[PATCH 04/10] staging: octeon-usb: use a single .h file

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Merge USBC and USBN register definitions into a single header
file. Although all HW definitions are purely internal to the driver,
it's better to keep them separate due to the large size of the file.

Signed-off-by: Aaro Koskinen <aaro.koskinen@xxxxxx>
---
 drivers/staging/octeon-usb/cvmx-usbcx-defs.h | 1528 ----------------------
 drivers/staging/octeon-usb/cvmx-usbnx-defs.h |  343 -----
 drivers/staging/octeon-usb/octeon-hcd.c      |    3 +-
 drivers/staging/octeon-usb/octeon-hcd.h      | 1819 ++++++++++++++++++++++++++
 4 files changed, 1820 insertions(+), 1873 deletions(-)
 delete mode 100644 drivers/staging/octeon-usb/cvmx-usbcx-defs.h
 delete mode 100644 drivers/staging/octeon-usb/cvmx-usbnx-defs.h
 create mode 100644 drivers/staging/octeon-usb/octeon-hcd.h

diff --git a/drivers/staging/octeon-usb/cvmx-usbcx-defs.h b/drivers/staging/octeon-usb/cvmx-usbcx-defs.h
deleted file mode 100644
index d349d77..0000000
--- a/drivers/staging/octeon-usb/cvmx-usbcx-defs.h
+++ /dev/null
@@ -1,1528 +0,0 @@
-/***********************license start***************
- * Copyright (c) 2003-2010  Cavium Networks (support@xxxxxxxxxx). All rights
- * reserved.
- *
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- *   * Redistributions of source code must retain the above copyright
- *     notice, this list of conditions and the following disclaimer.
- *
- *   * Redistributions in binary form must reproduce the above
- *     copyright notice, this list of conditions and the following
- *     disclaimer in the documentation and/or other materials provided
- *     with the distribution.
-
- *   * Neither the name of Cavium Networks nor the names of
- *     its contributors may be used to endorse or promote products
- *     derived from this software without specific prior written
- *     permission.
-
- * This Software, including technical data, may be subject to U.S. export
- * control laws, including the U.S. Export Administration Act and its associated
- * regulations, and may be subject to export or import  regulations in other
- * countries.
-
- * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
- * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
- * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
- * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
- * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
- * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
- * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
- * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
- * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
- * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
- ***********************license end**************************************/
-
-
-/**
- * cvmx-usbcx-defs.h
- *
- * Configuration and status register (CSR) type definitions for
- * Octeon usbcx.
- *
- */
-#ifndef __CVMX_USBCX_TYPEDEFS_H__
-#define __CVMX_USBCX_TYPEDEFS_H__
-
-#define CVMX_USBCXBASE 0x00016F0010000000ull
-#define CVMX_USBCXREG1(reg, bid) \
-	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
-	 ((bid) & 1) * 0x100000000000ull)
-#define CVMX_USBCXREG2(reg, bid, off) \
-	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
-	 (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
-
-#define CVMX_USBCX_GAHBCFG(bid)		CVMX_USBCXREG1(0x008, bid)
-#define CVMX_USBCX_GHWCFG3(bid)		CVMX_USBCXREG1(0x04c, bid)
-#define CVMX_USBCX_GINTMSK(bid)		CVMX_USBCXREG1(0x018, bid)
-#define CVMX_USBCX_GINTSTS(bid)		CVMX_USBCXREG1(0x014, bid)
-#define CVMX_USBCX_GNPTXFSIZ(bid)	CVMX_USBCXREG1(0x028, bid)
-#define CVMX_USBCX_GNPTXSTS(bid)	CVMX_USBCXREG1(0x02c, bid)
