On Thu, Mar 25, 2021 at 6:50 AM Ritesh Harjani <riteshh@xxxxxxxxxxxxx> wrote: > > > > On 3/25/21 4:49 AM, Harshad Shirwadkar wrote: > > Instead of traversing through groups linearly, scan groups in specific > > orders at cr 0 and cr 1. At cr 0, we want to find groups that have the > > largest free order >= the order of the request. So, with this patch, > > we maintain lists for each possible order and insert each group into a > > list based on the largest free order in its buddy bitmap. During cr 0 > > allocation, we traverse these lists in the increasing order of largest > > free orders. This allows us to find a group with the best available cr > > 0 match in constant time. If nothing can be found, we fallback to cr 1 > > immediately. > > > > At CR1, the story is slightly different. We want to traverse in the > > order of increasing average fragment size. For CR1, we maintain a rb > > tree of groupinfos which is sorted by average fragment size. Instead > > of traversing linearly, at CR1, we traverse in the order of increasing > > average fragment size, starting at the most optimal group. This brings > > down cr 1 search complexity to log(num groups). > > > > For cr >= 2, we just perform the linear search as before. Also, in > > case of lock contention, we intermittently fallback to linear search > > even in CR 0 and CR 1 cases. This allows us to proceed during the > > allocation path even in case of high contention. > > > > There is an opportunity to do optimization at CR2 too. That's because > > at CR2 we only consider groups where bb_free counter (number of free > > blocks) is greater than the request extent size. That's left as future > > work. > > > > All the changes introduced in this patch are protected under a new > > mount option "mb_optimize_scan". > > > > With this patchset, following experiment was performed: > > > > Created a highly fragmented disk of size 65TB. The disk had no > > contiguous 2M regions. Following command was run consecutively for 3 > > times: > > > > time dd if=/dev/urandom of=file bs=2M count=10 > > > > Here are the results with and without cr 0/1 optimizations introduced > > in this patch: > > > > |---------+------------------------------+---------------------------| > > | | Without CR 0/1 Optimizations | With CR 0/1 Optimizations | > > |---------+------------------------------+---------------------------| > > | 1st run | 5m1.871s | 2m47.642s | > > | 2nd run | 2m28.390s | 0m0.611s | > > | 3rd run | 2m26.530s | 0m1.255s | > > |---------+------------------------------+---------------------------| > > > > Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@xxxxxxxxx> > > Reported-by: kernel test robot <lkp@xxxxxxxxx> > > Reported-by: Dan Carpenter <dan.carpenter@xxxxxxxxxx> > > Reviewed-by: Andreas Dilger <adilger@xxxxxxxxx> > > --- > > fs/ext4/ext4.h | 19 ++- > > fs/ext4/mballoc.c | 381 ++++++++++++++++++++++++++++++++++++++++++++-- > > fs/ext4/mballoc.h | 17 ++- > > fs/ext4/super.c | 28 +++- > > fs/ext4/sysfs.c | 2 + > > 5 files changed, 432 insertions(+), 15 deletions(-) > > > > diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h > > index 85eeeba3bca3..5930c8cb5159 100644 > > --- a/fs/ext4/ext4.h > > +++ b/fs/ext4/ext4.h > > @@ -162,7 +162,10 @@ enum SHIFT_DIRECTION { > > #define EXT4_MB_USE_RESERVED 0x2000 > > /* Do strict check for free blocks while retrying block allocation */ > > #define EXT4_MB_STRICT_CHECK 0x4000 > > - > > +/* Large fragment size list lookup succeeded at least once for cr = 0 */ > > +#define EXT4_MB_CR0_OPTIMIZED 0x8000 > > +/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */ > > +#define EXT4_MB_CR1_OPTIMIZED 0x00010000 > > struct ext4_allocation_request { > > /* target inode for block we're allocating */ > > struct inode *inode; > > @@ -1247,7 +1250,9 @@ struct ext4_inode_info { > > #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ > > #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ > > #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ > > - > > +#define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group > > + * scanning in mballoc > > + */ > > > > #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ > > ~EXT4_MOUNT_##opt > > @@ -1527,9 +1532,14 @@ struct ext4_sb_info { > > unsigned int s_mb_free_pending; > > struct list_head s_freed_data_list; /* List of blocks to be freed > > after commit completed */ > > + struct rb_root