Hi Harshad, I glad you look into this complex code. I have one note about groups scanning a specially with raid devices and cr0 loop. Once we have enough free space, cr 0 loop can found an unaligned for the stripe fragment. in case raid devices, cr1 don’t produce an average size check - just find an aligned chunk. So for raid devices CR 0 is useless, and CR1 don’t provide a good results. Can you look to this problem also ? Alex > 9 февр. 2021 г., в 23:28, Harshad Shirwadkar <harshadshirwadkar@xxxxxxxxx> написал(а): > > Instead of traversing through groups linearly, scan groups in specific > orders at cr 0 and cr 1. At cr 0, we want to find groups that have the > largest free order >= the order of the request. So, with this patch, > we maintain lists for each possible order and insert each group into a > list based on the largest free order in its buddy bitmap. During cr 0 > allocation, we traverse these lists in the increasing order of largest > free orders. This allows us to find a group with the best available cr > 0 match in constant time. If nothing can be found, we fallback to cr 1 > immediately. > > At CR1, the story is slightly different. We want to traverse in the > order of increasing average fragment size. For CR1, we maintain a rb > tree of groupinfos which is sorted by average fragment size. Instead > of traversing linearly, at CR1, we traverse in the order of increasing > average fragment size, starting at the most optimal group. This brings > down cr 1 search complexity to log(num groups). > > For cr >= 2, we just perform the linear search as before. Also, in > case of lock contention, we intermittently fallback to linear search > even in CR 0 and CR 1 cases. This allows us to proceed during the > allocation path even in case of high contention. > > There is an opportunity to do optimization at CR2 too. That's because > at CR2 we only consider groups where bb_free counter (number of free > blocks) is greater than the request extent size. That's left as future > work. > > All the changes introduced in this patch are protected under a new > mount option "mb_optimize_scan". > > Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@xxxxxxxxx> > --- > fs/ext4/ext4.h | 13 +- > fs/ext4/mballoc.c | 316 ++++++++++++++++++++++++++++++++++++++++++++-- > fs/ext4/mballoc.h | 1 + > fs/ext4/super.c | 6 +- > 4 files changed, 322 insertions(+), 14 deletions(-) > > diff --git a/fs/ext4/ext4.h b/fs/ext4/ext4.h > index 317b43420ecf..0601c997c87f 100644 > --- a/fs/ext4/ext4.h > +++ b/fs/ext4/ext4.h > @@ -162,6 +162,8 @@ enum SHIFT_DIRECTION { > #define EXT4_MB_USE_RESERVED 0x2000 > /* Do strict check for free blocks while retrying block allocation */ > #define EXT4_MB_STRICT_CHECK 0x4000 > +/* Avg fragment size rb tree lookup succeeded at least once for cr = 1 */ > +#define EXT4_MB_CR1_OPTIMIZED 0x8000 > > struct ext4_allocation_request { > /* target inode for block we're allocating */ > @@ -1247,7 +1249,9 @@ struct ext4_inode_info { > #define EXT4_MOUNT2_JOURNAL_FAST_COMMIT 0x00000010 /* Journal fast commit */ > #define EXT4_MOUNT2_DAX_NEVER 0x00000020 /* Do not allow Direct Access */ > #define EXT4_MOUNT2_DAX_INODE 0x00000040 /* For printing options only */ > - > +#define EXT4_MOUNT2_MB_OPTIMIZE_SCAN 0x00000080 /* Optimize group > + * scanning in mballoc > + */ > > #define clear_opt(sb, opt) EXT4_SB(sb)->s_mount_opt &= \ > ~EXT4_MOUNT_##opt > @@ -1527,6 +1531,10 @@ struct ext4_sb_info { > unsigned int s_mb_free_pending; > struct list_head s_freed_data_list; /* List of blocks to be freed > after commit completed */ > + struct rb_root s_mb_avg_fragment_size_root; > + rwlock_t s_mb_rb_lock; > + struct list_head *s_mb_largest_free_orders; > + rwlock_t *s_mb_largest_free_orders_locks; > > /* tunables */ > unsigned long s_stripe; > @@ -3308,11 +3316,14 @@ struct ext4_group_info { > ext4_grpblk_t bb_free; /* total free blocks */ > ext4_grpblk_t bb_fragments; /* nr of freespace fragments */ > ext4_grpblk_t bb_largest_free_order;/* order of largest frag