-#define CVMX_USBCX_GOTGCTL(bid)		CVMX_USBCXREG1(0x000, bid)
-#define CVMX_USBCX_GRSTCTL(bid)		CVMX_USBCXREG1(0x010, bid)
-#define CVMX_USBCX_GRXFSIZ(bid)		CVMX_USBCXREG1(0x024, bid)
-#define CVMX_USBCX_GRXSTSPH(bid)	CVMX_USBCXREG1(0x020, bid)
-#define CVMX_USBCX_GUSBCFG(bid)		CVMX_USBCXREG1(0x00c, bid)
-#define CVMX_USBCX_HAINT(bid)		CVMX_USBCXREG1(0x414, bid)
-#define CVMX_USBCX_HAINTMSK(bid)	CVMX_USBCXREG1(0x418, bid)
-#define CVMX_USBCX_HCCHARX(off, bid)	CVMX_USBCXREG2(0x500, bid, off)
-#define CVMX_USBCX_HCFG(bid)		CVMX_USBCXREG1(0x400, bid)
-#define CVMX_USBCX_HCINTMSKX(off, bid)	CVMX_USBCXREG2(0x50c, bid, off)
-#define CVMX_USBCX_HCINTX(off, bid)	CVMX_USBCXREG2(0x508, bid, off)
-#define CVMX_USBCX_HCSPLTX(off, bid)	CVMX_USBCXREG2(0x504, bid, off)
-#define CVMX_USBCX_HCTSIZX(off, bid)	CVMX_USBCXREG2(0x510, bid, off)
-#define CVMX_USBCX_HFIR(bid)		CVMX_USBCXREG1(0x404, bid)
-#define CVMX_USBCX_HFNUM(bid)		CVMX_USBCXREG1(0x408, bid)
-#define CVMX_USBCX_HPRT(bid)		CVMX_USBCXREG1(0x440, bid)
-#define CVMX_USBCX_HPTXFSIZ(bid)	CVMX_USBCXREG1(0x100, bid)
-#define CVMX_USBCX_HPTXSTS(bid)		CVMX_USBCXREG1(0x410, bid)
-
-/**
- * cvmx_usbc#_gahbcfg
- *
- * Core AHB Configuration Register (GAHBCFG)
- *
- * This register can be used to configure the core after power-on or a change in
- * mode of operation. This register mainly contains AHB system-related
- * configuration parameters. The AHB is the processor interface to the O2P USB
- * core. In general, software need not know about this interface except to
- * program the values as specified.
- *
- * The application must program this register as part of the O2P USB core
- * initialization. Do not change this register after the initial programming.
- */
-union cvmx_usbcx_gahbcfg {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_gahbcfg_s
-	 * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
-	 *	Software should set this bit to 0x1.
-	 *	Indicates when the Periodic TxFIFO Empty Interrupt bit in the
-	 *	Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
-	 *	bit is used only in Slave mode.
-	 *	* 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
-	 *	TxFIFO is half empty
-	 *	* 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
-	 *	TxFIFO is completely empty
-	 * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
-	 *	Software should set this bit to 0x1.
-	 *	Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
-	 *	the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
-	 *	This bit is used only in Slave mode.
-	 *	* 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
-	 *	Periodic TxFIFO is half empty
-	 *	* 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
-	 *	Periodic TxFIFO is completely empty
-	 * @dmaen: DMA Enable (DMAEn)
-	 *	* 1'b0: Core operates in Slave mode
-	 *	* 1'b1: Core operates in a DMA mode
-	 * @hbstlen: Burst Length/Type (HBstLen)
-	 *	This field has not effect and should be left as 0x0.
-	 * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
-	 *	Software should set this field to 0x1.
-	 *	The application uses this bit to mask or unmask the interrupt
-	 *	line assertion to itself. Irrespective of this bit's setting,
-	 *	the interrupt status registers are updated by the core.
-	 *	* 1'b0: Mask the interrupt assertion to the application.
-	 *	* 1'b1: Unmask the interrupt assertion to the application.
-	 */
-	struct cvmx_usbcx_gahbcfg_s {
-		uint32_t reserved_9_31	: 23;
-		uint32_t ptxfemplvl	: 1;
-		uint32_t nptxfemplvl	: 1;
-		uint32_t reserved_6_6	: 1;
-		uint32_t dmaen		: 1;
-		uint32_t hbstlen	: 4;
-		uint32_t glblintrmsk	: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_ghwcfg3
- *
- * User HW Config3 Register (GHWCFG3)
- *
- * This register contains the configuration options of the O2P USB core.
