On Thu, Nov 17, 2016 at 3:17 AM, Matthew Wilcox <mawilcox@xxxxxxxxxxxxxxxxx> wrote: > From: Matthew Wilcox <willy@xxxxxxxxxxxxx> > > The IDR is very similar to the radix tree. It has some functionality > that the radix tree did not have (alloc next free, cyclic allocation, > a callback-based for_each, destroy tree), which is readily implementable > on top of the radix tree. A few small changes were needed in order to > use a tag to represent nodes with free space below them. > > The IDA is reimplemented as a client of the newly enhanced radix tree. > As in the current implementation, it uses a bitmap at the last level of > the tree. I'm still see no reason for this. > > Signed-off-by: Matthew Wilcox <willy@xxxxxxxxxxxxx> > --- > include/linux/idr.h | 128 ++-- > include/linux/radix-tree.h | 5 +- > init/main.c | 3 +- > lib/idr.c | 1075 ------------------------------- > lib/radix-tree.c | 536 +++++++++++++-- > tools/testing/radix-tree/Makefile | 5 +- > tools/testing/radix-tree/idr.c | 148 +++++ > tools/testing/radix-tree/linux/idr.h | 1 + > tools/testing/radix-tree/linux/kernel.h | 2 + > tools/testing/radix-tree/main.c | 6 + > tools/testing/radix-tree/test.h | 2 + > 11 files changed, 701 insertions(+), 1210 deletions(-) > create mode 100644 tools/testing/radix-tree/idr.c > create mode 100644 tools/testing/radix-tree/linux/idr.h > > diff --git a/include/linux/idr.h b/include/linux/idr.h > index 5fd3f6e..f54ceea 100644 > --- a/include/linux/idr.h > +++ b/include/linux/idr.h > @@ -12,47 +12,22 @@ > #ifndef __IDR_H__ > #define __IDR_H__ > > -#include <linux/types.h> > -#include <linux/bitops.h> > -#include <linux/init.h> > -#include <linux/rcupdate.h> > - > -/* > - * Using 6 bits at each layer allows us to allocate 7 layers out of each page. > - * 8 bits only gave us 3 layers out of every pair of pages, which is less > - * efficient except for trees with a largest element between 192-255 inclusive. > - */ > -#define IDR_BITS 6 > -#define IDR_SIZE (1 << IDR_BITS) > -#define IDR_MASK ((1 << IDR_BITS)-1) > - > -struct idr_layer { > - int prefix; /* the ID prefix of this idr_layer */ > - int layer; /* distance from leaf */ > - struct idr_layer __rcu *ary[1<<IDR_BITS]; > - int count; /* When zero, we can release it */ > - union { > - /* A zero bit means "space here" */ > - DECLARE_BITMAP(bitmap, IDR_SIZE); > - struct rcu_head rcu_head; > - }; > -}; > +#include <linux/radix-tree.h> > +#include <linux/gfp.h> > > struct idr { > - struct idr_layer __rcu *hint; /* the last layer allocated from */ > - struct idr_layer __rcu *top; > - int layers; /* only valid w/o concurrent changes */ > - int cur; /* current pos for cyclic allocation */ > - spinlock_t lock; > - int id_free_cnt; > - struct idr_layer *id_free; > + struct radix_tree_root idr_rt; > + unsigned int idr_next; > }; > > -#define IDR_INIT(name) \ > +/* Set the IDR flag and the IDR_FREE tag */ > +#define IDR_RT_MARKER ((__force gfp_t)(3 << __GFP_BITS_SHIFT)) > + > +#define IDR_INIT \ > { \ > - .lock = __SPIN_LOCK_UNLOCKED(name.lock), \ > + .idr_rt = RADIX_TREE_INIT(IDR_RT_MARKER) \ > } > -#define DEFINE_IDR(name) struct idr name = IDR_INIT(name) > +#define DEFINE_IDR(name) struct idr name = IDR_INIT > > /** > * DOC: idr sync > @@ -71,22 +46,30 @@ struct idr { > * period). > */ > > -/* > - * This is what we export. > - */ > - > -void *idr_find_slowpath(struct idr *idp, int id); > void idr_preload(gfp_t gfp_mask); > -int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask); > -int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask); > -int idr_for_each(struct idr *idp, > +int idr_alloc(struct idr *, void *, int start, int end, gfp_t gfp_mask); > +int idr_alloc_cyclic(struct idr *, void *, int start, int end, gfp_t gfp_mask); > +int idr_for_each(struct idr *, > int (*fn)(int id, void *p, void *data), void *data); > -void *idr_get_next(struct idr *idp, int *nextid); > -void *idr_replace(struct idr *idp, void *ptr, int id); > -void idr_remove(struct idr *idp, int id); > -void idr_destroy(struct idr *idp); > -void idr_init(struct idr *idp); > -bool idr_is_empty(struct idr *idp); > +void *idr_get_next(struct idr *, int *nextid); > +void *idr_replace(struct idr *, void *, int id); > +void idr_destroy(struct idr *); > + > +static inline void idr_remove(struct idr *idp, int id) > +{ > + radix_tree_delete(&idp->idr_rt, id); > +} > + > +static inline void idr_init(struct idr *idp) > +{ > + memset(idp, 0, sizeof(*idp)); > + idp->idr_rt.gfp_mask = IDR_RT_MARKER; > +} > + > +static inline bool idr_is_empty(struct idr *idp) > +{ > + return radix_tree_empty(&idp->idr_rt); > +} > > /** > * idr_preload_end - end preload section started with idr_preload() > @@ -113,17 +96,12 @@ static inline void idr_preload_end(void) > */ > static inline void *idr_find(struct idr *idr, int id) > { > - struct idr_layer *hint = rcu_dereference_raw(idr->hint); > - > - if (hint && (id & ~IDR_MASK) == hint->prefix) > - return rcu_dereference_raw(hint->ary[id & IDR_MASK]); > - > - return idr_find_slowpath(idr, id); > + return radix_tree_lookup(&idr->idr_rt, id); > } > > /** > * idr_for_each_entry - iterate over an idr's elements of a given type > - * @idp: idr handle > + * @idr: idr handle > * @entry: the type * to use as cursor > * @id: id entry's key > * > @@ -131,57 +109,58 @@ static inline void *idr_find(struct idr *idr, int id) > * after normal terminatinon @entry is left with the value NULL. This > * is convenient for a "not found" value. > */ > -#define idr_for_each_entry(idp, entry, id) \ > - for (id = 0; ((entry) = idr_get_next(idp, &(id))) != NULL; ++id) > +#define idr_for_each_entry(idr, entry, id) \ > + for (id = 0; ((entry) = idr_get_next(idr, &(id))) != NULL; ++id) > > /** > - * idr_for_each_entry - continue iteration over an idr's elements of a given type > - * @idp: idr handle > + * idr_for_each_entry_continue - continue iteration over an idr's elements of a given type > + * @idr: idr handle > * @entry: the type * to use as cursor > * @id: id entry's key > * > * Continue to iterate over list of given type, continuing after > * the current position. > */ > -#define idr_for_each_entry_continue(idp, entry, id) \ > - for ((entry) = idr_get_next((idp), &(id)); \ > +#define idr_for_each_entry_continue(idr, entry, id) \ > + for ((entry) = idr_get_next((idr), &(id)); \ > entry; \ > - ++id, (entry) = idr_get_next((idp), &(id))) > + ++id, (entry) = idr_get_next((idr), &(id))) > > /* > * IDA - IDR based id allocator, use when translation from id to > * pointer isn't necessary. > - * > - * IDA_BITMAP_LONGS is calculated to be one less to accommodate > - * ida_bitmap->nr_busy so that the whole struct fits in 128 bytes. > */ > #define IDA_CHUNK_SIZE 128 /* 128 bytes per chunk */ > -#define IDA_BITMAP_LONGS (IDA_CHUNK_SIZE / sizeof(long) - 1) > +#define IDA_BITMAP_LONGS (IDA_CHUNK_SIZE / sizeof(long)) > #define IDA_BITMAP_BITS (IDA_BITMAP_LONGS * sizeof(long) * 8) > > struct ida_bitmap { > - long nr_busy; > unsigned long bitmap[IDA_BITMAP_LONGS]; > }; > > struct ida { > - struct idr idr; > + struct radix_tree_root ida_rt; > struct ida_bitmap *free_bitmap; > }; > > -#define IDA_INIT(name) { .idr = IDR_INIT((name).idr), .free_bitmap = NULL, } > -#define DEFINE_IDA(name) struct ida name = IDA_INIT(name) > +#define IDA_INIT { .ida_rt = RADIX_TREE_INIT(IDR_RT_MARKER), } > +#define DEFINE_IDA(name) struct ida name = IDA_INIT > > int ida_pre_get(struct ida *ida, gfp_t gfp_mask); > int ida_get_new_above(struct ida *ida, int starting_id, int *p_id); > void ida_remove(struct ida *ida, int id); > void ida_destroy(struct ida *ida); > -void ida_init(struct ida *ida); > > int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end, > gfp_t gfp_mask); > void ida_simple_remove(struct ida *ida, unsigned int id); > > +static inline void ida_init(struct ida *ida) > +{ > + memset(ida, 0, sizeof(*ida)); > + ida->ida_rt.gfp_mask = IDR_RT_MARKER; > +} > + > /** > * ida_get_new - allocate new ID > * @ida: idr handle > @@ -196,9 +175,6 @@ static inline int ida_get_new(struct ida *ida, int *p_id) > > static inline bool ida_is_empty(struct ida *ida) > { > - return idr_is_empty(&ida->idr); > + return radix_tree_empty(&ida->ida_rt); > } > - > -void __init idr_init_cache(void); > - > #endif /* __IDR_H__ */ > diff --git a/include/linux/radix-tree.h b/include/linux/radix-tree.h > index ca4eea1..6483c73c 100644 > --- a/include/linux/radix-tree.h > +++ b/include/linux/radix-tree.h > @@ -98,7 +98,10 @@ struct radix_tree_node { > unsigned long tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS]; > }; > > -/* root tags are stored in gfp_mask, shifted by __GFP_BITS_SHIFT */ > +/* The top bits of gfp_mask are