Re: [PATCHv4 2/3] ext4: Start with shared i_rwsem in case of DIO instead of exclusive

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Hello Jan,

Thanks a lot for your reviews.

On 12/5/19 5:33 PM, Jan Kara wrote:
On Thu 05-12-19 12:16:23, Ritesh Harjani wrote:
Earlier there was no shared lock in DIO read path. But this patch
(16c54688592ce: ext4: Allow parallel DIO reads)
simplified some of the locking mechanism while still allowing for parallel DIO
reads by adding shared lock in inode DIO read path.

But this created problem with mixed read/write workload. It is due to the fact
that in DIO path, we first start with exclusive lock and only when we determine
that it is a ovewrite IO, we downgrade the lock. This causes the problem, since
we still have shared locking in DIO reads.

So, this patch tries to fix this issue by starting with shared lock and then
switching to exclusive lock only when required based on ext4_dio_write_checks().

Other than that, it also simplifies below cases:-

1. Simplified ext4_unaligned_aio API to ext4_unaligned_io. Previous API was
abused in the sense that it was not really checking for AIO anywhere also it
used to check for extending writes. So this API was renamed and simplified to
ext4_unaligned_io() which actully only checks if the IO is really unaligned.

Now, in case of unaligned direct IO, iomap_dio_rw needs to do zeroing of partial
block and that will require serialization against other direct IOs in the same
block. So we take a exclusive inode lock for any unaligned DIO. In case of AIO
we also need to wait for any outstanding IOs to complete so that conversion from
unwritten to written is completed before anyone try to map the overlapping block.
Hence we take exclusive inode lock and also wait for inode_dio_wait() for
unaligned DIO case. Please note since we are anyway taking an exclusive lock in
unaligned IO, inode_dio_wait() becomes a no-op in case of non-AIO DIO.

2. Added ext4_extending_io(). This checks if the IO is extending the file.

3. Added ext4_dio_write_checks(). In this we start with shared inode lock and
only switch to exclusive lock if required. So in most cases with aligned,
non-extending, dioread_nolock & overwrites, it tries to write with a shared
lock. If not, then we restart the operation in ext4_dio_write_checks(), after
acquiring exclusive lock.

Signed-off-by: Ritesh Harjani <riteshh@xxxxxxxxxxxxx>

Cool, the patch looks good to me. You can add:

Reviewed-by: Jan Kara <jack@xxxxxxx>

great!


Two small nits below:

-static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
+static ssize_t ext4_generic_write_checks(struct kiocb *iocb,
+					 struct iov_iter *from)
  {
  	struct inode *inode = file_inode(iocb->ki_filp);
  	ssize_t ret;
@@ -228,11 +235,21 @@ static ssize_t ext4_write_checks(struct kiocb *iocb, struct iov_iter *from)
  		iov_iter_truncate(from, sbi->s_bitmap_maxbytes - iocb->ki_pos);
  	}
+ return iov_iter_count(from);
+}

You return iov_iter_count() from ext4_generic_write_checks()...

+static ssize_t ext4_dio_write_checks(struct kiocb *iocb, struct iov_iter *from,
+				     bool *ilock_shared, bool *extend)
+{
+	struct file *file = iocb->ki_filp;
+	struct inode *inode = file_inode(file);
+	loff_t offset;
+	size_t count;
+	ssize_t ret;
+
+restart:
+	ret = ext4_generic_write_checks(iocb, from);
+	if (ret <= 0)
+		goto out;
+
+	offset = iocb->ki_pos;
+	count = iov_iter_count(from);

But you don't use the returned count here and just call iov_iter_count()
again (which is cheap anyway but still it's strange).

Yes. iov_iter_count() (as you also said) is anyway a inline function
which only does from->count, which comes at no cost.
But re-assigning a ssize_t value to size_t is something I was getting
uncomfortable with. Although I agree that it should be completely fine
here, I just was not convinced to use that instead of directly accessing
it from iov_iter_count() for better readability reasons.

But unless you feel otherwise, I could make those changes at 2 places
which you mentioned.


+	if (ext4_extending_io(inode, offset, count))
+		*extend = true;
+	/*
+	 * Determine whether the IO operation will overwrite allocated
+	 * and initialized blocks. If so, check to see whether it is
+	 * possible to take the dioread_nolock path.
+	 *
+	 * We need exclusive i_rwsem for changing security info
+	 * in file_modified().
+	 */
+	if (*ilock_shared && (!IS_NOSEC(inode) || *extend ||
+	     !ext4_should_dioread_nolock(inode) ||
+	     !ext4_overwrite_io(inode, offset, count))) {
+		inode_unlock_shared(inode);
+		*ilock_shared = false;
+		inode_lock(inode);
+		goto restart;
+	}
+
+	ret = file_modified(file);
+	if (ret < 0)
+		goto out;
+
+	return count;

And then you return count from ext4_dio_write_checks() here...

ditto

-	ret = ext4_write_checks(iocb, from);
-	if (ret <= 0) {
-		inode_unlock(inode);
+	ret = ext4_dio_write_checks(iocb, from, &ilock_shared, &extend);
+	if (ret <= 0)
  		return ret;
-	}
- /*
-	 * Unaligned asynchronous direct I/O must be serialized among each
-	 * other as the zeroing of partial blocks of two competing unaligned
-	 * asynchronous direct I/O writes can result in data corruption.
-	 */
  	offset = iocb->ki_pos;
  	count = iov_iter_count(from);

And then again just don't use the value here...

ditto

								Honza





[Index of Archives]     [Reiser Filesystem Development]     [Ceph FS]     [Kernel Newbies]     [Security]     [Netfilter]     [Bugtraq]     [Linux FS]     [Yosemite National Park]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Device Mapper]     [Linux Media]

  Powered by Linux