in BG */ > + ext4_group_t bb_group; /* Group number */ > struct list_head bb_prealloc_list; > #ifdef DOUBLE_CHECK > void *bb_bitmap; > #endif > struct rw_semaphore alloc_sem; > + struct rb_node bb_avg_fragment_size_rb; > + struct list_head bb_largest_free_order_node; > ext4_grpblk_t bb_counters[]; /* Nr of free power-of-two-block > * regions, index is order. > * bb_counters[3] = 5 means > diff --git a/fs/ext4/mballoc.c b/fs/ext4/mballoc.c > index b7f25120547d..63562f5f42f1 100644 > --- a/fs/ext4/mballoc.c > +++ b/fs/ext4/mballoc.c > @@ -147,7 +147,12 @@ > * the group specified as the goal value in allocation context via > * ac_g_ex. Each group is first checked based on the criteria whether it > * can be used for allocation. ext4_mb_good_group explains how the groups are > - * checked. > + * checked. If "mb_optimize_scan" mount option is set, instead of traversing > + * groups linearly starting at the goal, the groups are traversed in an optimal > + * order according to each cr level, so as to minimize considering groups which > + * would anyway be rejected by ext4_mb_good_group. This has a side effect > + * though - subsequent allocations may not be close to each other. And so, > + * the underlying device may get filled up in a non-linear fashion. > * > * Both the prealloc space are getting populated as above. So for the first > * request we will hit the buddy cache which will result in this prealloc > @@ -299,6 +304,8 @@ > * - bitlock on a group (group) > * - object (inode/locality) (object) > * - per-pa lock (pa) > + * - cr0 lists lock (cr0) > + * - cr1 tree lock (cr1) > * > * Paths: > * - new pa > @@ -328,6 +335,9 @@ > * group > * object > * > + * - allocation path (ext4_mb_regular_allocator) > + * group > + * cr0/cr1 > */ > static struct kmem_cache *ext4_pspace_cachep; > static struct kmem_cache *ext4_ac_cachep; > @@ -351,6 +361,9 @@ static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap, > ext4_group_t group); > static void ext4_mb_new_preallocation(struct ext4_allocation_context *ac); > > +static bool ext4_mb_good_group(struct ext4_allocation_context *ac, > + ext4_group_t group, int cr); > + > /* > * The algorithm using this percpu seq counter goes below: > * 1. We sample the percpu discard_pa_seq counter before trying for block > @@ -744,6 +757,243 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > } > } > > +static void ext4_mb_rb_insert(struct rb_root *root, struct rb_node *new, > + int (*cmp)(struct rb_node *, struct rb_node *)) > +{ > + struct rb_node **iter = &root->rb_node, *parent = NULL; > + > + while (*iter) { > + parent = *iter; > + if (cmp(new, *iter)) > + iter = &((*iter)->rb_left); > + else > + iter = &((*iter)->rb_right); > + } > + > + rb_link_node(new, parent, iter); > + rb_insert_color(new, root); > +} > + > +static int > +ext4_mb_avg_fragment_size_cmp(struct rb_node *rb1, struct rb_node *rb2) > +{ > + struct ext4_group_info *grp1 = rb_entry(rb1, > + struct ext4_group_info, > + bb_avg_fragment_size_rb); > + struct ext4_group_info *grp2 = rb_entry(rb2, > + struct ext4_group_info, > + bb_avg_fragment_size_rb); > + int num_frags_1, num_frags_2; > + > + num_frags_1 = grp1->bb_fragments ? > + grp1->bb_free / grp1->bb_fragments : 0; > + num_frags_2 = grp2->bb_fragments ? > + grp2->bb_free / grp2->bb_fragments : 0; > + > + return (num_frags_1 < num_frags_2); > +} > + > +/* > + * Reinsert grpinfo into the avg_fragment_size tree with new average > + * fragment size. > + */ > +static void > +mb_update_avg_fragment_size(struct super_block *sb, struct ext4_group_info *grp) > +{ > + struct ext4_sb_info *sbi = EXT4_SB(sb); > + > + if (!test_opt2(sb, MB_OPTIMIZE_SCAN)) > + return; > + > + write_lock(&sbi->s_mb_rb_lock); > + if (!RB_EMPTY_NODE(&grp->bb_avg_fragment_size_rb)) { > + rb_erase(&grp->bb_avg_fragment_size_rb, > + &sbi->s_mb_avg_fragment_size_root); > + RB_CLEAR_NODE(&grp->bb_avg_fragment_size_rb); > + } > + > + ext4_mb_rb_insert(&sbi->s_mb_avg_fragment_size_root, > + &grp->bb_avg_fragment_size_rb, > + ext4_mb_avg_fragment_size_cmp); > + write_unlock(&sbi->s_mb_rb_lock); > +} > + > +/* > + * Choose