used to store the root tags and the IDR flag */ > +#define ROOT_IS_IDR (1 << __GFP_BITS_SHIFT) > +#define ROOT_TAG_SHIFT (__GFP_BITS_SHIFT + 1) > + > struct radix_tree_root { > gfp_t gfp_mask; > struct radix_tree_node __rcu *rnode; > diff --git a/init/main.c b/init/main.c > index 2858be7..2757b84 100644 > --- a/init/main.c > +++ b/init/main.c > @@ -550,14 +550,13 @@ asmlinkage __visible void __init start_kernel(void) > if (WARN(!irqs_disabled(), > "Interrupts were enabled *very* early, fixing it\n")) > local_irq_disable(); > - idr_init_cache(); > + radix_tree_init(); > rcu_init(); > > /* trace_printk() and trace points may be used after this */ > trace_init(); > > context_tracking_init(); > - radix_tree_init(); > /* init some links before init_ISA_irqs() */ > early_irq_init(); > init_IRQ(); > diff --git a/lib/idr.c b/lib/idr.c > index 6098336..3c88abb7 100644 > --- a/lib/idr.c > +++ b/lib/idr.c > @@ -1,1068 +1,8 @@ > -/* > - * 2002-10-18 written by Jim Houston jim.houston@xxxxxxxx > - * Copyright (C) 2002 by Concurrent Computer Corporation > - * Distributed under the GNU GPL license version 2. > - * > - * Modified by George Anzinger to reuse immediately and to use > - * find bit instructions. Also removed _irq on spinlocks. > - * > - * Modified by Nadia Derbey to make it RCU safe. > - * > - * Small id to pointer translation service. > - * > - * It uses a radix tree like structure as a sparse array indexed > - * by the id to obtain the pointer. The bitmap makes allocating > - * a new id quick. > - * > - * You call it to allocate an id (an int) an associate with that id a > - * pointer or what ever, we treat it as a (void *). You can pass this > - * id to a user for him to pass back at a later time. You then pass > - * that id to this code and it returns your pointer. > - */ > - > -#ifndef TEST // to test in user space... > -#include <linux/slab.h> > -#include <linux/init.h> > -#include <linux/export.h> > -#endif > -#include <linux/err.h> > -#include <linux/string.h> > #include <linux/idr.h> > #include <linux/spinlock.h> > -#include <linux/percpu.h> > - > -#define MAX_IDR_SHIFT (sizeof(int) * 8 - 1) > -#define MAX_IDR_BIT (1U << MAX_IDR_SHIFT) > - > -/* Leave the possibility of an incomplete final layer */ > -#define MAX_IDR_LEVEL ((MAX_IDR_SHIFT + IDR_BITS - 1) / IDR_BITS) > - > -/* Number of id_layer structs to leave in free list */ > -#define MAX_IDR_FREE (MAX_IDR_LEVEL * 2) > > -static struct kmem_cache *idr_layer_cache; > -static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head); > -static DEFINE_PER_CPU(int, idr_preload_cnt); > static DEFINE_SPINLOCK(simple_ida_lock); > > -/* the maximum ID which can be allocated given idr->layers */ > -static int idr_max(int layers) > -{ > - int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT); > - > - return (1 << bits) - 1; > -} > - > -/* > - * Prefix mask for an idr_layer at @layer. For layer 0, the prefix mask is > - * all bits except for the lower IDR_BITS. For layer 1, 2 * IDR_BITS, and > - * so on. > - */ > -static int idr_layer_prefix_mask(int layer) > -{ > - return ~idr_max(layer + 1); > -} > - > -static struct idr_layer *get_from_free_list(struct idr *idp) > -{ > - struct idr_layer *p; > - unsigned long flags; > - > - spin_lock_irqsave(&idp->lock, flags); > - if ((p = idp->id_free)) { > - idp->id_free = p->ary[0]; > - idp->id_free_cnt--; > - p->ary[0] = NULL; > - } > - spin_unlock_irqrestore(&idp->lock, flags); > - return(p); > -} > - > -/** > - * idr_layer_alloc - allocate a new idr_layer > - * @gfp_mask: allocation mask > - * @layer_idr: optional idr to allocate from > - * > - * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch > - * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch > - * an idr_layer from @idr->id_free. > - * > - * @layer_idr is to maintain backward compatibility with the old alloc > - * interface - idr_pre_get() and idr_get_new*() - and will be removed > - * together with per-pool preload buffer. > - */ > -static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr) > -{ > - struct idr_layer *new; > - > - /* this is the old path, bypass to get_from_free_list() */ > - if (layer_idr) > - return get_from_free_list(layer_idr); > - > - /* > - * Try to allocate directly from kmem_cache. We want to try this > - * before preload buffer; otherwise, non-preloading idr_alloc() > - * users will end up taking advantage of preloading ones. As the > - * following is allowed to fail for preloaded cases, suppress > - * warning this time. > - */ > - new = kmem_cache_zalloc(idr_layer_cache, gfp_mask | __GFP_NOWARN); > - if (new) > - return new; > - > - /* > - * Try to fetch one from the per-cpu preload buffer if in process > - * context. See idr_preload() for details. > - */ > - if (!in_interrupt()) { > - preempt_disable(); > - new = __this_cpu_read(idr_preload_head); > - if (new) { > - __this_cpu_write(idr_preload_head, new->ary[0]); > - __this_cpu_dec(idr_preload_cnt); > - new->ary[0] = NULL; > - } > - preempt_enable(); > - if (new) > - return new; > - } > - > - /* > - * Both failed. Try kmem_cache again w/o adding __GFP_NOWARN so > - * that memory allocation failure warning is printed as intended. > - */ > - return kmem_cache_zalloc(idr_layer_cache, gfp_mask); > -} > - > -static void idr_layer_rcu_free(struct rcu_head *head) > -{ > - struct idr_layer *layer; > - > - layer = container_of(head, struct idr_layer, rcu_head); > - kmem_cache_free(idr_layer_cache, layer); > -} > - > -static inline void free_layer(struct idr *idr, struct idr_layer *p) > -{ > - if (idr->hint == p) > - RCU_INIT_POINTER(idr->hint, NULL); > - call_rcu(&p->rcu_head, idr_layer_rcu_free); > -} > - > -/* only called when idp->lock is held */ > -static void __move_to_free_list(struct idr *idp, struct idr_layer *p) > -{ > - p->ary[0] = idp->id_free; > - idp->id_free = p; > - idp->id_free_cnt++; > -} > - > -static void move_to_free_list(struct idr *idp, struct idr_layer *p) > -{ > - unsigned long flags; > - > - /* > - * Depends on the return element being zeroed. > - */ > - spin_lock_irqsave(&idp->lock, flags); > - __move_to_free_list(idp, p); > - spin_unlock_irqrestore(&idp->lock, flags); > -} > - > -static void idr_mark_full(struct idr_layer **pa, int id) > -{ > - struct idr_layer *p = pa[0]; > - int l = 0; > - > - __set_bit(id & IDR_MASK, p->bitmap); > - /* > - * If this layer is full mark the bit in the layer above to > - * show that this part of the radix tree is full. This may > - * complete the layer above and require walking up the radix > - * tree. > - */ > - while (bitmap_full(p->bitmap, IDR_SIZE)) { > - if (!(p = pa[++l])) > - break; > - id = id >> IDR_BITS; > - __set_bit((id & IDR_MASK), p->bitmap); > - } > -} > - > -static int __idr_pre_get(struct idr *idp, gfp_t gfp_mask) > -{ > - while (idp->id_free_cnt < MAX_IDR_FREE) { > - struct idr_layer *new; > - new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); > - if (new == NULL) > - return (0); > - move_to_free_list(idp, new); > - } > - return 1; > -} > - > -/** > - * sub_alloc - try to allocate an id without growing the tree depth > - * @idp: idr handle > - * @starting_id: id to start search at > - * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer > - * @gfp_mask: allocation mask for idr_layer_alloc() > - * @layer_idr: optional idr passed to idr_layer_alloc() > - * > - * Allocate an id in range [@starting_id, INT_MAX] from @idp without > - * growing its depth. Returns > - * > - * the allocated id >= 0 if successful, > - * -EAGAIN if the tree needs to grow for allocation to succeed, > - * -ENOSPC if the id space is exhausted, > - * -ENOMEM if more idr_layers need to be allocated. > - */ > -static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa, > - gfp_t gfp_mask, struct idr *layer_idr) > -{ > - int n, m, sh; > - struct idr_layer *p, *new; > - int l, id, oid; > - > - id = *starting_id; > - restart: > - p = idp->top; > - l = idp->layers; > - pa[l--] = NULL; > - while (1) { > - /* > - * We run around this while until we reach the leaf node... > - */ > - n = (id >> (IDR_BITS*l)) & IDR_MASK; > - m = find_next_zero_bit(p->bitmap, IDR_SIZE, n); > - if (m == IDR_SIZE) { > - /* no space available go back to previous layer. */ > - l++; > - oid = id; > - id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1; > - > - /* if already at the top layer, we need to grow */ > - if (id > idr_max(idp->layers)) { > - *starting_id = id; > - return -EAGAIN; > - } > - p = pa[l]; > - BUG_ON(!p); > - > - /* If we need to go up one layer, continue the > - * loop; otherwise, restart from the top. > - */ > - sh = IDR_BITS * (l + 1); > - if (oid >> sh == id >> sh) > - continue; > - else > - goto restart; > - } > - if (m != n) { > - sh = IDR_BITS*l; > - id = ((id >> sh) ^ n ^ m) << sh; > - } > - if ((id >= MAX_IDR_BIT) || (id < 0)) > - return -ENOSPC; > - if (l == 0) > - break; > - /* > - * Create the layer below if it is missing. > - */ > - if (!p->ary[m]) { > - new = idr_layer_alloc(gfp_mask, layer_idr); > - if (!new) > - return -ENOMEM; > - new->layer = l-1; > - new->prefix = id & idr_layer_prefix_mask(new->layer); > - rcu_assign_pointer(p->ary[m], new); > - p->count++; > - } > - pa[l--] = p; > - p = p->ary[m]; > - } > - > - pa[l] = p; > - return id; > -} > - > -static int idr_get_empty_slot(struct idr *idp, int starting_id, > - struct idr_layer **pa, gfp_t gfp_mask, > - struct idr *layer_idr) > -{ > - struct idr_layer *p, *new; > - int layers, v, id; > - unsigned long flags; > - > - id = starting_id; > -build_up: > - p = idp->top; > - layers = idp->layers; > - if (unlikely(!p)) { > - if (!