s_mb_avg_fragment_size_root; > > + rwlock_t s_mb_rb_lock; > > + struct list_head *s_mb_largest_free_orders; > > + rwlock_t *s_mb_largest_free_orders_locks; > > > > /* tunables */ > > unsigned long s_stripe; > > + unsigned int s_mb_linear_limit; > > unsigned int s_mb_stream_request; > > unsigned int s_mb_max_to_scan; > > unsigned int s_mb_min_to_scan; > > @@ -1553,6 +1563,8 @@ struct ext4_sb_info { > > atomic_t s_bal_goals; /* goal hits */ > > atomic_t s_bal_breaks; /* too long searches */ > > atomic_t s_bal_2orders; /* 2^order hits */ > > + atomic_t s_bal_cr0_bad_suggestions; > > + atomic_t s_bal_cr1_bad_suggestions; > > atomic64_t s_bal_cX_groups_considered[4]; > > atomic64_t s_bal_cX_hits[4]; > > atomic64_t s_bal_cX_failed[4]; /* cX loop didn't find blocks */ > > @@ -3309,11 +3321,14 @@ struct ext4_group_info { > > ext4_grpblk_t bb_free; /* total free blocks */ > > ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ > > ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ > > + ext4_group_t bb_group; /* Group number */ > > struct list_head bb_prealloc_list; > > #ifdef DOUBLE_CHECK > > void *bb_bitmap; > > #endif > > struct rw_semaphore alloc_sem; > > + struct rb_node bb_avg_fragment_size_rb; > > + struct list_head bb_largest_free_order_node; > > ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block > > * regions, index is order. > > * bb_counters[3] = 5 means > > diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c > > index 15127d815461..cbf9a89c0ef5 100644 > > --- a/fs/ext4/mballoc.c > > +++ b/fs/ext4/mballoc.c > > @@ -127,11 +127,50 @@ > > * smallest multiple of the stripe value (sbi->s_stripe) which is > > * greater than the default mb_group_prealloc. > > * > > + * If "mb_optimize_scan" mount option is set, we maintain in memory group info > > + * structures in two data structures: > > + * > > + * 1) Array of largest free order lists (sbi->s_mb_largest_free_orders) > > + * > > + * Locking: sbi->s_mb_largest_free_orders_locks(array of rw locks) > > + * > > + * This is an array of lists where the index in the array represents the > > + * largest free order in the buddy bitmap of the participating group infos of > > + * that list. So, there are exactly MB_NUM_ORDERS(sb) (which means total > > + * number of buddy bitmap orders possible) number of lists. Group-infos are > > + * placed in appropriate lists. > > + * > > + * 2) Average fragment size rb tree (sbi->s_mb_avg_fragment_size_root) > > + * > > + * Locking: sbi->s_mb_rb_lock (rwlock) > > + * > > + * This is a red black tree consisting of group infos and the tree is sorted > > + * by average fragment sizes (which is calculated as ext4_group_info->bb_free > > + * / ext4_group_info->bb_fragments). > > + * > > + * When "mb_optimize_scan" mount option is set, mballoc consults the above data > > + * structures to decide the order in which groups are to be traversed for > > + * fulfilling an allocation request. > > + * > > + * At CR = 0, we look for groups which have the largest_free_order >= the order > > + * of the request. We directly look at the largest free order list in the data > > + * structure (1) above where largest_free_order = order of the request. If that > > + * list is empty, we look at remaining list in the increasing order of > > + * largest_free_order. This allows us to perform CR = 0 lookup in O(1) time. > > + * > > + * At CR = 1, we only consider groups where average fragment size > request > > + * size. So, we lookup a group which has average fragment size just above or > > + * equal to request size using our rb tree (data structure 2) in O(log N) time. > > + * > > + * If "mb_optimize_scan" mount option is not set, mballoc traverses groups in > > + * linear order which requires O(N) search time for each CR 0 and CR 1 phase. > > + * > > * The regular allocator (using the buddy cache) supports a few tunables. > > * > > * /sys/fs/ext4/<partition>/mb_min_to_scan > > * /sys/fs/ext4/<partition>/mb_max_to_scan > > * /sys/fs/ext4/<partition>/mb_order2_req > > + * /sys/fs/ext4/<partition>/mb_linear_limit > > * > > * The regular allocator uses buddy scan only if the request len is power of > > * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The > > @@ -149,6 +188,16 @@ > > * can be used for allocation. ext4_mb_good_group explains how the groups are > > * checked. > > * > > + * When "mb_optimize_scan" is turned on, as mentioned above, the groups may not > > + * get traversed