY(23, 6, 0), -/*1994*/ SPY(24, 6, 0), SPY(25, 6, 0), SPY(26, 6, 0), SPY(27, 7, 0), -/*1998*/ SPY(28, 7, 0), SPY(29, 7, 0), SPY(30, 7, 0), SPY(31, 8, 0), -/*2002*/ SPY(32, 8, 0), SPY(33, 8, 0), SPY(34, 8, 0), SPY(35, 9, 0), -/*2006*/ SPY(36, 9, 0), SPY(37, 9, 0), SPY(38, 9, 0), SPY(39, 10, 0), -/*2010*/ SPY(40, 10, 0), SPY(41, 10, 0), SPY(42, 10, 0), SPY(43, 11, 0), -/*2014*/ SPY(44, 11, 0), SPY(45, 11, 0), SPY(46, 11, 0), SPY(47, 12, 0), -/*2018*/ SPY(48, 12, 0), SPY(49, 12, 0), SPY(50, 12, 0), SPY(51, 13, 0), -/*2022*/ SPY(52, 13, 0), SPY(53, 13, 0), SPY(54, 13, 0), SPY(55, 14, 0), -/*2026*/ SPY(56, 14, 0), SPY(57, 14, 0), SPY(58, 14, 0), SPY(59, 15, 0), -/*2030*/ SPY(60, 15, 0), SPY(61, 15, 0), SPY(62, 15, 0), SPY(63, 16, 0), -/*2034*/ SPY(64, 16, 0), SPY(65, 16, 0), SPY(66, 16, 0), SPY(67, 17, 0), -/*2038*/ SPY(68, 17, 0) -}; - struct timespec * udf_disk_stamp_to_time(struct timespec *dest, struct timestamp src) { - int yday; u16 typeAndTimezone = le16_to_cpu(src.typeAndTimezone); u16 year = le16_to_cpu(src.year); uint8_t type = typeAndTimezone >> 12; @@ -100,15 +57,9 @@ udf_disk_stamp_to_time(struct timespec *dest, struct timestamp src) } else offset = 0; - if ((year < EPOCH_YEAR) || - (year >= EPOCH_YEAR + MAX_YEAR_SECONDS)) { - return NULL; - } - dest->tv_sec = year_seconds[year - EPOCH_YEAR]; + dest->tv_sec = mktime64(year, src.month, src.day, src.hour, src.minute, + src.second); dest->tv_sec -= offset * 60; - - yday = ((__mon_yday[__isleap(year)][src.month - 1]) + src.day - 1); - dest->tv_sec += (((yday * 24) + src.hour) * 60 + src.minute) * 60 + src.second; dest->tv_nsec = 1000 * (src.centiseconds * 10000 + src.hundredsOfMicroseconds * 100 + src.microseconds); return dest; -- 2.12.3