next group by traversing largest_free_order lists. Return 0 if next > + * group was selected optimally. Return 1 if next group was not selected > + * optimally. Updates *new_cr if cr level needs an update. > + */ > +static int ext4_mb_choose_next_group_cr0(struct ext4_allocation_context *ac, > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > +{ > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > + struct ext4_group_info *iter, *grp; > + int i; > + > + if (ac->ac_status == AC_STATUS_FOUND) > + return 1; > + > + grp = NULL; > + for (i = ac->ac_2order; i < MB_NUM_ORDERS(ac->ac_sb); i++) { > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) > + continue; > + read_lock(&sbi->s_mb_largest_free_orders_locks[i]); > + if (list_empty(&sbi->s_mb_largest_free_orders[i])) { > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > + continue; > + } > + grp = NULL; > + list_for_each_entry(iter, &sbi->s_mb_largest_free_orders[i], > + bb_largest_free_order_node) { > + /* > + * Perform this check without a lock, once we lock > + * the group, we'll perform this check again. > + */ > + if (likely(ext4_mb_good_group(ac, iter->bb_group, 0))) { > + grp = iter; > + break; > + } > + } > + read_unlock(&sbi->s_mb_largest_free_orders_locks[i]); > + if (grp) > + break; > + } > + > + if (!grp) { > + /* Increment cr and search again */ > + *new_cr = 1; > + } else { > + *group = grp->bb_group; > + ac->ac_last_optimal_group = *group; > + } > + return 0; > +} > + > +/* > + * Choose next group by traversing average fragment size tree. Return 0 if next > + * group was selected optimally. Return 1 if next group could not selected > + * optimally (due to lock contention). Updates *new_cr if cr lvel needs an > + * update. > + */ > +static int ext4_mb_choose_next_group_cr1(struct ext4_allocation_context *ac, > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > +{ > + struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb); > + int avg_fragment_size, best_so_far; > + struct rb_node *node, *found; > + struct ext4_group_info *grp; > + > + /* > + * If there is contention on the lock, instead of waiting for the lock > + * to become available, just continue searching lineraly. We'll resume > + * our rb tree search later starting at ac->ac_last_optimal_group. > + */ > + if (!read_trylock(&sbi->s_mb_rb_lock)) > + return 1; > + > + if (ac->ac_flags & EXT4_MB_CR1_OPTIMIZED) { > + /* We have found something at CR 1 in the past */ > + grp = ext4_get_group_info(ac->ac_sb, ac->ac_last_optimal_group); > + for (found = rb_next(&grp->bb_avg_fragment_size_rb); found != NULL; > + found = rb_next(found)) { > + grp = rb_entry(found, struct ext4_group_info, > + bb_avg_fragment_size_rb); > + /* > + * Perform this check without locking, we'll lock later > + * to confirm. > + */ > + if (likely(ext4_mb_good_group(ac, grp->bb_group, 1))) > + break; > + } > + > + goto done; > + } > + > + node = sbi->s_mb_avg_fragment_size_root.rb_node; > + best_so_far = 0; > + found = NULL; > + > + while (node) { > + grp = rb_entry(node, struct ext4_group_info, > + bb_avg_fragment_size_rb); > + /* > + * Perform this check without locking, we'll lock later to confirm. > + */ > + if (ext4_mb_good_group(ac, grp->bb_group, 1)) { > + avg_fragment_size = grp->bb_fragments ? > + grp->bb_free / grp->bb_fragments : 0; > + if (!best_so_far || avg_fragment_size < best_so_far) { > + best_so_far = avg_fragment_size; > + found = node; > + } > + } > + if (avg_fragment_size > ac->ac_g_ex.fe_len) > + node = node->rb_right; > + else > + node = node->rb_left; > + } > + > +done: > + if (found) { > + grp = rb_entry(found, struct ext4_group_info, > + bb_avg_fragment_size_rb); > + *group = grp->bb_group; > + ac->ac_flags |= EXT4_MB_CR1_OPTIMIZED; > + } else { > + *new_cr = 2; > + } > + > + read_unlock(&sbi->s_mb_rb_lock); > + ac->ac_last_optimal_group = *group; > + return 0; > +} > + > +/* > + * ext4_mb_choose_next_group: choose next group