Re: [RFC PATCH net-next 00/13] vxlan: Add MDB support

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On 2/4/23 19:07, Ido Schimmel wrote:
tl;dr
=====

This patchset implements MDB support in the VXLAN driver, allowing it to
selectively forward IP multicast traffic to VTEPs with interested
receivers instead of flooding it to all the VTEPs as BUM. The motivating
use case is intra and inter subnet multicast forwarding using EVPN
[1][2], which means that MDB entries are only installed by the user
space control plane and no snooping is implemented, thereby avoiding a
lot of unnecessary complexity in the kernel.

Background
==========

Both the bridge and VXLAN drivers have an FDB that allows them to
forward Ethernet frames based on their destination MAC addresses and
VLAN/VNI. These FDBs are managed using the same PF_BRIDGE/RTM_*NEIGH
netlink messages and bridge(8) utility.

However, only the bridge driver has an MDB that allows it to selectively
forward IP multicast packets to bridge ports with interested receivers
behind them, based on (S, G) and (*, G) MDB entries. When these packets
reach the VXLAN driver they are flooded using the "all-zeros" FDB entry
(00:00:00:00:00:00). The entry either includes the list of all the VTEPs
in the tenant domain (when ingress replication is used) or the multicast
address of the BUM tunnel (when P2MP tunnels are used), to which all the
VTEPs join.

Networks that make heavy use of multicast in the overlay can benefit
from a solution that allows them to selectively forward IP multicast
traffic only to VTEPs with interested receivers. Such a solution is
described in the next section.

Motivation
==========

RFC 7432 [3] defines a "MAC/IP Advertisement route" (type 2) [4] that
allows VTEPs in the EVPN network to advertise and learn reachability
information for unicast MAC addresses. Traffic destined to a unicast MAC
address can therefore be selectively forwarded to a single VTEP behind
which the MAC is located.

The same is not true for IP multicast traffic. Such traffic is simply
flooded as BUM to all VTEPs in the broadcast domain (BD) / subnet,
regardless if a VTEP has interested receivers for the multicast stream
or not. This is especially problematic for overlay networks that make
heavy use of multicast.

The issue is addressed by RFC 9251 [1] that defines a "Selective
Multicast Ethernet Tag Route" (type 6) [5] which allows VTEPs in the
EVPN network to advertise multicast streams that they are interested in.
This is done by having each VTEP suppress IGMP/MLD packets from being
transmitted to the NVE network and instead communicate the information
over BGP to other VTEPs.

The draft in [2] further extends RFC 9251 with procedures to allow
efficient forwarding of IP multicast traffic not only in a given subnet,
but also between different subnets in a tenant domain.

The required changes in the bridge driver to support the above were
already merged in merge commit 8150f0cfb24f ("Merge branch
'bridge-mcast-extensions-for-evpn'"). However, full support entails MDB
support in the VXLAN driver so that it will be able to selectively
forward IP multicast traffic only to VTEPs with interested receivers.
The implementation of this MDB is described in the next section.

Implementation
==============

The user interface is extended to allow user space to specify the
destination VTEP(s) and related parameters. Example usage:

  # bridge mdb add dev vxlan0 port vxlan0 grp 239.1.1.1 permanent dst 198.51.100.1
  # bridge mdb add dev vxlan0 port vxlan0 grp 239.1.1.1 permanent dst 192.0.2.1

  $ bridge -d -s mdb show
  dev vxlan0 port vxlan0 grp 239.1.1.1 permanent filter_mode exclude proto static dst 192.0.2.1    0.00
  dev vxlan0 port vxlan0 grp 239.1.1.1 permanent filter_mode exclude proto static dst 198.51.100.1    0.00

Since the MDB is fully managed by user space and since snooping is not
implemented, only permanent entries can be installed and temporary
entries are rejected by the kernel.

