Describe XRT driver architecture and provide basic overview of Xilinx Alveo platform. Signed-off-by: Sonal Santan <sonal.santan@xxxxxxxxxx> Signed-off-by: Max Zhen <max.zhen@xxxxxxxxxx> Signed-off-by: Lizhi Hou <lizhi.hou@xxxxxxxxxx> --- Documentation/fpga/index.rst | 1 + Documentation/fpga/xrt.rst | 870 +++++++++++++++++++++++++++++++++++ MAINTAINERS | 11 + 3 files changed, 882 insertions(+) create mode 100644 Documentation/fpga/xrt.rst diff --git a/Documentation/fpga/index.rst b/Documentation/fpga/index.rst index f80f95667ca2..30134357b70d 100644 --- a/Documentation/fpga/index.rst +++ b/Documentation/fpga/index.rst @@ -8,6 +8,7 @@ fpga :maxdepth: 1 dfl + xrt .. only:: subproject and html diff --git a/Documentation/fpga/xrt.rst b/Documentation/fpga/xrt.rst new file mode 100644 index 000000000000..5a5b4d5a3bc6 --- /dev/null +++ b/Documentation/fpga/xrt.rst @@ -0,0 +1,870 @@ +.. SPDX-License-Identifier: GPL-2.0 + +================================== +XRTV2 Linux Kernel Driver Overview +================================== + +Authors: + +* Sonal Santan <sonal.santan@xxxxxxxxxx> +* Max Zhen <max.zhen@xxxxxxxxxx> +* Lizhi Hou <lizhi.hou@xxxxxxxxxx> + +XRTV2 drivers are second generation `XRT <https://github.com/Xilinx/XRT>`_ +drivers which support `Alveo <https://www.xilinx.com/products/boards-and-kits/alveo.html>`_ +PCIe platforms from Xilinx. + +XRTV2 drivers support *subsystem* style data driven platforms where driver's +configuration and behavior are determined by metadata provided by the platform +(in *device tree* format). Primary management physical function (MPF) driver +is called **xrt-mgmt**. Primary user physical function (UPF) driver is called +**xrt-user** and is under development. xrt_driver framework and HW subsystem +drivers are packaged into a library module called **xrt-lib**, which is shared +by **xrt-mgmt** and **xrt-user** (under development). The xrt_driver framework +implements a ``bus_type`` called **xrt_bus_type** which is used to discover HW +subsystems and facilitate inter HW subsystem interaction. + +Driver Modules +============== + +xrt-lib.ko +---------- + +xrt-lib is the repository of all subsystem drivers and pure software modules that +can potentially be shared between xrt-mgmt and xrt-user. All these drivers are +structured as **xrt_driver** and are instantiated by xrt-mgmt (or xrt-user under +development) based on the metadata associated with the hardware. The metadata is +in the form of a device tree as mentioned before. Each xrt_driver statically +defines a subsystem node array by using a node name or a string in its ``.endpoints`` +property. And this array is eventually translated to IOMEM resources in the +instantiated **xrt_device**. + +The xrt-lib infrastructure provides hooks to xrt_drivers for device node +management, user file operations and ioctl callbacks. The core infrastructure also +provides a bus functionality called **xrt_bus_type** for xrt_driver registration, +discovery and inter xrt_driver calls. xrt-lib does not have any dependency on PCIe +subsystem. + +.. note:: + See code in ``include/xleaf.h`` and ``include/xdevice.h`` + + +xrt-mgmt.ko +------------ + +The xrt-mgmt driver is a PCIe device driver driving MPF found on Xilinx's Alveo +PCIe device. It consists of one *root* driver, one or more *group* drivers +and one or more *xleaf* drivers. The group and xleaf drivers are instantiations +of the xrt_driver but are called group and xleaf to symbolize the logical operation +performed by them. + +The root driver manages the life cycle of multiple group drivers, which, in turn, +manages multiple xleaf drivers. This flexibility allows xrt-mgmt.ko and xrt-lib.ko +to support various HW subsystems exposed by different Alveo shells. The differences +among these Alveo shells is handled in xleaf drivers. The root and group +drivers are part of the infrastructure which provide common services to xleaf +drivers