linearly. That may result in subsequent allocations being not > > + * close to each other. And so, the underlying device may get filled up in a > > + * non-linear fashion. While that may not matter on non-rotational devices, for > > + * rotational devices that may result in higher seek times. "mb_linear_limit" > > + * tells mballoc how many groups mballoc should search linearly before > > + * performing consulting above data structures for more efficient lookups. For > > + * non rotational devices, this value defaults to 0 and for rotational devices > > + * this is set to MB_DEFAULT_LINEAR_LIMIT. > > + * > > * Both the prealloc space are getting populated as above. So for the first > > * request we will hit the buddy cache which will result in this prealloc > > * space getting filled. The prealloc space is then later used for the > > @@ -299,6 +348,8 @@ > > * - bitlock on a group (group) > > * - object (inode/locality) (object) > > * - per-pa lock (pa) > > + * - cr0 lists lock (cr0) > > + * - cr1 tree lock (cr1) > > * > > * Paths: > > * - new pa > > @@ -328,6 +379,9 @@ > > * group > > * object > > * > > + * - allocation path (ext4_mb_regular_allocator) > > + * group > > + * cr0/cr1 > > */ > > static struct kmem_cache *ext4_pspace_cachep; > > static struct kmem_cache *ext4_ac_cachep; > > @@ -351,6 +405,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, > > ext4_group_t group); > > static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); > > > > +static bool ext4_mb_good_group(struct ext4_allocation_context *ac, > > + ext4_group_t group, int cr); > > + > > /* > > * The algorithm using this percpu seq counter goes below: > > * 1. We sample the percpu discard_pa_seq counter before trying for block > > @@ -744,6 +801,251 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > > } > > } > > > > +static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, > > + int (*cmp)(struct rb_node *, struct rb_node *)) > > +{ > > + struct rb_node **iter = &root->rb_node, *parent = NULL; > > + > > + while (*iter) { > > + parent = *iter; > > + if (cmp(new, *iter) > 0) > > + iter = &((*iter)->rb_left); > > + else > > + iter = &((*iter)->rb_right); > > + } > > + > > + rb_link_node(new, parent, iter); > > + rb_insert_color(new, root); > > +} > > + > > +static int > > +ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) > > +{ > > + struct ext4_group_info *grp1 = rb_entry(rb1, > > + struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + struct ext4_group_info *grp2 = rb_entry(rb2, > > + struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + int num_frags_1, num_frags_2; > > + > > + num_frags_1 = grp1->bb_fragments ? > > + grp1->bb_free / grp1->bb_fragments : 0; > > + num_frags_2 = grp2->bb_fragments ? > > + grp2->bb_free / grp2->bb_fragments : 0; > > + > > + return (num_frags_2 - num_frags_1); > > +} > > + > > +/* > > + * Reinsert grpinfo into the avg_fragment_size tree with new average > > + * fragment size. > > + */ > > +static void > > +mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) > > +{ > > + struct ext4_sb_info *sbi = EXT4_SB(sb); > > + > > + if (!test_opt2(sb, MB_OPTIMIZE_SCAN) || grp->bb_free == 0) > > + return; > > + > > + write_lock(&sbi->s_mb_rb_lock); > > + if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { > > + rb_erase(&grp->bb_avg_fragment_size_rb, > > + &sbi->s_mb_avg_fragment_size_root); > > + RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); > > + } > > + > > + ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, > > + &grp->bb_avg_fragment_size_rb, > > + ext4_mb_avg_fragment_size_cmp); > > + write_unlock(&sbi->s_mb_rb_lock); > > +} > > + > > +/* > > + * Choose next group by traversing largest_free_order lists. Return 0 if next > > + * group was selected optimally. Return 1 if next group was not selected > > + * optimally. Updates *new_cr if cr level needs an update. > > + */ > > +static int ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, > > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > > +{ > > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > > + struct ext4_group_info *iter, *grp; > > + int i; > > + > > + if (ac->ac_status == AC_STATUS_FOUND) > > + return 1; > > + > > + if (unlikely(sbi->s_mb_stats && ac->ac_flags & EXT4_MB_CR0_OPTIMIZED)) > > + atomic_inc(&sbi->s_bal_cr0_bad_suggestions); > > + > > + grp = NULL; > > + for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { > > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) > > + continue; > > + read_lock(&sbi->s_mb_largest_free_orders_locks[i]); > > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) { > > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > > + continue; > > + } > > + grp = NULL; > > + list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], > > + bb_largest_free_order_node) { > > + if (sbi->s_mb_stats) > > + atomic64_inc(&sbi->s_bal_cX_groups_considered[0]); > > + if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { > > + grp = iter; > > + break; > > + } > > + } > > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > > + if (grp) > > + break; > > + } > > + > > + if (!grp) { > > + /* Increment cr and search again */ > > + *new_cr = 1; > > + } else { > > + *group = grp->bb_group; > > + ac->ac_last_optimal_group = *group; > > + ac->ac_flags |= EXT4_MB_CR0_OPTIMIZED; > > + } > > + return 0; > > +} > > + > > +/* > > + * Choose next group by traversing average fragment size tree. Return 0 if next > > + * group was selected optimally. Return 1 if next group could not selected > > + * optimally (due to lock contention). Updates *new_cr if cr lvel needs an > > + * update. > > + */ > > +static int ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, > > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > > +{ > > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > > + int avg_fragment_size, best_so_far; > > + struct rb_node *node, *found; > > + struct ext4_group_info *grp; > > + > > + /* > > + * If there is contention on the lock, instead of waiting for the lock > > + * to become available, just continue searching lineraly. We'll resume > > + * our rb tree search later starting at ac->ac_last_optimal_group. > > + */ > > + if (!read_trylock(&sbi->s_mb_rb_lock)) > > + return 1; > > + > > + if (unlikely(ac->ac_flags & EXT4_MB_CR1_OPTIMIZED)) { > > + if (sbi->s_mb_stats) > > + atomic_inc(&sbi->s_bal_cr1_bad_suggestions); > > + /* We have found something at CR 1 in the past */ > > + grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); > > + for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; > > + found = rb_next(found)) { > > + grp = rb_entry(found, struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + if (sbi->s_mb_stats) > > + atomic64_inc(&sbi->s_bal_cX_groups_considered[1]); > > + if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) > > + break; > > + } > > + > > + goto done; > > + } > > + > > + node = sbi->s_mb_avg_fragment_size_root.rb_node; > > + best_so_far = 0; > > + found = NULL; > > + > > + while (node) { > > + grp = rb_entry(node, struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + avg_fragment_size = 0; > > + /* > > + * Perform this check without locking, we'll lock later to confirm. > > + */ > > + if (ext4_mb_good_group(ac, grp->bb_group, 1)) { > > + avg_fragment_size = grp->bb_fragments ? > > + grp->bb_free / grp->bb_fragments : 0; > > + if (!best_so_far || avg_fragment_size < best_so_far) { > > + best_so_far = avg_fragment_size; > > + found = node; > > + } > > + } > > + if (avg_fragment_size > ac->ac_g_ex.fe_len) > > + node = node->rb_right; > > + else > > + node = node->rb_left; > > + } > > + > > +done: > > + if (found) { > > + grp = rb_entry(found, struct ext4_group_info, > > + bb_avg_fragment_size_rb); > > + *group = grp->bb_group; > > + ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; > > + } else { > > + *new_cr = 2; > > + } > > + > > + read_unlock(&sbi->s_mb_rb_lock); > > + ac->ac_last_optimal_group = *group; > > + return 0; > > +} > > + > > +/* > > + * ext4_mb_choose_next_group: choose next group for allocation. > > + * > > + * @ac Allocation Context > > + * @new_cr This is an output parameter. If the there is no good group > > + * available at current CR level, this field is updated to indicate > > + * the new cr level that should be used. > > + * @group This is an input / output parameter. As an input it indicates the > > + * last group used for allocation. As output, this field indicates > > + * the next group that should be used. > > + * @ngroups Total number of groups > > + */ > > +static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, > > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > > +{ > > + int ret; > > + > > + *new_cr = ac->ac_criteria; > > + > > + if (!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN) || > > + *new_cr >= 2 || > > + !ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) > > + goto inc_and_return; > > + > > + if (ac->ac_groups_linear_remaining) { > > + ac->ac_groups_linear_remaining--; > > + goto inc_and_return; > > + } > > + > > + if (*new_cr == 0) { > > + ret = ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); > > + if (ret) > > + goto inc_and_return; > > + } > > + if (*new_cr == 1) { > > + ret = ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); > > + if (ret) > > + goto inc_and_return; > > + } > > + return; > > + > > +inc_and_return: > > + /* > > + * Artificially restricted ngroups for non-extent > > + * files makes group > ngroups possible on first loop. > > + */ > > + *group = *group + 1; > > hmm, Please help me correct if I am missing something here. > So, if *new_cr >= 2, then we will directly come here > increment the group and return to calling function. > But then we ended up incrementing the group while not > even searching in the given group to see if we could > find some blocks. > > > > > + if (*group >= ngroups) > > + *group = 0; > > +} > > + > > /* > > * Cache the order of the largest free extent we have available in this block > > * group. > > @@ -751,18 +1053,33 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > > static void > > mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) > > { > > + struct ext4_sb_info *sbi = EXT4_SB(sb); > > int i; > > - int bits; > > > > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { > > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + list_del_init(&grp->bb_largest_free_order_node); > > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + } > > grp->bb_largest_free_order = -1; /* uninit */ > > > > - bits = MB_NUM_ORDERS(sb) - 1; > > - for (i = bits; i >= 0; i--) { > > + for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { > > if (grp->bb_counters[i] > 0) { > > grp->bb_largest_free_order = i; > > break; > > } > > } > > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && > > + grp->bb_largest_free_order >= 0 && grp->bb_free) { > > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + list_add_tail(&grp->bb_largest_free_order_node, > > + &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); > > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > > + grp->bb_largest_free_order]); > > + } > > } > > > > static noinline_for_stack > > @@ -818,6 +1135,7 @@ void ext4_mb_generate_buddy(struct super_block *sb, > > period = get_cycles() - period; > > atomic_inc(&sbi->s_mb_buddies_generated); > > atomic64_add(period, &sbi->s_mb_generation_time); > > + mb_update_avg_fragment_size(sb, grp); > > } > > > > /* The buddy information is attached the buddy cache inode > > @@ -1517,6 +1835,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, > > > > done: > > mb_set_largest_free_order(sb, e4b->bd_info); > > + mb_update_avg_fragment_size(sb, e4b->bd_info); > > mb_check_buddy(e4b); > > } > > > > @@ -1653,6 +1972,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) > > } > > mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); > > > > + mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); > > ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); > > mb_check_buddy(e4b); > > > > @@ -2347,17 +2667,21 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac) > > * from the goal value specified > > */ > > group = ac->ac_g_ex.fe_group; > > + ac->ac_last_optimal_group = group; > > Note we start from a goal group or optimal group. > > > + ac->ac_groups_linear_remaining = sbi->s_mb_linear_limit; > > prefetch_grp = group; > > > > - for (i = 0; i < ngroups; group++, i++) { > > - int ret = 0; > > + for (i = 0; i < ngroups; i++) { > > + int ret = 0, new_cr; > > + > > cond_resched(); > > - /* > > - * Artificially restricted ngroups for non-extent > > - * files makes group > ngroups possible on first loop. > > - */ > > - if (group >= ngroups) > > - group = 0; > > + > > + ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); > > + > > + if (new_cr != cr) { > > + cr = new_cr; > > + goto repeat; > > + } > > > So ext4_mb_choose_next_group() will do group++ _even_ for cr >=2. > This would mean that we will never start our search from ac_g_ex.fe_group. > Why is that? Did I miss anything? Thanks Ritesh, that's a good catch! So group choosing needs to happen at the start of the group while increment needs to happen at the end. I'll fix this in the next version. - Harshad > > > -ritesh