The netlink interface is extended with a few new attributes in the
RTM_NEWMDB / RTM_DELMDB request messages:

[ struct nlmsghdr ]
[ struct br_port_msg ]
[ MDBA_SET_ENTRY ]
	struct br_mdb_entry
[ MDBA_SET_ENTRY_ATTRS ]
	[ MDBE_ATTR_SOURCE ]
		struct in_addr / struct in6_addr
	[ MDBE_ATTR_SRC_LIST ]
		[ MDBE_SRC_LIST_ENTRY ]
			[ MDBE_SRCATTR_ADDRESS ]
				struct in_addr / struct in6_addr
		[ ...]
	[ MDBE_ATTR_GROUP_MODE ]
		u8
	[ MDBE_ATTR_RTPORT ]
		u8
	[ MDBE_ATTR_DST ]	// new
		struct in_addr / struct in6_addr
	[ MDBE_ATTR_DST_PORT ]	// new
		u16
	[ MDBE_ATTR_VNI ]	// new
		u32
	[ MDBE_ATTR_IFINDEX ]	// new
		s32
	[ MDBE_ATTR_SRC_VNI ]	// new
		u32

RTM_NEWMDB / RTM_DELMDB responses and notifications are extended with
corresponding attributes.

One MDB entry that can be installed in the VXLAN MDB, but not in the
bridge MDB is the catchall entry (0.0.0.0 / ::). It is used to transmit
unregistered multicast traffic that is not link-local and is especially
useful when inter-subnet multicast forwarding is required. See patch #12
for a detailed explanation and motivation. It is similar to the
"all-zeros" FDB entry that can be installed in the VXLAN FDB, but not
the bridge FDB.

"added_by_star_ex" entries?
---------------------------

The bridge driver automatically installs (S, G) MDB port group entries
marked as "added_by_star_ex" whenever it detects that an (S, G) entry
can prevent traffic from being forwarded via a port associated with an
EXCLUDE (*, G) entry. The bridge will add the port to the port group of
the (S, G) entry, thereby creating a new port group entry. The
complexity associated with these entries is not trivial, but it needs to
reside in the bridge driver because it automatically installs MDB
entries in response to snooped IGMP / MLD packets.

The same in not true for the VXLAN MDB which is entirely managed by user
space who is fully capable of forming the correct replication lists on
its own. In addition, the complexity associated with the
"added_by_star_ex" entries in the VXLAN driver is higher compared to the
bridge: Whenever a remote VTEP is added to the catchall entry, it needs
to be added to all the existing MDB entries, as such a remote requested
all the multicast traffic to be forwarded to it. Similarly, whenever an
(*, G) or (S, G) entry is added, all the remotes associated with the
catchall entry need to be added to it.

Given the above, this RFC does not implement support for such entries.
One argument against this decision can be that in the future someone
might want to populate the VXLAN MDB in response to decapsulated IGMP /
MLD packets and not according to EVPN routes. Regardless of my doubts
regarding this possibility, it is unclear to me why the snooping
functionality cannot be implemented in user space by opening an
AF_PACKET socket on the VXLAN device and sniffing IGMP / MLD packets.

I believe that the decision to place snooping functionality in the
bridge driver was made without appreciation for the complexity that
IGMPv3 support would bring and that a more informed decision should be
made for the VXLAN driver.


Hmm, while I agree that having the control plane in user-space is nice,
I do like having a relatively straight-forward and well maintained
protocol implementation in the kernel too, similar to its IGMPv3 client
support which doesn't need third party packages or external software
libraries to work. That being said, I do have (an unfinished) patch-set
that adds a bridge daemon to FRR, I think we can always add a knob to
switch to some more advanced user-space daemon which can snoop.

Anyway to the point - this patch-set looks ok to me, from bridge PoV
it's mostly code shuffling, and the new vxlan code is fairly straight-
forward.

Cheers,
 Nik



[Index of Archives]     [Netdev]     [AoE Tools]     [Linux Wireless]     [Kernel Newbies]     [Security]     [Linux for Hams]     [Netfilter]     [Bugtraq]     [Yosemite News]     [MIPS Linux]     [ARM Linux]     [Linux RAID]     [Linux Admin]     [Samba]     [Video 4 Linux]

  Powered by Linux