found on various Alveo shells. See :ref:`alveo_platform_overview`. + +The instantiation of specific group driver or xleaf drivers is completely data +driven based on metadata (mostly in device tree format) found through VSEC +capability and inside the firmware files, such as platform xsabin or user xclbin +file. + + +Driver Object Model +=================== + +The driver object model looks like the following:: + + +-----------+ + | xroot | + +-----+-----+ + | + +-----------+-----------+ + | | + v v + +-----------+ +-----------+ + | group | ... | group | + +-----+-----+ +------+----+ + | | + | | + +-----+----+ +-----+----+ + | | | | + v v v v + +-------+ +-------+ +-------+ +-------+ + | xleaf |..| xleaf | | xleaf |..| xleaf | + +-------+ +-------+ +-------+ +-------+ + +As an example, for Xilinx Alveo U50 before user xclbin download, the tree +looks like the following:: + + +-----------+ + | xrt-mgmt | + +-----+-----+ + | + +-------------------------+--------------------+ + | | | + v v v + +--------+ +--------+ +--------+ + | group0 | | group1 | | group2 | + +----+---+ +----+---+ +---+----+ + | | | + | | | + +-----+-----+ +----+-----+---+ +-----+-----+----+--------+ + | | | | | | | | | + v v | v v | v v | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | + | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | + | +---------+ | +------+ +-----------+ | + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ + +---------+ | +------+ +-----------+ + | +-------+ + +->| CALIB | + +-------+ + +After a xclbin is downloaded, group3 will be added and the tree looks like the +following:: + + +-----------+ + | xrt-mgmt | + +-----+-----+ + | + +-------------------------+--------------------+-----------------+ + | | | | + v v v | + +--------+ +--------+ +--------+ | + | group0 | | group1 | | group2 | | + +----+---+ +----+---+ +---+----+ | + | | | | + | | | | + +-----+-----+ +-----+-----+---+ +-----+-----+----+--------+ | + | | | | | | | | | | + v v | v v | v v | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | + | xmgmt_main | | VSEC | | | GPIO | | QSPI | | | CMC | | AXI-GATE0 | | | + +------------+ +------+ | +------+ +------+ | +------+ +-----------+ | | + | +---------+ | +------+ +-----------+ | | + +>| MAILBOX | +->| ICAP | | AXI-GATE1 |<+ | + +---------+ | +------+ +-----------+ | + | +-------+ | + +->| CALIB | | + +-------+ | + +---+----+ | + | group3 |<--------------------------------------------+ + +--------+ + | + | + +-------+--------+---+--+--------+------+-------+ + | | | | | | | + v | v | v | v + +--------+ | +--------+ | +--------+ | +-----+ + | CLOCK0 | | | CLOCK1 | | | CLOCK2 | | | UCS | + +--------+ v +--------+ v +--------+ v +-----+ + +-------------+ +-------------+ +-------------+ + | CLOCK-FREQ0 | | CLOCK-FREQ1 | | CLOCK-FREQ2 | + +-------------+ +-------------+ +-------------+ + + +root +---- + +The root driver is a PCIe device driver attached to MPF. It's part of the +infrastructure of the MPF driver and resides in xrt-mgmt.ko. This driver + +* manages one or more group drivers +* provides access to functionalities that requires pci_dev, such as PCIE config + space access, to other xleaf drivers through root calls +* facilities inter xleaf driver calls for other xleaf drivers +* facilities event callbacks for other xleaf drivers + +When the root driver starts, it will explicitly create an initial group instance, +which contains xleaf drivers that will trigger the creation of other group +instances. The root driver will wait for all group and xleaf drivers to be +created before it returns from its probe routine and claim success of the +initialization of the entire xrt-mgmt driver. If any xleaf fails to initialize +the xrt-mgmt driver will still come online but with limited functionality. + +.. note:: + See code in ``lib/xroot.c`` and ``mgmt/root.c`` + + +group +----- + +The group driver represents a pseudo device whose life