On Wednesday, August 16, 2017, Nicolas Pitre wrote: > When cramfs_physmem is used then we have the opportunity to map files > directly from ROM, directly into user space, saving on RAM usage. > This gives us Execute-In-Place (XIP) support. > > For a file to be mmap()-able, the map area has to correspond to a range > of uncompressed and contiguous blocks, and in the MMU case it also has > to be page aligned. A version of mkcramfs with appropriate support is > necessary to create such a filesystem image. > > In the MMU case it may happen for a vma structure to extend beyond the > actual file size. This is notably the case in binfmt_elf.c:elf_map(). > Or the file's last block is shared with other files and cannot be mapped > as is. Rather than refusing to mmap it, we do a partial map and set up a > special vm_ops fault handler that splits the vma in two: the direct > mapping > vma and the memory-backed vma populated by the readpage method. > > In the non-MMU case it is the get_unmapped_area method that is responsible > for providing the address where the actual data can be found. No mapping > is necessary of course. > > Signed-off-by: Nicolas Pitre <nico@xxxxxxxxxx> > --- > fs/cramfs/inode.c | 270 > ++++++++++++++++++++++++++++++++++++++++++++++++++++++ > 1 file changed, 270 insertions(+) > > diff --git a/fs/cramfs/inode.c b/fs/cramfs/inode.c > index b825ae162c..e3884c607b 100644 > --- a/fs/cramfs/inode.c > +++ b/fs/cramfs/inode.c > @@ -16,6 +16,7 @@ > #include <linux/module.h> > #include <linux/fs.h> > #include <linux/pagemap.h> > +#include <linux/ramfs.h> > #include <linux/init.h> > #include <linux/string.h> > #include <linux/blkdev.h> > @@ -49,6 +50,7 @@ static inline struct cramfs_sb_info *CRAMFS_SB(struct > super_block *sb) > static const struct super_operations cramfs_ops; > static const struct inode_operations cramfs_dir_inode_operations; > static const struct file_operations cramfs_directory_operations; > +static const struct file_operations cramfs_physmem_fops; > static const struct address_space_operations cramfs_aops; > > static DEFINE_MUTEX(read_mutex); > @@ -96,6 +98,10 @@ static struct inode *get_cramfs_inode(struct > super_block *sb, > case S_IFREG: > inode->i_fop = &generic_ro_fops; > inode->i_data.a_ops = &cramfs_aops; > + if (IS_ENABLED(CONFIG_CRAMFS_PHYSMEM) && > + CRAMFS_SB(sb)->flags & CRAMFS_FLAG_EXT_BLOCK_POINTERS && > + CRAMFS_SB(sb)->linear_phys_addr) > + inode->i_fop = &cramfs_physmem_fops; > break; > case S_IFDIR: > inode->i_op = &cramfs_dir_inode_operations; > @@ -277,6 +283,270 @@ static void *cramfs_read(struct super_block *sb, > unsigned int offset, > return NULL; > } > > +/* > + * For a mapping to be possible, we need a range of uncompressed and > + * contiguous blocks. Return the offset for the first block and number of > + * valid blocks for which that is true, or zero otherwise. > + */ > +static u32 cramfs_get_block_range(struct inode *inode, u32 pgoff, u32 > *pages) > +{ > + struct super_block *sb = inode->i_sb; > + struct cramfs_sb_info *sbi = CRAMFS_SB(sb); > + int i; > + u32 *blockptrs, blockaddr; > + > + /* > + * We can dereference memory directly here as this code may be > + * reached only when there is a direct filesystem image mapping > + * available in memory. > + */ > + blockptrs = (u32 *)(sbi->linear_virt_addr + OFFSET(inode) + > pgoff*4); > + blockaddr = blockptrs[0] & ~CRAMFS_BLK_FLAGS; > + i = 0; > + do { > + u32 expect = blockaddr + i * (PAGE_SIZE >> 2); > + expect |= > CRAMFS_BLK_FLAG_DIRECT_PTR|CRAMFS_BLK_FLAG_UNCOMPRESSED; > + if (blockptrs[i] != expect) { > + pr_debug("range: block %d/%d got %#x expects %#x\n", > + pgoff+i, pgoff+*pages-1, blockptrs[i], expect); > + if (i == 0) > + return 0; > + break; > + } > + } while (++i < *pages); > + > + *pages = i; > + > + /* stored "direct" block ptrs are shifted down by 2 bits */ > + return blockaddr << 2; > +} > + > +/* > + * It is possible for cramfs_physmem_mmap() to partially populate the > mapping > + * causing page faults in the unmapped area. When that happens, we need > to > + * split the vma so that the unmapped area gets its own vma that can be > backed > + * with actual memory pages and loaded normally. This is necessary > because > + * remap_pfn_range() overwrites vma->vm_pgoff with the pfn and > filemap_fault() > + * no longer works with it. Furthermore this makes /proc/x/maps right. > + * Q: is there a way to do split vma at mmap() time? > + */ > +static const struct vm_operations_struct cramfs_vmasplit_ops; > +static int cramfs_vmasplit_fault(struct vm_fault *vmf) > +{ > + struct mm_struct *mm = vmf->vma->vm_mm; > + struct vm_area_struct *vma, *new_vma; > + unsigned long split_val, split_addr; > + unsigned int split_pgoff, split_page; > + int ret; > + > + /* Retrieve the vma split address and validate it */ > + vma = vmf->vma; > + split_val = (unsigned long)vma->vm_private_data; > + split_pgoff = split_val & 0xffff; > + split_page = split_val >> 16; > + split_addr = vma->vm_start + split_page * PAGE_SIZE; > + pr_debug("fault: addr=%#lx vma=%#lx-%#lx split=%#lx\n", > + vmf->address, vma->vm_start, vma->vm_end, split_addr); > + if (!split_val || split_addr >= vma->vm_end || vmf->address < > split_addr) > + return VM_FAULT_SIGSEGV; > + > + /* We have some vma surgery to do and need the write lock. */ > + up_read(&mm->mmap_sem); > + if (down_write_killable(&mm->mmap_sem)) > + return VM_FAULT_RETRY; > + > + /* Make sure the vma didn't change between the locks */ > + vma = find_vma(mm, vmf->address); > + if (vma->vm_ops != &cramfs_vmasplit_ops) { > + /* > + * Someone else raced with us and could have handled the fault. > + * Let it go back to user space and fault again if necessary. > + */ > + downgrade_write(&mm->mmap_sem); > + return VM_FAULT_NOPAGE; > + } > + > + /* Split the vma between the directly mapped area and the rest */ > + ret = split_vma(mm, vma, split_addr, 0); > + if (ret) { > + downgrade_write(&mm->mmap_sem); > + return VM_FAULT_OOM; > + } > + > + /* The direct vma should no longer ever fault */ > + vma->vm_ops = NULL; > + > + /* Retrieve the new vma covering the unmapped area */ > + new_vma = find_vma(mm, split_addr); > + BUG_ON(new_vma == vma); > + if (!new_vma) { > + downgrade_write(&mm->mmap_sem); > + return VM_FAULT_SIGSEGV; > + } > + > + /* > + * Readjust the new vma with the actual file based pgoff and > + * process the fault normally on it. > + */ > + new_vma->vm_pgoff = split_pgoff; > + new_vma->vm_ops = &generic_file_vm_ops; > + vmf->vma = new_vma; > + vmf->pgoff = split_pgoff; > + vmf->pgoff += (vmf->address - new_vma->vm_start) >> PAGE_SHIFT; > + downgrade_write(&mm->mmap_sem); > + return filemap_fault(vmf); > +} > + > +static const struct vm_operations_struct cramfs_vmasplit_ops = { > + .fault = cramfs_vmasplit_fault, > +}; > + > +static int cramfs_physmem_mmap(struct file *file, struct vm_area_struct > *vma) > +{ > + struct inode *inode = file_inode(file); > + struct super_block *sb = inode->i_sb; > + struct cramfs_sb_info *sbi = CRAMFS_SB(sb); > + unsigned int pages, vma_pages, max_pages, offset; > + unsigned long address; > + char *fail_reason; > + int ret; > + > + if (!IS_ENABLED(CONFIG_MMU)) > + return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : - > ENOSYS; > + > + if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) > + return -EINVAL; > + > + /* Could COW work here? */ > + fail_reason = "vma is writable"; > + if (vma->vm_flags & VM_WRITE) > + goto fail; > + > + vma_pages = (vma->vm_end - vma->vm_start + PAGE_SIZE - 1) >> > PAGE_SHIFT; > + max_pages = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT; > + fail_reason = "beyond file limit"; > + if (vma->vm_pgoff >= max_pages) > + goto fail; > + pages = vma_pages; > + if (pages > max_pages - vma->vm_pgoff) > + pages = max_pages - vma->vm_pgoff; > + > + offset = cramfs_get_block_range(inode, vma->vm_pgoff, &pages); > + fail_reason = "unsuitable block layout"; > + if (!offset) > + goto fail; > + address = sbi->linear_phys_addr + offset; > + fail_reason = "data is not page aligned"; > + if (!PAGE_ALIGNED(address)) > + goto fail; > + > + /* Don't map the last page if it contains some other data */ > + if (unlikely(vma->vm_pgoff + pages == max_pages)) { > + unsigned int partial = offset_in_page(inode->i_size); > + if (partial) { > + char *data = sbi->linear_virt_addr + offset; > + data += (max_pages - 1) * PAGE_SIZE + partial; > + while ((unsigned long)data & 7) > + if (*data++ != 0) > + goto nonzero; > + while (offset_in_page(data)) { > + if (*(u64 *)data != 0) { > + nonzero: > + pr_debug("mmap: %s: last page is shared\n", > + file_dentry(file)->d_name.name); > + pages--; > + break; > + } > + data += 8; > + } > + } > + } > + > + if (pages) { > + /* > + * If we can't map it all, page faults will occur if the > + * unmapped area is accessed. Let's handle them to split the > + * vma and let the normal paging machinery take care of the > + * rest through cramfs_readpage(). Because remap_pfn_range() > + * repurposes vma->vm_pgoff, we have to save it somewhere. > + * Let's use vma->vm_private_data to hold both the pgoff and > the actual address split point. > + * Maximum file size is 16MB so we can pack both together. > + */ > + if (pages != vma_pages) { > + unsigned int split_pgoff = vma->vm_pgoff + pages; > + unsigned long split_val = split_pgoff + (pages << 16); > + vma->vm_private_data = (void *)split_val; > + vma->vm_ops = &cramfs_vmasplit_ops; > + /* to keep remap_pfn_range() happy */ > + vma->vm_end = vma->vm_start + pages * PAGE_SIZE; > + } > + > + ret = remap_pfn_range(vma, vma->vm_start, address >> > PAGE_SHIFT, > + pages * PAGE_SIZE, vma->vm_page_prot); space before tab in indent -Chris -- To unsubscribe from this list: send the line "unsubscribe linux-embedded" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html