(p = idr_layer_alloc(gfp_mask, layer_idr))) > - return -ENOMEM; > - p->layer = 0; > - layers = 1; > - } > - /* > - * Add a new layer to the top of the tree if the requested > - * id is larger than the currently allocated space. > - */ > - while (id > idr_max(layers)) { > - layers++; > - if (!p->count) { > - /* special case: if the tree is currently empty, > - * then we grow the tree by moving the top node > - * upwards. > - */ > - p->layer++; > - WARN_ON_ONCE(p->prefix); > - continue; > - } > - if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) { > - /* > - * The allocation failed. If we built part of > - * the structure tear it down. > - */ > - spin_lock_irqsave(&idp->lock, flags); > - for (new = p; p && p != idp->top; new = p) { > - p = p->ary[0]; > - new->ary[0] = NULL; > - new->count = 0; > - bitmap_clear(new->bitmap, 0, IDR_SIZE); > - __move_to_free_list(idp, new); > - } > - spin_unlock_irqrestore(&idp->lock, flags); > - return -ENOMEM; > - } > - new->ary[0] = p; > - new->count = 1; > - new->layer = layers-1; > - new->prefix = id & idr_layer_prefix_mask(new->layer); > - if (bitmap_full(p->bitmap, IDR_SIZE)) > - __set_bit(0, new->bitmap); > - p = new; > - } > - rcu_assign_pointer(idp->top, p); > - idp->layers = layers; > - v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr); > - if (v == -EAGAIN) > - goto build_up; > - return(v); > -} > - > -/* > - * @id and @pa are from a successful allocation from idr_get_empty_slot(). > - * Install the user pointer @ptr and mark the slot full. > - */ > -static void idr_fill_slot(struct idr *idr, void *ptr, int id, > - struct idr_layer **pa) > -{ > - /* update hint used for lookup, cleared from free_layer() */ > - rcu_assign_pointer(idr->hint, pa[0]); > - > - rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr); > - pa[0]->count++; > - idr_mark_full(pa, id); > -} > - > - > -/** > - * idr_preload - preload for idr_alloc() > - * @gfp_mask: allocation mask to use for preloading > - * > - * Preload per-cpu layer buffer for idr_alloc(). Can only be used from > - * process context and each idr_preload() invocation should be matched with > - * idr_preload_end(). Note that preemption is disabled while preloaded. > - * > - * The first idr_alloc() in the preloaded section can be treated as if it > - * were invoked with @gfp_mask used for preloading. This allows using more > - * permissive allocation masks for idrs protected by spinlocks. > - * > - * For example, if idr_alloc() below fails, the failure can be treated as > - * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT. > - * > - * idr_preload(GFP_KERNEL); > - * spin_lock(lock); > - * > - * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT); > - * > - * spin_unlock(lock); > - * idr_preload_end(); > - * if (id < 0) > - * error; > - */ > -void idr_preload(gfp_t gfp_mask) > -{ > - /* > - * Consuming preload buffer from non-process context breaks preload > - * allocation guarantee. Disallow usage from those contexts. > - */ > - WARN_ON_ONCE(in_interrupt()); > - might_sleep_if(gfpflags_allow_blocking(gfp_mask)); > - > - preempt_disable(); > - > - /* > - * idr_alloc() is likely to succeed w/o full idr_layer buffer and > - * return value from idr_alloc() needs to be checked for failure > - * anyway. Silently give up if allocation fails. The caller can > - * treat failures from idr_alloc() as if idr_alloc() were called > - * with @gfp_mask which should be enough. > - */ > - while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) { > - struct idr_layer *new; > - > - preempt_enable(); > - new = kmem_cache_zalloc(idr_layer_cache, gfp_mask); > - preempt_disable(); > - if (!new) > - break; > - > - /* link the new one to per-cpu preload list */ > - new->ary[0] = __this_cpu_read(idr_preload_head); > - __this_cpu_write(idr_preload_head, new); > - __this_cpu_inc(idr_preload_cnt); > - } > -} > -EXPORT_SYMBOL(idr_preload); > - > -/** > - * idr_alloc - allocate new idr entry > - * @idr: the (initialized) idr > - * @ptr: pointer to be associated with the new id > - * @start: the minimum id (inclusive) > - * @end: the maximum id (exclusive, <= 0 for max) > - * @gfp_mask: memory allocation flags > - * > - * Allocate an id in [start, end) and associate it with @ptr. If no ID is > - * available in the specified range, returns -ENOSPC. On memory allocation > - * failure, returns -ENOMEM. > - * > - * Note that @end is treated as max when <= 0. This is to always allow > - * using @start + N as @end as long as N is inside integer range. > - * > - * The user is responsible for exclusively synchronizing all operations > - * which may modify @idr. However, read-only accesses such as idr_find() > - * or iteration can be performed under RCU read lock provided the user > - * destroys @ptr in RCU-safe way after removal from idr. > - */ > -int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask) > -{ > - int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */ > - struct idr_layer *pa[MAX_IDR_LEVEL + 1]; > - int id; > - > - might_sleep_if(gfpflags_allow_blocking(gfp_mask)); > - > - /* sanity checks */ > - if (WARN_ON_ONCE(start < 0)) > - return -EINVAL; > - if (unlikely(max < start)) > - return -ENOSPC; > - > - /* allocate id */ > - id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL); > - if (unlikely(id < 0)) > - return id; > - if (unlikely(id > max)) > - return -ENOSPC; > - > - idr_fill_slot(idr, ptr, id, pa); > - return id; > -} > -EXPORT_SYMBOL_GPL(idr_alloc); > - > -/** > - * idr_alloc_cyclic - allocate new idr entry in a cyclical fashion > - * @idr: the (initialized) idr > - * @ptr: pointer to be associated with the new id > - * @start: the minimum id (inclusive) > - * @end: the maximum id (exclusive, <= 0 for max) > - * @gfp_mask: memory allocation flags > - * > - * Essentially the same as idr_alloc, but prefers to allocate progressively > - * higher ids if it can. If the "cur" counter wraps, then it will start again > - * at the "start" end of the range and allocate one that has already been used. > - */ > -int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, > - gfp_t gfp_mask) > -{ > - int id; > - > - id = idr_alloc(idr, ptr, max(start, idr->cur), end, gfp_mask); > - if (id == -ENOSPC) > - id = idr_alloc(idr, ptr, start, end, gfp_mask); > - > - if (likely(id >= 0)) > - idr->cur = id + 1; > - return id; > -} > -EXPORT_SYMBOL(idr_alloc_cyclic); > - > -static void idr_remove_warning(int id) > -{ > - WARN(1, "idr_remove called for id=%d which is not allocated.\n", id); > -} > - > -static void sub_remove(struct idr *idp, int shift, int id) > -{ > - struct idr_layer *p = idp->top; > - struct idr_layer **pa[MAX_IDR_LEVEL + 1]; > - struct idr_layer ***paa = &pa[0]; > - struct idr_layer *to_free; > - int n; > - > - *paa = NULL; > - *++paa = &idp->top; > - > - while ((shift > 0) && p) { > - n = (id >> shift) & IDR_MASK; > - __clear_bit(n, p->bitmap); > - *++paa = &p->ary[n]; > - p = p->ary[n]; > - shift -= IDR_BITS; > - } > - n = id & IDR_MASK; > - if (likely(p != NULL && test_bit(n, p->bitmap))) { > - __clear_bit(n, p->bitmap); > - RCU_INIT_POINTER(p->ary[n], NULL); > - to_free = NULL; > - while(*paa && ! --((**paa)->count)){ > - if (to_free) > - free_layer(idp, to_free); > - to_free = **paa; > - **paa-- = NULL; > - } > - if (!