for allocation. > + * > + * @ac Allocation Context > + * @new_cr This is an output parameter. If the there is no good group available > + * at current CR level, this field is updated to indicate the new cr > + * level that should be used. > + * @group This is an input / output parameter. As an input it indicates the last > + * group used for allocation. As output, this field indicates the > + * next group that should be used. > + * @ngroups Total number of groups > + */ > +static void ext4_mb_choose_next_group(struct ext4_allocation_context *ac, > + int *new_cr, ext4_group_t *group, ext4_group_t ngroups) > +{ > + int ret; > + > + *new_cr = ac->ac_criteria; > + > + if (!test_opt2(ac->ac_sb, MB_OPTIMIZE_SCAN) || > + *new_cr >= 2 || > + !ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) > + goto inc_and_return; > + > + if (*new_cr == 0) { > + ret = ext4_mb_choose_next_group_cr0(ac, new_cr, group, ngroups); > + if (ret) > + goto inc_and_return; > + } > + if (*new_cr == 1) { > + ret = ext4_mb_choose_next_group_cr1(ac, new_cr, group, ngroups); > + if (ret) > + goto inc_and_return; > + } > + return; > + > +inc_and_return: > + /* > + * Artificially restricted ngroups for non-extent > + * files makes group > ngroups possible on first loop. > + */ > + *group = *group + 1; > + if (*group >= ngroups) > + *group = 0; > +} > + > /* > * Cache the order of the largest free extent we have available in this block > * group. > @@ -751,18 +1001,32 @@ static void ext4_mb_mark_free_simple(struct super_block *sb, > static void > mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp) > { > + struct ext4_sb_info *sbi = EXT4_SB(sb); > int i; > - int bits; > > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + list_del_init(&grp->bb_largest_free_order_node); > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + } > grp->bb_largest_free_order = -1; /* uninit */ > > - bits = MB_NUM_ORDERS(sb) - 1; > - for (i = bits; i >= 0; i--) { > + for (i = MB_NUM_ORDERS(sb) - 1; i >= 0; i--) { > if (grp->bb_counters[i] > 0) { > grp->bb_largest_free_order = i; > break; > } > } > + if (test_opt2(sb, MB_OPTIMIZE_SCAN) && grp->bb_largest_free_order >= 0) { > + write_lock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + list_add_tail(&grp->bb_largest_free_order_node, > + &sbi->s_mb_largest_free_orders[grp->bb_largest_free_order]); > + write_unlock(&sbi->s_mb_largest_free_orders_locks[ > + grp->bb_largest_free_order]); > + } > } > > static noinline_for_stack > @@ -818,6 +1082,7 @@ void ext4_mb_generate_buddy(struct super_block *sb, > period = get_cycles() - period; > atomic_inc(&sbi->s_mb_buddies_generated); > atomic64_add(period, &sbi->s_mb_generation_time); > + mb_update_avg_fragment_size(sb, grp); > } > > /* The buddy information is attached the buddy cache inode > @@ -1517,6 +1782,7 @@ static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b, > > done: > mb_set_largest_free_order(sb, e4b->bd_info); > + mb_update_avg_fragment_size(sb, e4b->bd_info); > mb_check_buddy(e4b); > } > > @@ -1653,6 +1919,7 @@ static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex) > } > mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info); > > + mb_update_avg_fragment_size(e4b->bd_sb, e4b->bd_info); > ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0); > mb_check_buddy(e4b); > > @@ -2346,17 +2613,20 @@ ext4_mb_regular_allocator(struct ext4_allocation_context *ac) > * from the goal value specified > */ > group = ac->ac_g_ex.fe_group; > + ac->ac_last_optimal_group = group; > prefetch_grp = group; > > - for (i = 0; i < ngroups; group++, i++) { > - int ret = 0; > + for (i = 0; i < ngroups; i++) { > + int ret = 0, new_cr; > + > cond_resched(); > - /* > - * Artificially restricted ngroups for non-extent > - * files makes group > ngroups possible on first loop. > - */ > - if (group >= ngroups) > - group = 0; > + > + ext4_mb_choose_next_group(ac, &new_cr, &group, ngroups); > + > + if (new_cr != cr) { > + cr = new_cr; > + goto repeat; > + } > > /* > * Batch reads of the block