Re: Block device throttling [Re: Distributed storage.]

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



(previous incomplete message sent accidentally)

On Wednesday 08 August 2007 02:54, Evgeniy Polyakov wrote:
> On Tue, Aug 07, 2007 at 10:55:38PM +0200, Jens Axboe wrote:
>
> So, what did we decide? To bloat bio a bit (add a queue pointer) or
> to use physical device limits? The latter requires to replace all
> occurence of bio->bi_bdev = something_new with blk_set_bdev(bio,
> somthing_new), where queue limits will be appropriately charged. So
> far I'm testing second case, but I only changed DST for testing, can
> change all other users if needed though.

Adding a queue pointer to struct bio and using physical device limits as 
in your posted patch both suffer from the same problem: you release the 
throttling on the previous queue when the bio moves to a new one, which 
is a bug because memory consumption on the previous queue then becomes 
unbounded, or limited only by the number of struct requests that can be 
allocated.  In other words, it reverts to the same situation we have 
now as soon as the IO stack has more than one queue.  (Just a shorter 
version of my previous post.)

We can solve this by having the bio only point at the queue to which it 
was originally submitted, since throttling the top level queue 
automatically throttles all queues lower down the stack.  Alternatively 
the bio can point at the block_device or straight at the 
backing_dev_info, which is the per-device structure it actually needs 
to touch.

Note!  There are two more issues I forgot to mention earlier.

1) One throttle count per submitted bio is too crude a measure.  A bio 
can carry as few as one page or as many as 256 pages.  If you take only 
one throttle count per bio and that data will be transferred over the 
network then you have to assume that (a little more than) 256 pages of 
sk_alloc reserve will be needed for every bio, resulting in a grossly 
over-provisioned reserve.  The precise reserve calculation we want to 
do is per-block device, and you will find hooks like this already 
living in backing_dev_info.  We need to place our own fn+data there to 
calculate the throttle draw for each bio.  Unthrottling gets trickier 
with variable size throttle draw.  In ddsnap, we simply write the 
amount we drew from the throttle into (the private data of) bio for use 
later by unthrottle, thus avoiding the issue that the bio fields we 
used to calculate might have changed during the lifetime of the bio.  
This would translate into one more per-bio field.

2) Exposing the per-block device throttle limits via sysfs or similar is 
really not a good long term solution for system administration.  
Imagine our help text: "just keep trying smaller numbers until your 
system deadlocks".  We really need to figure this out internally and 
get it correct.  I can see putting in a temporary userspace interface 
just for experimentation, to help determine what really is safe, and 
what size the numbers should be to approach optimal throughput in a 
fully loaded memory state.

Regards,

Daniel


Regards,

Daniel
-
To unsubscribe from this list: send the line "unsubscribe linux-fsdevel" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html

[Index of Archives]     [Linux Ext4 Filesystem]     [Union Filesystem]     [Filesystem Testing]     [Ceph Users]     [Ecryptfs]     [AutoFS]     [Kernel Newbies]     [Share Photos]     [Security]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux Cachefs]     [Reiser Filesystem]     [Linux RAID]     [Samba]     [Device Mapper]     [CEPH Development]
  Powered by Linux