*paa) > - idp->layers = 0; > - if (to_free) > - free_layer(idp, to_free); > - } else > - idr_remove_warning(id); > -} > - > -/** > - * idr_remove - remove the given id and free its slot > - * @idp: idr handle > - * @id: unique key > - */ > -void idr_remove(struct idr *idp, int id) > -{ > - struct idr_layer *p; > - struct idr_layer *to_free; > - > - if (id < 0) > - return; > - > - if (id > idr_max(idp->layers)) { > - idr_remove_warning(id); > - return; > - } > - > - sub_remove(idp, (idp->layers - 1) * IDR_BITS, id); > - if (idp->top && idp->top->count == 1 && (idp->layers > 1) && > - idp->top->ary[0]) { > - /* > - * Single child at leftmost slot: we can shrink the tree. > - * This level is not needed anymore since when layers are > - * inserted, they are inserted at the top of the existing > - * tree. > - */ > - to_free = idp->top; > - p = idp->top->ary[0]; > - rcu_assign_pointer(idp->top, p); > - --idp->layers; > - to_free->count = 0; > - bitmap_clear(to_free->bitmap, 0, IDR_SIZE); > - free_layer(idp, to_free); > - } > -} > -EXPORT_SYMBOL(idr_remove); > - > -static void __idr_remove_all(struct idr *idp) > -{ > - int n, id, max; > - int bt_mask; > - struct idr_layer *p; > - struct idr_layer *pa[MAX_IDR_LEVEL + 1]; > - struct idr_layer **paa = &pa[0]; > - > - n = idp->layers * IDR_BITS; > - *paa = idp->top; > - RCU_INIT_POINTER(idp->top, NULL); > - max = idr_max(idp->layers); > - > - id = 0; > - while (id >= 0 && id <= max) { > - p = *paa; > - while (n > IDR_BITS && p) { > - n -= IDR_BITS; > - p = p->ary[(id >> n) & IDR_MASK]; > - *++paa = p; > - } > - > - bt_mask = id; > - id += 1 << n; > - /* Get the highest bit that the above add changed from 0->1. */ > - while (n < fls(id ^ bt_mask)) { > - if (*paa) > - free_layer(idp, *paa); > - n += IDR_BITS; > - --paa; > - } > - } > - idp->layers = 0; > -} > - > -/** > - * idr_destroy - release all cached layers within an idr tree > - * @idp: idr handle > - * > - * Free all id mappings and all idp_layers. After this function, @idp is > - * completely unused and can be freed / recycled. The caller is > - * responsible for ensuring that no one else accesses @idp during or after > - * idr_destroy(). > - * > - * A typical clean-up sequence for objects stored in an idr tree will use > - * idr_for_each() to free all objects, if necessary, then idr_destroy() to > - * free up the id mappings and cached idr_layers. > - */ > -void idr_destroy(struct idr *idp) > -{ > - __idr_remove_all(idp); > - > - while (idp->id_free_cnt) { > - struct idr_layer *p = get_from_free_list(idp); > - kmem_cache_free(idr_layer_cache, p); > - } > -} > -EXPORT_SYMBOL(idr_destroy); > - > -void *idr_find_slowpath(struct idr *idp, int id) > -{ > - int n; > - struct idr_layer *p; > - > - if (id < 0) > - return NULL; > - > - p = rcu_dereference_raw(idp->top); > - if (!p) > - return NULL; > - n = (p->layer+1) * IDR_BITS; > - > - if (id > idr_max(p->layer + 1)) > - return NULL; > - BUG_ON(n == 0); > - > - while (n > 0 && p) { > - n -= IDR_BITS; > - BUG_ON(n != p->layer*IDR_BITS); > - p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); > - } > - return((void *)p); > -} > -EXPORT_SYMBOL(idr_find_slowpath); > - > -/** > - * idr_for_each - iterate through all stored pointers > - * @idp: idr handle > - * @fn: function to be called for each pointer > - * @data: data passed back to callback function > - * > - * Iterate over the pointers registered with the given idr. The > - * callback function will be called for each pointer currently > - * registered, passing the id, the pointer and the data pointer passed > - * to this function. It is not safe to modify the idr tree while in > - * the callback, so functions such as idr_get_new and idr_remove are > - * not allowed. > - * > - * We check the return of @fn each time. If it returns anything other > - * than %0, we break out and return that value. > - * > - * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove(). > - */ > -int idr_for_each(struct idr *idp, > - int (*fn)(int id, void *p, void *data), void *data) > -{ > - int n, id, max, error = 0; > - struct idr_layer *p; > - struct idr_layer *pa[MAX_IDR_LEVEL + 1]; > - struct idr_layer **paa = &pa[0]; > - > - n = idp->layers * IDR_BITS; > - *paa = rcu_dereference_raw(idp->top); > - max = idr_max(idp->layers); > - > - id = 0; > - while (id >= 0 && id <= max) { > - p = *paa; > - while (n > 0 && p) { > - n -= IDR_BITS; > - p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); > - *++paa = p; > - } > - > - if (p) { > - error = fn(id, (void *)p, data); > - if (error) > - break; > - } > - > - id += 1 << n; > - while (n < fls(id)) { > - n += IDR_BITS; > - --paa; > - } > - } > - > - return error; > -} > -EXPORT_SYMBOL(idr_for_each); > - > -/** > - * idr_get_next - lookup next object of id to given id. > - * @idp: idr handle > - * @nextidp: pointer to lookup key > - * > - * Returns pointer to registered object with id, which is next number to > - * given id. After being looked up, *@nextidp will be updated for the next > - * iteration. > - * > - * This function can be called under rcu_read_lock(), given that the leaf > - * pointers lifetimes are correctly managed. > - */ > -void *idr_get_next(struct idr *idp, int *nextidp) > -{ > - struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1]; > - struct idr_layer **paa = &pa[0]; > - int id = *nextidp; > - int n, max; > - > - /* find first ent */ > - p = *paa = rcu_dereference_raw(idp->top); > - if (!p) > - return NULL; > - n = (p->layer + 1) * IDR_BITS; > - max = idr_max(p->layer + 1); > - > - while (id >= 0 && id <= max) { > - p = *paa; > - while (n > 0 && p) { > - n -= IDR_BITS; > - p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]); > - *++paa = p; > - } > - > - if (p) { > - *nextidp = id; > - return p; > - } > - > - /* > - * Proceed to the next layer at the current level. Unlike > - * idr_for_each(), @id isn't guaranteed to be aligned to > - * layer boundary at this point and adding 1 << n may > - * incorrectly skip IDs. Make sure we jump to the > - * beginning of the next layer using round_up(). > - */ > - id = round_up(id + 1, 1 << n); > - while (n < fls(id)) { > - n += IDR_BITS; > - --paa; > - } > - } > - return NULL; > -} > -EXPORT_SYMBOL(idr_get_next); > - > - > -/** > - * idr_replace - replace pointer for given id > - * @idp: idr handle > - * @ptr: pointer you want associated with the id > - * @id: lookup key > - * > - * Replace the pointer registered with an id and return the old value. > - * A %-ENOENT return indicates that @id was not found. > - * A %-EINVAL return indicates that @id was not within valid constraints. > - * > - * The caller must serialize with writers. > - */ > -void *idr_replace(struct idr *idp, void *ptr, int id) > -{ > - int n; > - struct idr_layer *p, *old_p; > - > - if (id < 0) > - return ERR_PTR(-EINVAL); > - > - p = idp->top; > - if (!p) > - return ERR_PTR(-ENOENT); > - > - if (id > idr_max(p->layer + 1)) > - return ERR_PTR(-ENOENT); > - > - n = p->layer * IDR_BITS; > - while ((n > 0) && p) { > - p = p->ary[(id >> n) & IDR_MASK]; > - n -= IDR_BITS; > - } > - > - n = id & IDR_MASK; > - if (unlikely(p == NULL || !test_bit(n, p->bitmap))) > - return ERR_PTR(-ENOENT); > - > - old_p = p->ary[n]; > - rcu_assign_pointer(p->ary[n], ptr); > - > - return old_p; > -} > -EXPORT_SYMBOL(idr_replace); > - > -void __init idr_init_cache(void) > -{ > - idr_layer_cache = kmem_cache_create("idr_layer_cache", > - sizeof(struct idr_layer), 0, SLAB_PANIC, NULL); > -} > - > -/** > - * idr_init - initialize idr handle > - * @idp: idr handle > - * > - * This function is use to set up the handle (@idp) that you will pass > - * to the rest of the functions. > - */ > -void idr_init(struct idr *idp) > -{ > - memset(idp, 0, sizeof(struct idr)); > - spin_lock_init(&idp->lock); > -} > -EXPORT_SYMBOL(idr_init); > - > -static int idr_has_entry(int id, void *p, void *data) > -{ > - return 1; > -} > - > -bool idr_is_empty(struct idr *idp) > -{ > - return !idr_for_each(idp, idr_has_entry, NULL); > -} > -EXPORT_SYMBOL(idr_is_empty); > - > -/** > - * DOC: IDA description > - * IDA - IDR based ID allocator > - * > - * This is id allocator without id -> pointer translation. Memory > - * usage is much lower than full blown idr because each id only > - * occupies a bit. ida uses a custom leaf node which contains > - * IDA_BITMAP_BITS slots. > - * > - * 2007-04-25 written by Tejun Heo <htejun@xxxxxxxxx> > - */ > - > -static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap) > -{ > - unsigned long flags; > - > - if (!ida->free_bitmap) { > - spin_lock_irqsave(&ida->idr.lock, flags); > - if (!ida->free_bitmap) { > - ida->free_bitmap = bitmap; > - bitmap = NULL; > - } > - spin_unlock_irqrestore(&ida->idr.lock, flags); > - } > - > - kfree(bitmap); > -} > - > -/** > - * ida_pre_get - reserve resources for ida allocation > - * @ida: ida handle > - * @gfp_mask: memory allocation flag > - * > - * This function should be called prior to locking and calling the > - * following function. It preallocates enough memory to satisfy the > - * worst possible allocation. > - * > - * If the system is REALLY out of memory this function returns %0, > - * otherwise %1. > - */ > -int ida_pre_get(struct ida *ida, gfp_t gfp_mask) > -{ > - /* allocate idr_layers */ > - if (!