cycle is managed by +root and does not have real IO mem or IRQ resources. It's part of the +infrastructure of the MPF driver and resides in xrt-lib.ko. This driver + +* manages one or more xleaf drivers +* provides access to root from xleaf drivers, so that root calls, event + notifications and inter xleaf calls can happen + +In xrt-mgmt, an initial group driver instance will be created by the root. This +instance contains xleaf drivers that will trigger group instances to be created +to manage groups of xleaf drivers found on different partitions of hardware, +such as VSEC, Shell, and User. + +Every *fpga_region* has a group driver associated with it. The group driver is +created when a xclbin image is loaded on the fpga_region. The existing group +is destroyed when a new xclbin image is loaded. The fpga_region persists +across xclbin downloads. + +.. note:: + See code in ``lib/group.c`` + + +xleaf +----- + +The xleaf driver is a xrt_driver whose life cycle is managed by +a group driver and may or may not have real IO mem or IRQ resources. They +manage HW subsystems they are attached to. + +A xleaf driver without real hardware resources manages in-memory states for +xrt-mgmt. These states are shareable by other xleaf drivers. + +Xleaf drivers assigned to specific hardware resources drive a specific subsystem +in the device. To manipulate the subsystem or carry out a task, a xleaf driver +may ask for help from the root via root calls and/or from other leaves via +inter xleaf calls. + +A xleaf can also broadcast events through infrastructure code for other leaves +to process. It can also receive event notification from infrastructure about +certain events, such as post-creation or pre-exit of a particular xleaf. + +.. note:: + See code in ``lib/xleaf/*.c`` + + +xrt_bus_type +------------ + +xrt_bus_type defines a virtual bus which handles xrt_driver probe, remove and match +operations. All xrt_drivers register with xrt_bus_type as part of xrt-lib driver +``module_init`` and un-register as part of xrt-lib driver ``module_exit``. + +.. note:: + See code in ``lib/lib-drv.c`` + +FPGA Manager Interaction +======================== + +fpga_manager +------------ + +An instance of fpga_manager is created by xmgmt_main and is used for xclbin +image download. fpga_manager requires the full xclbin image before it can +start programming the FPGA configuration engine via Internal Configuration +Access Port (ICAP) xrt_driver. + +fpga_region +----------- + +For every interface exposed by the currently loaded xclbin/xsabin in the +*parent* fpga_region a new instance of fpga_region is created like a *child* +fpga_region. The device tree of the *parent* fpga_region defines the +resources for a new instance of fpga_bridge which isolates the parent from +child fpga_region. This new instance of fpga_bridge will be used when a +xclbin image is loaded on the child fpga_region. After the xclbin image is +downloaded to the fpga_region, an instance of a group is created for the +fpga_region using the device tree obtained as part of the xclbin. If this +device tree defines any child interfaces, it can trigger the creation of +fpga_bridge and fpga_region for the next region in the chain. + +fpga_bridge +----------- + +Like the fpga_region, a fpga_bridge is created by walking the device tree +of the parent group. The bridge is used for isolation between a parent and +its child. + +Driver Interfaces +================= + +xrt-mgmt Driver Ioctls +---------------------- + +Ioctls exposed by the xrt-mgmt driver to user space are enumerated in the +following table: + +== ===================== ============================ ========================== +# Functionality ioctl request code data format +== ===================== ============================ ========================== +1 FPGA image download XMGMT_IOCICAPDOWNLOAD_AXLF xmgmt_ioc_bitstream_axlf +== ===================== ============================ ========================== + +A user xclbin can be downloaded by using the xbmgmt tool from the XRT open source +suite. See example usage below:: + + xbmgmt partition --program --path /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/test/verify.xclbin --force + +xrt-mgmt Driver Sysfs +---------------------- + +The xrt-mgmt driver exposes a rich set of sysfs interfaces. Subsystem xrt +drivers export sysfs node for every platform instance. + +Every partition also exports its UUIDs. See below for examples:: + + /sys/bus/pci/devices/0000:06:00.0/xmgmt_main.0/interface_uuids + /sys/bus/pci/devices/0000:06:00.0/xmgmt_main.0/logic_uuids + + +hwmon +----- + +The xrt-mgmt driver exposes standard hwmon interface to report voltage, current, +temperature, power, etc. These can easily be viewed using *sensors* command line +utility. + +.. _alveo_platform_overview: + +Alveo Platform Overview +======================= + +Alveo platforms are architected as two physical FPGA partitions: *Shell* and +*User*. The Shell provides basic infrastructure for the Alveo platform like +PCIe connectivity, board management, Dynamic Function Exchange (DFX), sensors, +clocking, reset, and security. DFX, partial reconfiguration, is responsible for +loading the user compiled FPGA binary. + +For DFX to work properly, physical partitions require strict HW compatibility +with each other. Every physical partition has two interface UUIDs: the *parent* +UUID and the *child* UUID. For simple single stage platforms, Shell → User forms +the parent child relationship. + +.. note:: + Partition compatibility matching is a key design component of the Alveo platforms + and XRT. Partitions have child and parent relationship. A loaded partition + exposes child partition UUID to advertise its compatibility requirement. When + loading a child partition, the xrt-mgmt driver matches the parent + UUID of the child partition against the child UUID exported by the parent. + The parent and child partition UUIDs are stored in the *xclbin* (for the user) + and the *xsabin* (for the shell). Except for the root UUID exported by VSEC, + the hardware itself does not know about the UUIDs. The UUIDs are stored in + xsabin and xclbin. The image format has a special node called Partition UUIDs + which define the compatibility UUIDs. See :ref:`partition_uuids`. + + +The physical partitions and their loading are illustrated below:: + + SHELL USER + +-----------+ +-------------------+ + | | | | + | VSEC UUID | CHILD PARENT | LOGIC UUID | + | o------->|<--------o | + | | UUID UUID | | + +-----+-----+ +--------+----------+ + | | + . . + | | + +---+---+ +------+--------+ + | POR | | USER COMPILED | + | FLASH | | XCLBIN | + +-------+ +---------------+ + + +Loading Sequence +---------------- + +The Shell partition is loaded from flash at system boot time. It establishes the +PCIe link and exposes two physical functions to the BIOS. After the OS boots, +the xrt-mgmt driver attaches to the PCIe physical function 0 exposed by the Shell +and then looks for VSEC in the PCIe extended configuration space. Using VSEC, it +determines the logic UUID of the Shell and uses the UUID to load matching *xsabin* +file from Linux firmware directory. The xsabin file contains the metadata to +discover the peripherals that are part of the Shell and the firmware for any +embedded soft processors in the Shell. The xsabin file also contains Partition +UUIDs as described here :ref:`partition_uuids`. + +The Shell exports a child interface UUID which is used for the compatibility +check when loading the user compiled xclbin over the User partition as part of DFX. +When a user requests loading of a specific xclbin, the xrt-mgmt driver reads +the parent interface UUID specified in the xclbin and matches it with the child +interface UUID exported by the Shell to determine if the xclbin is compatible with +the Shell. If