allocation bitmaps > @@ -2696,7 +2966,10 @@ int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group, > INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list); > init_rwsem(&meta_group_info[i]->alloc_sem); > meta_group_info[i]->bb_free_root = RB_ROOT; > + INIT_LIST_HEAD(&meta_group_info[i]->bb_largest_free_order_node); > + RB_CLEAR_NODE(&meta_group_info[i]->bb_avg_fragment_size_rb); > meta_group_info[i]->bb_largest_free_order = -1; /* uninit */ > + meta_group_info[i]->bb_group = group; > > mb_group_bb_bitmap_alloc(sb, meta_group_info[i], group); > return 0; > @@ -2886,6 +3159,22 @@ int ext4_mb_init(struct super_block *sb) > i++; > } while (i < MB_NUM_ORDERS(sb)); > > + sbi->s_mb_avg_fragment_size_root = RB_ROOT; > + sbi->s_mb_largest_free_orders = > + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(struct list_head), > + GFP_KERNEL); > + if (!sbi->s_mb_largest_free_orders) > + goto out; > + sbi->s_mb_largest_free_orders_locks = > + kmalloc_array(MB_NUM_ORDERS(sb), sizeof(rwlock_t), > + GFP_KERNEL); > + if (!sbi->s_mb_largest_free_orders_locks) > + goto out; > + for (i = 0; i < MB_NUM_ORDERS(sb); i++) { > + INIT_LIST_HEAD(&sbi->s_mb_largest_free_orders[i]); > + rwlock_init(&sbi->s_mb_largest_free_orders_locks[i]); > + } > + rwlock_init(&sbi->s_mb_rb_lock); > > spin_lock_init(&sbi->s_md_lock); > sbi->s_mb_free_pending = 0; > @@ -2949,6 +3238,8 @@ int ext4_mb_init(struct super_block *sb) > free_percpu(sbi->s_locality_groups); > sbi->s_locality_groups = NULL; > out: > + kfree(sbi->s_mb_largest_free_orders); > + kfree(sbi->s_mb_largest_free_orders_locks); > kfree(sbi->s_mb_offsets); > sbi->s_mb_offsets = NULL; > kfree(sbi->s_mb_maxs); > @@ -3005,6 +3296,7 @@ int ext4_mb_release(struct super_block *sb) > kvfree(group_info); > rcu_read_unlock(); > } > + kfree(sbi->s_mb_largest_free_orders); > kfree(sbi->s_mb_offsets); > kfree(sbi->s_mb_maxs); > iput(sbi->s_buddy_cache); > diff --git a/fs/ext4/mballoc.h b/fs/ext4/mballoc.h > index 02861406932f..1e86a8a0460d 100644 > --- a/fs/ext4/mballoc.h > +++ b/fs/ext4/mballoc.h > @@ -166,6 +166,7 @@ struct ext4_allocation_context { > /* copy of the best found extent taken before preallocation efforts */ > struct ext4_free_extent ac_f_ex; > > + ext4_group_t ac_last_optimal_group; > __u32 ac_groups_considered; > __u16 ac_groups_scanned; > __u16 ac_found; > diff --git a/fs/ext4/super.c b/fs/ext4/super.c > index 0f0db49031dc..a14363654cfd 100644 > --- a/fs/ext4/super.c > +++ b/fs/ext4/super.c > @@ -154,6 +154,7 @@ static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags, > clear_buffer_verified(bh); > > bh->b_end_io = end_io ? end_io : end_buffer_read_sync; > + > get_bh(bh); > submit_bh(REQ_OP_READ, op_flags, bh); > } > @@ -1687,7 +1688,7 @@ enum { > Opt_dioread_nolock, Opt_dioread_lock, > Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable, > Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache, > - Opt_prefetch_block_bitmaps, > + Opt_prefetch_block_bitmaps, Opt_mb_optimize_scan, > #ifdef CONFIG_EXT4_DEBUG > Opt_fc_debug_max_replay, Opt_fc_debug_force > #endif > @@ -1788,6 +1789,7 @@ static const match_table_t tokens = { > {Opt_nombcache, "nombcache"}, > {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */ > {Opt_prefetch_block_bitmaps, "prefetch_block_bitmaps"}, > + {Opt_mb_optimize_scan, "mb_optimize_scan"}, > {Opt_removed, "check=none"}, /* mount option from ext2/3 */ > {Opt_removed, "nocheck"}, /* mount option from ext2/3 */ > {Opt_removed, "reservation"}, /* mount option from ext2/3 */ > @@ -2008,6 +2010,8 @@ static const struct mount_opts { > {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET}, > {Opt_prefetch_block_bitmaps, EXT4_MOUNT_PREFETCH_BLOCK_BITMAPS, > MOPT_SET}, > + {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, > + MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, > #ifdef CONFIG_EXT4_DEBUG > {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT, > MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY}, > -- > 2.30.0.478.g8a0d178c01-goog >