__idr_pre_get(&ida->idr, gfp_mask)) > - return 0; > - > - /* allocate free_bitmap */ > - if (!ida->free_bitmap) { > - struct ida_bitmap *bitmap; > - > - bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask); > - if (!bitmap) > - return 0; > - > - free_bitmap(ida, bitmap); > - } > - > - return 1; > -} > -EXPORT_SYMBOL(ida_pre_get); > - > -/** > - * ida_get_new_above - allocate new ID above or equal to a start id > - * @ida: ida handle > - * @starting_id: id to start search at > - * @p_id: pointer to the allocated handle > - * > - * Allocate new ID above or equal to @starting_id. It should be called > - * with any required locks. > - * > - * If memory is required, it will return %-EAGAIN, you should unlock > - * and go back to the ida_pre_get() call. If the ida is full, it will > - * return %-ENOSPC. > - * > - * @p_id returns a value in the range @starting_id ... %0x7fffffff. > - */ > -int ida_get_new_above(struct ida *ida, int starting_id, int *p_id) > -{ > - struct idr_layer *pa[MAX_IDR_LEVEL + 1]; > - struct ida_bitmap *bitmap; > - unsigned long flags; > - int idr_id = starting_id / IDA_BITMAP_BITS; > - int offset = starting_id % IDA_BITMAP_BITS; > - int t, id; > - > - restart: > - /* get vacant slot */ > - t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr); > - if (t < 0) > - return t == -ENOMEM ? -EAGAIN : t; > - > - if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT) > - return -ENOSPC; > - > - if (t != idr_id) > - offset = 0; > - idr_id = t; > - > - /* if bitmap isn't there, create a new one */ > - bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK]; > - if (!bitmap) { > - spin_lock_irqsave(&ida->idr.lock, flags); > - bitmap = ida->free_bitmap; > - ida->free_bitmap = NULL; > - spin_unlock_irqrestore(&ida->idr.lock, flags); > - > - if (!bitmap) > - return -EAGAIN; > - > - memset(bitmap, 0, sizeof(struct ida_bitmap)); > - rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK], > - (void *)bitmap); > - pa[0]->count++; > - } > - > - /* lookup for empty slot */ > - t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset); > - if (t == IDA_BITMAP_BITS) { > - /* no empty slot after offset, continue to the next chunk */ > - idr_id++; > - offset = 0; > - goto restart; > - } > - > - id = idr_id * IDA_BITMAP_BITS + t; > - if (id >= MAX_IDR_BIT) > - return -ENOSPC; > - > - __set_bit(t, bitmap->bitmap); > - if (++bitmap->nr_busy == IDA_BITMAP_BITS) > - idr_mark_full(pa, idr_id); > - > - *p_id = id; > - > - /* Each leaf node can handle nearly a thousand slots and the > - * whole idea of ida is to have small memory foot print. > - * Throw away extra resources one by one after each successful > - * allocation. > - */ > - if (ida->idr.id_free_cnt || ida->free_bitmap) { > - struct idr_layer *p = get_from_free_list(&ida->idr); > - if (p) > - kmem_cache_free(idr_layer_cache, p); > - } > - > - return 0; > -} > -EXPORT_SYMBOL(ida_get_new_above); > - > -/** > - * ida_remove - remove the given ID > - * @ida: ida handle > - * @id: ID to free > - */ > -void ida_remove(struct ida *ida, int id) > -{ > - struct idr_layer *p = ida->idr.top; > - int shift = (ida->idr.layers - 1) * IDR_BITS; > - int idr_id = id / IDA_BITMAP_BITS; > - int offset = id % IDA_BITMAP_BITS; > - int n; > - struct ida_bitmap *bitmap; > - > - if (idr_id > idr_max(ida->idr.layers)) > - goto err; > - > - /* clear full bits while looking up the leaf idr_layer */ > - while ((shift > 0) && p) { > - n = (idr_id >> shift) & IDR_MASK; > - __clear_bit(n, p->bitmap); > - p = p->ary[n]; > - shift -= IDR_BITS; > - } > - > - if (p == NULL) > - goto err; > - > - n = idr_id & IDR_MASK; > - __clear_bit(n, p->bitmap); > - > - bitmap = (void *)p->ary[n]; > - if (!bitmap || !test_bit(offset, bitmap->bitmap)) > - goto err; > - > - /* update bitmap and remove it if empty */ > - __clear_bit(offset, bitmap->bitmap); > - if (--bitmap->nr_busy == 0) { > - __set_bit(n, p->bitmap); /* to please idr_remove() */ > - idr_remove(&ida->idr, idr_id); > - free_bitmap(ida, bitmap); > - } > - > - return; > - > - err: > - WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); > -} > -EXPORT_SYMBOL(ida_remove); > - > -/** > - * ida_destroy - release all cached layers within an ida tree > - * @ida: ida handle > - */ > -void ida_destroy(struct ida *ida) > -{ > - idr_destroy(&ida->idr); > - kfree(ida->free_bitmap); > -} > -EXPORT_SYMBOL(ida_destroy); > - > /** > * ida_simple_get - get a new id. > * @ida: the (initialized) ida. > @@ -1130,18 +70,3 @@ void ida_simple_remove(struct ida *ida, unsigned int id) > spin_unlock_irqrestore(&simple_ida_lock, flags); > } > EXPORT_SYMBOL(ida_simple_remove); > - > -/** > - * ida_init - initialize ida handle > - * @ida: ida handle > - * > - * This function is use to set up the handle (@ida) that you will pass > - * to the rest of the functions. > - */ > -void ida_init(struct ida *ida) > -{ > - memset(ida, 0, sizeof(struct ida)); > - idr_init(&ida->idr); > - > -} > -EXPORT_SYMBOL(ida_init); > diff --git a/lib/radix-tree.c b/lib/radix-tree.c > index 1bd5df8..19a4a9a 100644 > --- a/lib/radix-tree.c > +++ b/lib/radix-tree.c > @@ -24,19 +24,20 @@ > > #include <linux/bitmap.h> > #include <linux/bitops.h> > +#include <linux/cpu.h> > #include <linux/errno.h> > +#include <linux/export.h> > +#include <linux/idr.h> > #include <linux/init.h> > #include <linux/kernel.h> > -#include <linux/export.h> > -#include <linux/radix-tree.h> > -#include <linux/percpu.h> > -#include <linux/slab.h> > #include <linux/kmemleak.h> > #include <linux/notifier.h> > -#include <linux/cpu.h> > -#include <linux/string.h> > -#include <linux/rcupdate.h> > +#include <linux/percpu.h> > #include <linux/preempt.h> /* in_interrupt() */ > +#include <linux/radix-tree.h> > +#include <linux/rcupdate.h> > +#include <linux/slab.h> > +#include <linux/string.h> > > > /* Number of nodes in fully populated tree of given height */ > @@ -61,6 +62,15 @@ static struct kmem_cache *radix_tree_node_cachep; > #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1) > > /* > + * The IDR does not have to be as high since it can only store a 31-bit integer > + * at its maximum height > + */ > +#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1) > +#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \ > + RADIX_TREE_MAP_SHIFT)) > +#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1) > + > +/* > * Per-cpu pool of preloaded nodes > */ > struct radix_tree_preload { > @@ -148,27 +158,38 @@ static inline int tag_get(struct radix_tree_node *node, unsigned int tag, > > static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag) > { > - root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT)); > + root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT)); > } > > static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag) > { > - root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT)); > + root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT)); > } > > static inline void root_tag_clear_all(struct radix_tree_root *root) > { > - root->gfp_mask &= __GFP_BITS_MASK; > + root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1; > } > > static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag) > { > - return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT)); > + return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT)); > } > > static inline unsigned root_tags_get(struct radix_tree_root *root) > { > - return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT; > + return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT; > +} > + > +/* > + * IDRs do not expose the tagging functionality of the radix tree to their > + * users. Reuse tag 0 to track whether a node has free space below it. > + */ > +#define IDR_FREE 0 > + > +static inline bool is_idr(struct radix_tree_root *root) > +{ > + return (__force unsigned)root->gfp_mask & ROOT_IS_IDR; > } > > /* > @@ -238,6 +259,13 @@ static inline unsigned long node_maxindex(struct radix_tree_node *node) > return shift_maxindex(node->shift); > } > > +static unsigned long next_index(unsigned long index, > + struct radix_tree_node *node, > + unsigned long offset) > +{ > + return (index & ~node_maxindex(node)) + (offset << node->shift); > +} > + > #ifndef __KERNEL__ > static void dump_node(struct radix_tree_node *node, unsigned long index) > { > @@ -276,11 +304,47 @@ static void radix_tree_dump(struct radix_tree_root *root) > { > pr_debug("radix root: %p rnode %p tags %x\n", > root, root->rnode, > - root->gfp_mask >> __GFP_BITS_SHIFT); > + root->gfp_mask >> ROOT_TAG_SHIFT); > if (!radix_tree_is_internal_node(root->rnode)) > return; > dump_node(entry_to_node(root->rnode), 0); > } > + > +static void dump_ida_node(void *entry, unsigned long index) > +{ > + unsigned long i; > + > + if (!entry) > + return; > + > + if (radix_tree_is_internal_node(entry)) { > + struct radix_tree_node *node = entry_to_node(entry); > + > + pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n", > + node, node->offset, index, index | node_maxindex(node), > + node->parent, node->tags[0][0], node->shift, > + node->count); > + for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) > + dump_ida_node(node->slots[i], > + index | (i << node->shift)); > + } else { > + struct ida_bitmap *bitmap = entry; > + > + pr_debug("ida btmp: %p index %lu data", bitmap, index); > + for (i = 0; i < IDA_BITMAP_LONGS; i++) > + pr_cont(" %lx", bitmap->bitmap[i]); > + pr_cont("\n"); > + } > +} > + > +static void ida_dump(struct ida *ida) > +{ > + struct radix_tree_root *root = &ida->ida_rt; > + pr_debug("ida: %p %p free %d bitmap %p\n", ida, root->rnode, > + root->gfp_mask >> ROOT_TAG_SHIFT, > + ida->free_bitmap); > + dump_ida_node(root->rnode, 0); > +} > #endif > > /* > @@ -288,10 +352,9 @@ static void radix_tree_dump(struct radix_tree_root *root) > * that the caller has pinned this thread of control to the current CPU. > */ > static struct radix_tree_node * > -radix_tree_node_alloc(struct radix_tree_root *root) > +radix_tree_node_alloc(gfp_t gfp_mask) > { > struct radix_tree_node *ret = NULL; > - gfp_t gfp_mask = root_gfp_mask(root); > > /* > * Preload code isn't irq safe and it doesn't make sense to use > @@ -521,7 +584,7 @@ static unsigned radix_tree_load_root(struct radix_tree_root *root, > /* > * Extend a radix tree so it can store key @index. > */ > -static int radix_tree_extend(struct radix_tree_root *root, > +static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp_mask, > unsigned long index, unsigned int shift) > { > struct radix_tree_node *slot; > @@ -538,15 +601,22 @@ static int radix_tree_extend(struct radix_tree_root *root, > goto out; > > do { > - struct radix_tree_node *node = radix_tree_node_alloc(root); > + struct radix_tree_node *node = radix_tree_node_alloc(gfp_mask); > > if (!node) > return -ENOMEM; > > - /* Propagate the aggregated tag info into the new root */ > - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { > - if (root_tag_get(root, tag)) > - tag_set(node, tag, 0); > + if (is_idr(root)) { > + all_tag_set(node, IDR_FREE); > + if (!root_tag_get(root, IDR_FREE)) > + tag_clear(node, IDR_FREE, 0); > + root_tag_set(root, IDR_FREE); > + } else { > + /* Propagate the aggregated tag info to the new child */ > + for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { > + if (root_tag_get(root, tag)) > + tag_set(node, tag, 0); > + } > } > > BUG_ON(shift > BITS_PER_LONG); > @@ -565,26 +635,9 @@ static int radix_tree_extend(struct radix_tree_root *root, > return maxshift + RADIX_TREE_MAP_SHIFT; > } > > -/** > - * __radix_tree_create - create a slot in a radix tree > - * @root: radix tree root > - * @index: index key > - * @order: index occupies 2^order aligned slots > - * @nodep: returns node > - * @slotp: returns slot > - * > - * Create, if necessary, and return the node and slot for an item > - * at position @index in the radix tree @root. > - * > - * Until there is more than one item in the tree, no nodes are > - * allocated and @root->rnode is used as a direct slot instead of > - * pointing to a node, in which case *@nodep will be NULL. > - * > - * Returns -ENOMEM, or 0 for success. > - */ > -int __radix_tree_create(struct radix_tree_root *root, unsigned long index, > - unsigned order, struct radix_tree_node **nodep, > - void ***slotp) > +static int _radix_tree_create(struct radix_tree_root *root, gfp_t gfp_mask, > + unsigned long index, unsigned int order, > + struct radix_tree_node **nodep, void ***slotp) > { > struct radix_tree_node *node = NULL, *child; > void **slot = (void **)&root->rnode; > @@ -598,7 +651,7 @@ int __radix_tree_create(struct radix_tree_root *root, unsigned long index, > if (order > 0 && max == ((1UL << order) - 1)) > max++; > if (max > maxindex) { > - int error = radix_tree_extend(root, max, shift); > + int error = radix_tree_extend(root, gfp_mask, max, shift); > if (error < 0) > return error; > shift = error; > @@ -609,7 +662,7 @@ int __radix_tree_create(struct radix_tree_root *root, unsigned long index, > shift -= RADIX_TREE_MAP_SHIFT; > if (child == NULL) { > /* Have to add a child node. */ > - child = radix_tree_node_alloc(root); > + child = radix_tree_node_alloc(gfp_mask); > if (!child) > return -ENOMEM; > child->shift = shift; > @@ -635,7 +688,6 @@ int __radix_tree_create(struct radix_tree_root *root, unsigned long index, > return 0; > } > > -#ifdef CONFIG_RADIX_TREE_MULTIORDER > /* > * Free any nodes below this node. The tree is presumed to not need > * shrinking, and any user data in the tree is presumed to not need a > @@ -670,6 +722,7 @@ static void radix_tree_free_nodes(struct radix_tree_node *node) > } > } > > +#ifdef CONFIG_RADIX_TREE_MULTIORDER > static inline int insert_entries(struct radix_tree_node *node, void **slot, > void *ptr, unsigned order, bool replace) > { > @@ -741,6 +794,31 @@ static inline int insert_entries(struct radix_tree_node *node, void **slot, > #endif > > /** > + * __radix_tree_create - create a slot in a radix tree > + * @root: radix tree root > + * @index: index key > + * @order: index occupies 2^order aligned slots > + * @nodep: returns node > + * @slotp: returns slot > + * > + * Create, if necessary, and return the node and slot for an item > + * at position @index in the radix tree @root. > + * > + * Until there is more than one item in the tree, no nodes are > + * allocated and @root->rnode is used as a direct slot instead of > + * pointing to a node, in which case *@nodep will be NULL. > + * > + * Returns -ENOMEM, or 0 for success. > + */ > +int __radix_tree_create(struct radix_tree_root *root, unsigned long index, > + unsigned order, struct radix_tree_node **nodep, > + void ***slotp) > +{ > + return _radix_tree_create(root, root_gfp_mask(root), index, order, > + nodep, slotp); > +} > + > +/** > * __radix_tree_insert - insert into a radix tree > * @root: radix tree root > * @index: index key > @@ -891,6 +969,7 @@ int radix_tree_split(struct radix_tree_root *root, unsigned long index, > void **slot; > unsigned int offset, end; > unsigned n, tag, tags = 0; > + gfp_t gfp = root_gfp_mask(root); > > if (!__radix_tree_lookup(root, index, &parent, &slot)) > return -ENOENT; > @@ -926,7 +1005,7 @@ int radix_tree_split(struct radix_tree_root *root, unsigned long index, > > for (;;) { > if (node->shift > order) { > - child = radix_tree_node_alloc(root); > + child = radix_tree_node_alloc(gfp); > if (!child) > goto nomem; > child->shift = node->shift - RADIX_TREE_MAP_SHIFT; > @@ -1569,6 +1648,8 @@ static inline bool radix_tree_shrink(struct radix_tree_root *root) > * one (root->rnode) as far as dependent read barriers go. > */ > root->rnode = child; > + if (is_idr(root) && !tag_get(node, IDR_FREE, 0)) > + root_tag_clear(root, IDR_FREE); > > /* > * We have a dilemma here. The node's slot[0] must not be > @@ -1628,7 +1709,12 @@ bool __radix_tree_delete_node(struct radix_tree_root *root, > parent->slots[node->offset] = NULL; > parent->count--; > } else { > - root_tag_clear_all(root); > + /* > + * Shouldn't the tags already have all been cleared > + * by the caller? > + */ > + if (!is_idr(root)) > + root_tag_clear_all(root); > root->rnode = NULL; > } > > @@ -1641,6 +1727,17 @@ bool __radix_tree_delete_node(struct radix_tree_root *root, > return deleted; > } > > +static void radix_tree_iter_delete(struct radix_tree_root *root, > + struct radix_tree_iter *iter) > +{ > + unsigned offset = (iter->index >> iter->shift) & RADIX_TREE_MAP_MASK; > + struct radix_tree_node *node = iter->node; > + > + node->slots[offset] = NULL; > + node->count--; > + __radix_tree_delete_node(root, node); > +} > + > static inline void delete_sibling_entries(struct radix_tree_node *node, > void *ptr, unsigned offset) > { > @@ -1663,7 +1760,7 @@ static inline void delete_sibling_entries(struct radix_tree_node *node, > * > * Remove @item at @index from the radix tree rooted at @root. > * > - * Returns the address of the deleted item, or NULL if it was not present > + * Returns the value of the deleted item, or NULL if it was not present > * or the entry at the given @index was not @item. > */ > void *radix_tree_delete_item(struct radix_tree_root *root, > @@ -1683,16 +1780,21 @@ void *radix_tree_delete_item(struct radix_tree_root *root, > return NULL; > > if (!node) { > - root_tag_clear_all(root); > + if (is_idr(root)) > + root_tag_set(root, IDR_FREE); > + else > + root_tag_clear_all(root); > root->rnode = NULL; > return entry; > } > > offset = get_slot_offset(node, slot); > > - /* Clear all tags associated with the item to be deleted. */ > - for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) > - node_tag_clear(root, node, tag, offset); > + if (is_idr(root)) > + node_tag_set(root, node, IDR_FREE, offset); > + else > + for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) > + node_tag_clear(root, node, tag, offset); > > delete_sibling_entries(node, node_to_entry(slot), offset); > node->slots[offset] = NULL; > @@ -1711,7 +1813,7 @@ EXPORT_SYMBOL(radix_tree_delete_item); > * > * Remove the item at @index from the radix tree rooted at @root. > * > - * Returns the address of the deleted item, or NULL if it was not present. > + * Returns the value of the deleted item, or NULL if it was not present. > */ > void *radix_tree_delete(struct radix_tree_root *root, unsigned long index) > { > @@ -1728,8 +1830,7 @@ void radix_tree_clear_tags(struct radix_tree_root *root, > for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) > node_tag_clear(root, node, tag, offset); > } else { > - /* Clear root node tags */ > - root->gfp_mask &= __GFP_BITS_MASK; > + root_tag_clear_all(root); > } > } > > @@ -1744,6 +1845,333 @@ int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag) > } > EXPORT_SYMBOL(radix_tree_tagged); > > +void idr_preload(gfp_t gfp_mask) > +{ > + __radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE); > +} > +EXPORT_SYMBOL(idr_preload); > + > +static int __idr_get_empty(struct radix_tree_root *root, gfp_t gfp, > + unsigned long start, int end, > + struct radix_tree_node **nodep, void ***slotp) > +{ > + struct radix_tree_node *node = NULL, *child; > + void **slot = (void **)&root->rnode; > + unsigned long maxindex; > + unsigned long max = end > 0 ? end - 1 : INT_MAX; > + unsigned int shift, offset = 0; > + > + grow: > + shift = radix_tree_load_root(root, &child, &maxindex); > + if (!radix_tree_tagged(root, IDR_FREE)) > + start = max(start, maxindex + 1); > + if (start > max) > + return -ENOSPC; > + > + if (start > maxindex) { > + int error = radix_tree_extend(root, gfp, start, shift); > + if (error < 0) > + return error; > + shift = error; > + child = root->rnode; > + } > + > + while (shift) { > + shift -= RADIX_TREE_MAP_SHIFT; > + if (child == NULL) { > + /* Have to add a child node. */ > + child = radix_tree_node_alloc(gfp); > + if (!child) > + return -ENOMEM; > + child->shift = shift; > + child->offset = offset; > + child->parent = node; > + all_tag_set(child, IDR_FREE); > + rcu_assign_pointer(*slot, node_to_entry(child)); > + if (node) > + node->count++; > + } else if (!radix_tree_is_internal_node(child)) > + break; > + > + node = entry_to_node(child); > + offset = radix_tree_descend(node, &child, start); > + if (!tag_get(node, IDR_FREE, offset)) { > + offset = radix_tree_find_next_bit(node, IDR_FREE, > + offset + 1); > + start = next_index(start, node, offset); > + if (start > max) > + return -ENOSPC; > + while (offset == RADIX_TREE_MAP_SIZE) { > + offset = node->offset + 1; > + node = node->parent; > + if (!node) > + goto grow; > + shift = node->shift; > + } > + child = node->slots[offset]; > + } > + slot = &node->slots[offset]; > + } > + > + *nodep = node; > + *slotp = slot; > + return start; > +} > + > +/** > + * idr_alloc - allocate an id > + * @idr: idr handle > + * @ptr: pointer to be associated with the new id > + * @start: the minimum id (inclusive) > + * @end: the maximum id (exclusive) > + * @gfp: memory allocation flags > + * > + * Allocates an unused ID in the range [start, end). Returns -ENOSPC > + * if there are no unused IDs in that range. > + */ > +int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) > +{ > + struct radix_tree_node *node; > + void **slot; > + int id; > + > + if (WARN_ON_ONCE(start < 0)) > + return -EINVAL; > + > + id = __idr_get_empty(&idr->idr_rt, gfp, start, end, &node, &slot); > + if (id < 0) > + return id; > + > + BUG_ON(radix_tree_is_internal_node(ptr)); > + > + rcu_assign_pointer(*slot, ptr); > + if (node) > + node->count++; > + node_tag_clear(&idr->idr_rt, node, IDR_FREE, > + get_slot_offset(node, slot)); > + return id; > +} > +EXPORT_SYMBOL(idr_alloc); > + > +/** > + * idr_alloc_cyclic - allocate an id larger than the last id allocated > + * @idr: idr handle > + * @ptr: pointer to be associated with the new id > + * @end: the maximum id (exclusive) > + * @gfp: memory allocation flags > + * > + * Allocates an ID the same way that idr_alloc_cyclic() does, but does > + * not wrap around. This is useful for cases where we need to know > + * whether wrapping has occurred. > + */ > +int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp) > +{ > + int id, curr = idr->idr_next; > + > + if (curr < start) > + curr = start; > + > + id = idr_alloc(idr, ptr, curr, end, gfp); > + if ((id == -ENOSPC) && (curr > start)) > + id = idr_alloc(idr, ptr, start, curr, gfp); > + > + if (id >= 0) > + idr->idr_next = id + 1U; > + > + return id; > +} > +EXPORT_SYMBOL(idr_alloc_cyclic); > + > +int idr_for_each(struct idr *idr, > + int (*fn)(int id, void *p, void *data), void *data) > +{ > + struct radix_tree_iter iter; > + void **slot; > + > + radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) { > + int ret = fn(iter.index, *slot, data); > + if (ret) > + return ret; > + } > + > + return 0; > +} > +EXPORT_SYMBOL(idr_for_each); > + > +/** > + * idr_get_next - Find next populated entry > + * @idr: idr handle > + * @nextid: Pointer to lowest possible ID to return > + * > + * Returns the next populated entry in the tree with an ID greater than > + * or equal to the value pointed to by @nextid. On exit, @nextid is updated > + * to the ID of the found value. To use in a loop, the value pointed to by > + * nextid must be incremented by the user. > + */ > +void *idr_get_next(struct idr *idr, int *nextid) > +{ > + struct radix_tree_iter iter; > + void **slot; > + > + radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, *nextid) { > + *nextid = iter.index; > + return *slot; > + } > + > + return NULL; > +} > +EXPORT_SYMBOL(idr_get_next); > + > +void *idr_replace(struct idr *idr, void *ptr, int id) > +{ > + void **slot; > + void *entry; > + > + if (id < 0) > + return ERR_PTR(-EINVAL); > + if (!ptr || radix_tree_is_internal_node(ptr)) > + return ERR_PTR(-EINVAL); > + > + entry = __radix_tree_lookup(&idr->idr_rt, id, NULL, &slot); > + > + if (!entry) > + return ERR_PTR(-ENOENT); > + > + radix_tree_replace_slot(slot, ptr); > + > + return entry; > +} > +EXPORT_SYMBOL(idr_replace); > + > +void idr_destroy(struct idr *idr) > +{ > + struct radix_tree_node **slot = &idr->idr_rt.rnode; > + if (radix_tree_is_internal_node(*slot)) > + radix_tree_free_nodes(*slot); > + *slot = NULL; > + root_tag_set(&idr->idr_rt, IDR_FREE); > +} > +EXPORT_SYMBOL(idr_destroy); > + > +int ida_pre_get(struct ida *ida, gfp_t gfp) > +{ > + struct ida_bitmap *bitmap; > + > + idr_preload(gfp); > + idr_preload_end(); > + > + if (!ida->free_bitmap) { > + bitmap = kmalloc(sizeof(struct ida_bitmap), gfp); > + if (!bitmap) > + return 0; > + bitmap = xchg(&ida->free_bitmap, bitmap); > + kfree(bitmap); > + } > + > + return 1; > +} > +EXPORT_SYMBOL(ida_pre_get); > + > +int ida_get_new_above(struct ida *ida, int start, int *id) > +{ > + struct radix_tree_root *root = &ida->ida_rt; > + void **slot = (void **)&root->rnode; > + struct radix_tree_node *node; > + struct ida_bitmap *bitmap = NULL; > + unsigned long index; > + unsigned bit, offset = 0; > + > + index = start / IDA_BITMAP_BITS; > + bit = start % IDA_BITMAP_BITS; > + > + restart: > + index = __idr_get_empty(root, GFP_ATOMIC, index, INT_MAX, &node, &slot); > + if (index > INT_MAX) > + return index; > + > + index *= IDA_BITMAP_BITS; > + if (index > INT_MAX) > + return -ENOSPC; > + > + if (index > start) > + bit = 0; > + offset = get_slot_offset(node, slot); > + > + bitmap = *slot; > + if (bitmap) { > + bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit); > + index += bit; > + if (index > INT_MAX) > + return -ENOSPC; > + if (bit == IDA_BITMAP_BITS) { > + index /= IDA_BITMAP_BITS; > + goto restart; > + } > + __set_bit(bit, bitmap->bitmap); > + if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS)) > + node_tag_clear(root, node, IDR_FREE, offset); > + bitmap = xchg(&ida->free_bitmap, NULL); > + kfree(bitmap); > + } else { > + index += bit; > + bitmap = xchg(&ida->free_bitmap, NULL); > + if (!bitmap) > + return -EAGAIN; > + memset(bitmap, 0, sizeof(*bitmap)); > + __set_bit(bit, bitmap->bitmap); > + rcu_assign_pointer(*slot, bitmap); > + if (node) > + node->count++; > + } > + > + *id = index; > + return 0; > +} > +EXPORT_SYMBOL(ida_get_new_above); > + > +void ida_remove(struct ida *ida, int id) > +{ > + unsigned long index = id / IDA_BITMAP_BITS; > + unsigned offset = id % IDA_BITMAP_BITS; > + struct ida_bitmap *bitmap; > + struct radix_tree_node *node; > + void **slot; > + > + bitmap = __radix_tree_lookup(&ida->ida_rt, index, &node, &slot); > + if (!bitmap || !test_bit(offset, bitmap->bitmap)) > + goto err; > + > + __clear_bit(offset, bitmap->bitmap); > + node_tag_set(&ida->ida_rt, node, IDR_FREE, get_slot_offset(node, slot)); > + if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) { > + *slot = NULL; > + kfree(bitmap); > + if (node) { > + node->count--; > + __radix_tree_delete_node(&ida->ida_rt, node); > + } > + } > + return; > + err: > + WARN(1, "ida_remove called for id=%d which is not allocated.