the match fails, loading of xclbin is denied. + +xclbin loading is requested using the ICAP_DOWNLOAD_AXLF ioctl command. When loading +a xclbin, the xrt-mgmt driver performs the following *logical* operations: + +1. Copy xclbin from user to kernel memory +2. Sanity check the xclbin contents +3. Isolate the User partition +4. Download the bitstream using the FPGA config engine (ICAP) +5. De-isolate the User partition +6. Program the clocks (ClockWiz) driving the User partition +7. Wait for the memory controller (MIG) calibration +8. Return the loading status back to the caller + +`Platform Loading Overview <https://xilinx.github.io/XRT/master/html/platforms_partitions.html>`_ +provides more detailed information on platform loading. + + +xsabin +------ + +Each Alveo platform comes packaged with its own xsabin. The xsabin is a trusted +component of the platform. For format details refer to :ref:`xsabin_xclbin_container_format` +below. xsabin contains basic information like UUIDs, platform name and metadata in the +form of device tree. See :ref:`device_tree_usage` below for details and example. + +xclbin +------ + +xclbin is compiled by end user using +`Vitis <https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html>`_ +tool set from Xilinx. The xclbin contains sections describing user compiled +acceleration engines/kernels, memory subsystems, clocking information etc. It also +contains a FPGA bitstream for the user partition, UUIDs, platform name, etc. + + +.. _xsabin_xclbin_container_format: + +xsabin/xclbin Container Format +------------------------------ + +xclbin/xsabin is ELF-like binary container format. It is structured as series of +sections. There is a file header followed by several section headers which is +followed by sections. A section header points to an actual section. There is an +optional signature at the end. The format is defined by the header file ``xclbin.h``. +The following figure illustrates a typical xclbin:: + + + +---------------------+ + | | + | HEADER | + +---------------------+ + | SECTION HEADER | + | | + +---------------------+ + | ... | + | | + +---------------------+ + | SECTION HEADER | + | | + +---------------------+ + | SECTION | + | | + +---------------------+ + | ... | + | | + +---------------------+ + | SECTION | + | | + +---------------------+ + | SIGNATURE | + | (OPTIONAL) | + +---------------------+ + + +xclbin/xsabin files can be packaged, un-packaged and inspected using an XRT +utility called **xclbinutil**. xclbinutil is part of the XRT open source +software stack. The source code for xclbinutil can be found at +https://github.com/Xilinx/XRT/tree/master/src/runtime_src/tools/xclbinutil + +For example, to enumerate the contents of a xclbin/xsabin use the *--info* switch +as shown below:: + + + xclbinutil --info --input /opt/xilinx/firmware/u50/gen3x16-xdma/blp/test/bandwidth.xclbin + xclbinutil --info --input /lib/firmware/xilinx/862c7020a250293e32036f19956669e5/partition.xsabin + + +.. _device_tree_usage: + +Device Tree Usage +----------------- + +The xsabin file stores metadata which advertise HW subsystems present in a +partition. The metadata is stored in device tree format with a well defined +schema. XRT management driver uses this information to bind *xrt_drivers* to +the subsystem instantiations. The xrt_drivers are found in **xrt-lib.ko** kernel +module. + +Logic UUID +^^^^^^^^^^ +A partition is identified uniquely through ``logic_uuid`` property:: + + /dts-v1/; + / { + logic_uuid = "0123456789abcdef0123456789abcdef"; + ... + } + +Schema Version +^^^^^^^^^^^^^^ +Schema version is defined through the ``schema_version`` node. It contains +``major`` and ``minor`` properties as below:: + + /dts-v1/; + / { + schema_version { + major = <0x01>; + minor = <0x00>; + }; + ... + } + +.. _partition_uuids: + +Partition UUIDs +^^^^^^^^^^^^^^^ +Each partition may have parent and child UUIDs. These UUIDs