Hello, Yeah, that works. Here's v3 based on your patch. The other patches still apply correctly. Thanks. ------ 8< ------ For an interface to support blocking for IOs, it must call io_schedule() instead of schedule(). This makes it tedious to add IO blocking to existing interfaces as the switching between schedule() and io_schedule() is often buried deep. As we already have a way to mark the task as IO scheduling, this can be made easier by separating out io_schedule() into multiple steps so that IO schedule preparation can be performed before invoking a blocking interface and the actual accounting happens inside the scheduler. io_schedule_timeout() does the following three things prior to calling schedule_timeout(). 1. Mark the task as scheduling for IO. 2. Flush out plugged IOs. 3. Account the IO scheduling. #1 and #2 can be performed in the prepartaion step while #3 must be done close to the actual scheduling. This patch moves #3 into the scheduler so that later patches can separate out preparation and finish steps from io_schedule(). v3: Replaced with PeterZ's implementation which performs nr_iowait accounting in the sleep and wake up path to avoid unnecessarily burdening non sleeping paths in __schedule(). v2: Remember the rq in @prev_rq and use it for decrementing nr_iowait to avoid misattributing the count after the task gets migrated to another CPU. Noticed by Pavan. Signed-off-by: Tejun Heo <tj@xxxxxxxxxx> Patch-originally-by: Peter Zijlstra <peterz@xxxxxxxxxxxxx> Cc: Linus Torvalds <torvalds@xxxxxxxxxxxxxxxxxxxx> Cc: Andrew Morton <akpm@xxxxxxxxxxxxxxxxxxxx> Cc: Ingo Molnar <mingo@xxxxxxxxxx> Cc: Jens Axboe <axboe@xxxxxxxxx> Cc: Pavan Kondeti <pkondeti@xxxxxxxxxxxxxx> --- kernel/sched/core.c | 68 ++++++++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 61 insertions(+), 7 deletions(-) --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -2085,11 +2085,24 @@ try_to_wake_up(struct task_struct *p, un p->sched_contributes_to_load = !!task_contributes_to_load(p); p->state = TASK_WAKING; + if (p->in_iowait) { + delayacct_blkio_end(); + atomic_dec(&task_rq(p)->nr_iowait); + } + cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags); if (task_cpu(p) != cpu) { wake_flags |= WF_MIGRATED; set_task_cpu(p, cpu); } + +#else /* CONFIG_SMP */ + + if (p->in_iowait) { + delayacct_blkio_end(); + atomic_dec(&task_rq(p)->nr_iowait); + } + #endif /* CONFIG_SMP */ ttwu_queue(p, cpu, wake_flags); @@ -2139,8 +2152,13 @@ static void try_to_wake_up_local(struct trace_sched_waking(p); - if (!task_on_rq_queued(p)) + if (!task_on_rq_queued(p)) { + if (p->in_iowait) { + delayacct_blkio_end(); + atomic_dec(&rq->nr_iowait); + } ttwu_activate(rq, p, ENQUEUE_WAKEUP); + } ttwu_do_wakeup(rq, p, 0, cookie); ttwu_stat(p, smp_processor_id(), 0); @@ -2948,6 +2966,36 @@ unsigned long long nr_context_switches(v return sum; } +/* + * IO-wait accounting, and how its mostly bollocks (on SMP). + * + * The idea behind IO-wait account is to account the idle time that we could + * have spend running if it were not for IO. That is, if we were to improve the + * storage performance, we'd have a proportional reduction in IO-wait time. + * + * This all works nicely on UP, where, when a task blocks on IO, we account + * idle time as IO-wait, because if the storage were faster, it could've been + * running and we'd not be idle. + * + * This has been extended to SMP, by doing the same for each CPU. This however + * is broken. + * + * Imagine for instance the case where two tasks block on one CPU, only the one + * CPU will have IO-wait accounted, while the other has regular idle. Even + * though, if the storage were faster, both could've ran at the same time, + * utilising both CPUs. + * + * This means, that when looking globally, the current IO-wait accounting on + * SMP is a lower bound, by reason of under accounting. + * + * Worse, since the numbers are provided per CPU, they are sometimes + * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly + * associated with any one particular CPU, it can wake to another CPU than it + * blocked on. This means the per CPU IO-wait number is meaningless. + * + * Task CPU affinities can make all that even more 'interesting'. + */ + unsigned long nr_iowait(void) { unsigned long i, sum = 0; @@ -2958,6 +3006,13 @@ unsigned long nr_iowait(void) return sum; } +/* + * Consumers of these two interfaces, like for example the cpufreq menu + * governor are using nonsensical data. Boosting frequency for a CPU that has + * IO-wait which might not even end up running the task when it does become + * runnable. + */ + unsigned long nr_iowait_cpu(int cpu) { struct rq *this = cpu_rq(cpu); @@ -3369,6 +3424,11 @@ static void __sched notrace __schedule(b deactivate_task(rq, prev, DEQUEUE_SLEEP); prev->on_rq = 0; + if (prev->in_iowait) { + atomic_inc(&rq->nr_iowait); + delayacct_blkio_start(); + } + /* * If a worker went to sleep, notify and ask workqueue * whether it wants to wake up a task to maintain @@ -5063,19 +5123,13 @@ EXPORT_SYMBOL_GPL(yield_to); long __sched io_schedule_timeout(long timeout) { int old_iowait = current->in_iowait; - struct rq *rq; long ret; current->in_iowait = 1; blk_schedule_flush_plug(current); - delayacct_blkio_start(); - rq = raw_rq(); - atomic_inc(&rq->nr_iowait); ret = schedule_timeout(timeout); current->in_iowait = old_iowait; - atomic_dec(&rq->nr_iowait); - delayacct_blkio_end(); return ret; } -- To unsubscribe from this list: send the line "unsubscribe linux-ext4" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html