\n", id); > +} > +EXPORT_SYMBOL(ida_remove); > + > +void ida_destroy(struct ida *ida) > +{ > + struct radix_tree_iter iter; > + void **slot; > + > + radix_tree_for_each_slot(slot, &ida->ida_rt, &iter, 0) { > + struct ida_bitmap *bitmap = *slot; > + kfree(bitmap); > + radix_tree_iter_delete(&ida->ida_rt, &iter); > + } > + > + kfree(ida->free_bitmap); > +} > +EXPORT_SYMBOL(ida_destroy); > + > static void > radix_tree_node_ctor(void *arg) > { > diff --git a/tools/testing/radix-tree/Makefile b/tools/testing/radix-tree/Makefile > index 3635e4d..5a616a3 100644 > --- a/tools/testing/radix-tree/Makefile > +++ b/tools/testing/radix-tree/Makefile > @@ -3,7 +3,7 @@ CFLAGS += -I. -I../../include -g -O2 -Wall -D_LGPL_SOURCE > LDFLAGS += -lpthread -lurcu > TARGETS = main > OFILES = main.o radix-tree.o linux.o test.o tag_check.o find_next_bit.o \ > - regression1.o regression2.o regression3.o multiorder.o \ > + regression1.o regression2.o regression3.o multiorder.o idr.o \ > iteration_check.o benchmark.o > > ifdef BENCHMARK > @@ -23,7 +23,8 @@ find_next_bit.o: ../../lib/find_bit.c > > $(OFILES): *.h */*.h \ > ../../include/linux/*.h \ > - ../../../include/linux/radix-tree.h > + ../../../include/linux/radix-tree.h \ > + ../../../include/linux/idr.h > > radix-tree.c: ../../../lib/radix-tree.c > sed -e 's/^static //' -e 's/__always_inline //' -e 's/inline //' < $< > $@ > diff --git a/tools/testing/radix-tree/idr.c b/tools/testing/radix-tree/idr.c > new file mode 100644 > index 0000000..0f9e7b1 > --- /dev/null > +++ b/tools/testing/radix-tree/idr.c > @@ -0,0 +1,148 @@ > +/* > + * idr.c: Test the IDR API > + * Copyright (c) 2016 Matthew Wilcox <willy@xxxxxxxxxxxxx> > + * > + * This program is free software; you can redistribute it and/or modify it > + * under the terms and conditions of the GNU General Public License, > + * version 2, as published by the Free Software Foundation. > + * > + * This program is distributed in the hope it will be useful, but WITHOUT > + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or > + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for > + * more details. > + */ > +#include <linux/idr.h> > +#include <linux/slab.h> > +#include <linux/kernel.h> > +#include <linux/errno.h> > + > +#include "test.h" > + > +#define DUMMY_PTR ((void *)0x12) > + > +int item_idr_free(int id, void *p, void *data) > +{ > + struct item *item = p; > + assert(item->index == id); > + idr_remove(data, id); > + free(p); > + > + return 0; > +} > + > +void item_idr_remove(struct idr *idr, int id) > +{ > + struct item *item = idr_find(idr, id); > + assert(item->index == id); > + idr_remove(idr, id); > + free(item); > +} > + > +void idr_alloc_test(void) > +{ > + unsigned long i; > + DEFINE_IDR(idr); > + > + assert(idr_alloc_cyclic(&idr, DUMMY_PTR, 0, 0x4000, GFP_KERNEL) == 0); > + assert(idr_alloc_cyclic(&idr, DUMMY_PTR, 0x3ffd, 0x4000, GFP_KERNEL) == 0x3ffd); > + idr_remove(&idr, 0x3ffd); > + idr_remove(&idr, 0); > + > + for (i = 0x3ffe; i < 0x4003; i++) { > + int id; > + struct item *item; > + > + if (i < 0x4000) > + item = item_create(i); > + else > + item = item_create(i - 0x3fff); > + > + id = idr_alloc_cyclic(&idr, item, 1, 0x4000, GFP_KERNEL); > + assert(id == item->index); > + } > + > + idr_for_each(&idr, item_idr_free, &idr); > +} > + > +void idr_checks(void) > +{ > + unsigned long i; > + DEFINE_IDR(idr); > + > + for (i = 0; i < 10000; i++) { > + struct item *item = item_create(i); > + assert(idr_alloc(&idr, item, 0, 20000, GFP_KERNEL) == i); > + } > + > + assert(idr_alloc(&idr, DUMMY_PTR, 5, 30, GFP_KERNEL) < 0); > + > + for (i = 0; i < 5000; i++) > + item_idr_remove(&idr, i); > + > + idr_for_each(&idr, item_idr_free, &idr); > + > + assert(idr_is_empty(&idr)); > + > + for (i = INT_MAX - 3UL; i < INT_MAX + 1UL; i++) { > + struct item *item = item_create(i); > + assert(idr_alloc(&idr, item, i, i + 10, GFP_KERNEL) == i); > + } > + assert(idr_alloc(&idr, DUMMY_PTR, i - 2, i, GFP_KERNEL) == -ENOSPC); > + > + idr_destroy(&idr); > + idr_destroy(&idr); > + > + assert(idr_is_empty(&idr)); > + > + for (i = 1; i < 10000; i++) { > + struct item *item = item_create(i); > + assert(idr_alloc(&idr, item, 1, 20000, GFP_KERNEL) == i); > + } > + > + idr_destroy(&idr); > + > + idr_alloc_test(); > +} > + > +void ida_checks(void) > +{ > + DEFINE_IDA(ida); > + > + unsigned long i; > + int id; > + > + for (i = 0; i < 10000; i++) { > + ida_pre_get(&ida, GFP_KERNEL); > + ida_get_new(&ida, &id); > + assert(id == i); > + } > + > + ida_remove(&ida, 20); > + ida_remove(&ida, 21); > + for (i = 0; i < 3; i++) { > + ida_pre_get(&ida, GFP_KERNEL); > + ida_get_new(&ida, &id); > + if (i == 2) > + assert(id == 10000); > + } > + > + for (i = 0; i < 5000; i++) > + ida_remove(&ida, i); > + > + ida_pre_get(&ida, GFP_KERNEL); > + ida_get_new_above(&ida, 5000, &id); > + assert(id == 10001); > + > + ida_destroy(&ida); > + > + assert(ida_is_empty(&ida)); > + > + ida_pre_get(&ida, GFP_KERNEL); > + ida_get_new_above(&ida, 1, &id); > + assert(id == 1); > + > + ida_remove(&ida, id); > + ida_destroy(&ida); > + > + radix_tree_callback(NULL, CPU_DEAD, NULL); > +} > diff --git a/tools/testing/radix-tree/linux/idr.h b/tools/testing/radix-tree/linux/idr.h > new file mode 100644 > index 0000000..4e342f2 > --- /dev/null > +++ b/tools/testing/radix-tree/linux/idr.h > @@ -0,0 +1 @@ > +#include "../../../../include/linux/idr.h" > diff --git a/tools/testing/radix-tree/linux/kernel.h b/tools/testing/radix-tree/linux/kernel.h > index 9b43b49..7d214e9 100644 > --- a/tools/testing/radix-tree/linux/kernel.h > +++ b/tools/testing/radix-tree/linux/kernel.h > @@ -30,6 +30,7 @@ > #define __force > #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d)) > #define pr_debug printk > +#define pr_cont printk > > #define smp_rmb() barrier() > #define smp_wmb() barrier() > @@ -41,6 +42,7 @@ > const typeof( ((type *)0)->member ) *__mptr = (ptr); \ > (type *)( (char *)__mptr - offsetof(type, member) );}) > #define min(a, b) ((a) < (b) ? (a) : (b)) > +#define max(a, b) ((a) < (b) ? (b) : (a)) > > #define cond_resched() sched_yield() > > diff --git a/tools/testing/radix-tree/main.c b/tools/testing/radix-tree/main.c > index 7d14812..e267d5f 100644 > --- a/tools/testing/radix-tree/main.c > +++ b/tools/testing/radix-tree/main.c > @@ -3,6 +3,7 @@ > #include <unistd.h> > #include <time.h> > #include <assert.h> > +#include <limits.h> > > #include <linux/slab.h> > #include <linux/radix-tree.h> > @@ -314,6 +315,11 @@ static void single_thread_tests(bool long_run) > rcu_barrier(); > printf("after dynamic_height_check: %d allocated, preempt %d\n", > nr_allocated, preempt_count); > + idr_checks(); > + ida_checks(); > + rcu_barrier(); > + printf("after idr_checks: %d allocated, preempt %d\n", > + nr_allocated, preempt_count); > big_gang_check(long_run); > rcu_barrier(); > printf("after big_gang_check: %d allocated, preempt %d\n", > diff --git a/tools/testing/radix-tree/test.h b/tools/testing/radix-tree/test.h > index 1faf0a3..4baec38 100644 > --- a/tools/testing/radix-tree/test.h > +++ b/tools/testing/radix-tree/test.h > @@ -36,6 +36,8 @@ void tag_check(void); > void multiorder_checks(void); > void iteration_test(void); > void benchmark(void); > +void idr_checks(void); > +void ida_checks(void); > > struct item * > item_tag_set(struct radix_tree_root *root, unsigned long index, int tag); > -- > 2.10.2 > > -- > To unsubscribe from this list: send the line "unsubscribe linux-fsdevel" in > the body of a message to majordomo@xxxxxxxxxxxxxxx > More majordomo info at http://vger.kernel.org/majordomo-info.html -- To unsubscribe from this list: send the line "unsubscribe linux-fsdevel" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html