are +defined by ``interfaces`` node and ``interface_uuid`` property:: + + /dts-v1/; + / { + interfaces { + @0 { + interface_uuid = "0123456789abcdef0123456789abcdef"; + }; + @1 { + interface_uuid = "fedcba9876543210fedcba9876543210"; + }; + ... + }; + ... + } + + +Subsystem Instantiations +^^^^^^^^^^^^^^^^^^^^^^^^ +Subsystem instantiations are captured as children of ``addressable_endpoints`` +node:: + + /dts-v1/; + / { + addressable_endpoints { + abc { + ... + }; + def { + ... + }; + ... + } + } + +Subnode 'abc' and 'def' are the name of subsystem nodes + +Subsystem Node +^^^^^^^^^^^^^^ +Each subsystem node and its properties define a hardware instance:: + + + addressable_endpoints { + abc { + reg = <0x00 0x1f05000 0x00 0x1000>> + pcie_physical_function = <0x0>; + pcie_bar_mapping = <0x2>; + compatible = "abc def"; + interrupts = <0x09 0x0c>; + firmware { + firmware_product_name = "abc" + firmware_branch_name = "def" + firmware_version_major = <1> + firmware_version_minor = <2> + }; + } + ... + } + +:reg: + Property defines an address range. `<0x00 0x1f05000 0x00 0x1000>` indicates + *0x00 0x1f05000* as BAR offset and *0x00 0x1000* as address length. +:pcie_physical_function: + Property specifies which PCIe physical function the subsystem node resides. + `<0x0>` implies physical function 0. +:pcie_bar_mapping: + Property specifies which PCIe BAR the subsystem node resides. `<0x2>` implies + BAR 2. A value of 0 means the property is not defined. +:compatible: + Property is a list of strings. The first string in the list specifies the exact + subsystem node. The following strings represent other devices that the device + is compatible with. +:interrupts: + Property specifies start and end interrupts for this subsystem node. + `<0x09 0x0c>` implies interrupts 9 to 13 are used by this subsystem. +:firmware: + Subnode defines the firmware required by this subsystem node. + +Alveo U50 Platform Example +^^^^^^^^^^^^^^^^^^^^^^^^^^ +:: + + /dts-v1/; + + /{ + logic_uuid = "f465b0a3ae8c64f619bc150384ace69b"; + + schema_version { + major = <0x01>; + minor = <0x00>; + }; + + interfaces { + + @0 { + interface_uuid = "862c7020a250293e32036f19956669e5"; + }; + }; + + addressable_endpoints { + + ep_blp_rom_00 { + reg = <0x00 0x1f04000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + }; + + ep_card_flash_program_00 { + reg = <0x00 0x1f06000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_quad_spi-1.0\0axi_quad_spi"; + interrupts = <0x03 0x03>; + }; + + ep_cmc_firmware_mem_00 { + reg = <0x00 0x1e20000 0x00 0x20000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "cmc"; + firmware_branch_name = "u50"; + firmware_version_major = <0x01>; + firmware_version_minor = <0x00>; + }; + }; + + ep_cmc_intc_00 { + reg = <0x00 0x1e03000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; + interrupts = <0x04 0x04>; + }; + + ep_cmc_mutex_00 { + reg = <0x00 0x1e02000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_cmc_regmap_00 { + reg = <0x00 0x1e08000 0x00 0x2000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "sc-fw"; + firmware_branch_name = "u50"; + firmware_version_major = <0x05>; + }; + }; + + ep_cmc_reset_00 { + reg = <0x00 0x1e01000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ddr_mem_calib_00 { + reg = <0x00 0x63000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_debug_bscan_mgmt_00 { + reg = <0x00 0x1e90000 0x00 0x10000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-debug_bridge-1.0\0debug_bridge"; + }; + + ep_ert_base_address_00 { + reg = <0x00 0x21000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ert_command_queue_mgmt_00 { + reg = <0x00 0x40000 0x00 0x10000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; + }; + + ep_ert_command_queue_user_00 { + reg = <0x00 0x40000 0x00 0x10000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-ert_command_queue-1.0\0ert_command_queue"; + }; + + ep_ert_firmware_mem_00 { + reg = <0x00 0x30000 0x00 0x8000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + + firmware { + firmware_product_name = "ert"; + firmware_branch_name = "v20"; + firmware_version_major = <0x01>; + }; + }; + + ep_ert_intc_00 { + reg = <0x00 0x23000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_intc-1.0\0axi_intc"; + interrupts = <0x05 0x05>; + }; + + ep_ert_reset_00 { + reg = <0x00 0x22000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_ert_sched_00 { + reg = <0x00 0x50000 0x00 0x1000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-ert_sched-1.0\0ert_sched"; + interrupts = <0x09 0x0c>; + }; + + ep_fpga_configuration_00 { + reg = <0x00 0x1e88000 0x00 0x8000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_hwicap-1.0\0axi_hwicap"; + interrupts = <0x02 0x02>; + }; + + ep_icap_reset_00 { + reg = <0x00 0x1f07000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_msix_00 { + reg = <0x00 0x00 0x00 0x20000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-msix-1.0\0msix"; + pcie_bar_mapping = <0x02>; + }; + + ep_pcie_link_mon_00 { + reg = <0x00 0x1f05000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_pr_isolate_plp_00 { + reg = <0x00 0x1f01000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_pr_isolate_ulp_00 { + reg = <0x00 0x1000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_gpio-1.0\0axi_gpio"; + }; + + ep_uuid_rom_00 { + reg = <0x00 0x64000 0x00 0x1000>; + pcie_physical_function = <0x00>; + compatible = "xilinx.com,reg_abs-axi_bram_ctrl-1.0\0axi_bram_ctrl"; + }; + + ep_xdma_00 { + reg = <0x00 0x00 0x00 0x10000>; + pcie_physical_function = <0x01>; + compatible = "xilinx.com,reg_abs-xdma-1.0\0xdma"; + pcie_bar_mapping = <0x02>; + }; + }; + + } + + + +Deployment Models +================= + +Baremetal +--------- + +In bare-metal deployments, both MPF and UPF are visible and accessible. The +xrt-mgmt driver binds to MPF. The xrt-mgmt driver operations are privileged and +available to system administrator. The full stack is illustrated below:: + + HOST + + [XRT-MGMT] [XRT-USER] + | | + | | + +-----+ +-----+ + | MPF | | UPF | + | | | | + | PF0 | | PF1 | + +--+--+ +--+--+ + ......... ^................. ^.......... + | | + | PCIe DEVICE | + | | + +--+------------------+--+ + | SHELL | + | | + +------------------------+ + | USER | + | | + | | + | | + | | + +------------------------+ + + + +Virtualized +----------- + +In virtualized deployments, the privileged MPF is assigned to the host but the +unprivileged UPF is assigned to a guest VM via PCIe pass-through. The xrt-mgmt +driver in host binds to MPF. The xrt-mgmt driver operations are privileged and +only accessible to the MPF. The full stack is illustrated below:: + + + .............. + HOST . VM . + . . + [XRT-MGMT] . [XRT-USER] . + | . | . + | . | . + +-----+ . +-----+ . + | MPF | . | UPF | . + | | . | | . + | PF0 | . | PF1 | . + +--+--+ . +--+--+ . + ......... ^................. ^.......... + | | + | PCIe DEVICE | + | | + +--+------------------+--+ + | SHELL | + | | + +------------------------+ + | USER | + | | + | | + | | + | | + +------------------------+ + + + + + +Platform Security Considerations +================================ + +`Security of Alveo Platform <https://xilinx.github.io/XRT/master/html/security.html>`_ +discusses the deployment options and security implications in great detail. diff --git a/MAINTAINERS b/MAINTAINERS index 008fcad7ac00..dd90b91c574b 100644 --- a/MAINTAINERS +++ b/MAINTAINERS @@ -7136,6 +7136,17 @@ F: Documentation/fpga/ F: drivers/fpga/ F: include/linux/fpga/ +FPGA XRT DRIVERS +M: Lizhi Hou <lizhi.hou@xxxxxxxxxx> +R: Max Zhen <max.zhen@xxxxxxxxxx> +R: Sonal Santan <sonal.santan@xxxxxxxxxx> +L: linux-fpga@xxxxxxxxxxxxxxx +S: Supported +W: https://github.com/Xilinx/XRT +F: Documentation/fpga/xrt.rst +F: drivers/fpga/xrt/ +F: include/uapi/linux/xrt/ + FPU EMULATOR M: Bill Metzenthen <billm@xxxxxxxxxxxxx> S: Maintained -- 2.27.0