- */
-union cvmx_usbcx_ghwcfg3 {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_ghwcfg3_s
-	 * @dfifodepth: DFIFO Depth (DfifoDepth)
-	 *	This value is in terms of 32-bit words.
-	 *	* Minimum value is 32
-	 *	* Maximum value is 32768
-	 * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
-	 *	Indicates whether AHB and PHY clocks are synchronous to
-	 *	each other.
-	 *	* 1'b0: No
-	 *	* 1'b1: Yes
-	 *	This bit is tied to 1.
-	 * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
-	 *	* 1'b0: Asynchronous reset is used in the core
-	 *	* 1'b1: Synchronous reset is used in the core
-	 * @optfeature: Optional Features Removed (OptFeature)
-	 *	Indicates whether the User ID register, GPIO interface ports,
-	 *	and SOF toggle and counter ports were removed for gate count
-	 *	optimization.
-	 * @vendor_control_interface_support: Vendor Control Interface Support
-	 *	* 1'b0: Vendor Control Interface is not available on the core.
-	 *	* 1'b1: Vendor Control Interface is available.
-	 * @i2c_selection: I2C Selection
-	 *	* 1'b0: I2C Interface is not available on the core.
-	 *	* 1'b1: I2C Interface is available on the core.
-	 * @otgen: OTG Function Enabled (OtgEn)
-	 *	The application uses this bit to indicate the O2P USB core's
-	 *	OTG capabilities.
-	 *	* 1'b0: Not OTG capable
-	 *	* 1'b1: OTG Capable
-	 * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
-	 *	* 3'b000: 4 bits
-	 *	* 3'b001: 5 bits
-	 *	* 3'b010: 6 bits
-	 *	* 3'b011: 7 bits
-	 *	* 3'b100: 8 bits
-	 *	* 3'b101: 9 bits
-	 *	* 3'b110: 10 bits
-	 *	* Others: Reserved
-	 * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
-	 *	* 4'b0000: 11 bits
-	 *	* 4'b0001: 12 bits
-	 *	- ...
-	 *	* 4'b1000: 19 bits
-	 *	* Others: Reserved
-	 */
-	struct cvmx_usbcx_ghwcfg3_s {
-		uint32_t dfifodepth				: 16;
-		uint32_t reserved_13_15				: 3;
-		uint32_t ahbphysync				: 1;
-		uint32_t rsttype				: 1;
-		uint32_t optfeature				: 1;
-		uint32_t vendor_control_interface_support	: 1;
-		uint32_t i2c_selection				: 1;
-		uint32_t otgen					: 1;
-		uint32_t pktsizewidth				: 3;
-		uint32_t xfersizewidth				: 4;
-	} s;
-};
-
-/**
- * cvmx_usbc#_gintmsk
- *
- * Core Interrupt Mask Register (GINTMSK)
- *
- * This register works with the Core Interrupt register to interrupt the
- * application. When an interrupt bit is masked, the interrupt associated with
- * that bit will not be generated. However, the Core Interrupt (GINTSTS)
- * register bit corresponding to that interrupt will still be set.
- * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
- */
-union cvmx_usbcx_gintmsk {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_gintmsk_s
-	 * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
-	 *	(WkUpIntMsk)
-	 * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
-	 *	(SessReqIntMsk)
-	 * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
-	 * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
-	 * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
-	 * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
-	 * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
-	 * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
-	 * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
-	 *	Incomplete Isochronous OUT Transfer Mask
-	 *	(incompISOOUTMsk)
-	 * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
-	 *		    (incompISOINMsk)
-	 * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
-	 * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
-	 * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
-	 * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
-	 * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
-	 *	(ISOOutDropMsk)
-	 * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
-	 * @usbrstmsk: USB Reset Mask (USBRstMsk)
-	 * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
-	 * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
-	 * @i2cint: I2C Interrupt Mask (I2CINT)
-	 * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
-	 *	I2C Carkit Interrupt Mask (I2CCKINTMsk)
-	 * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
-	 * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
-	 *		  (GINNakEffMsk)
-	 * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
-	 * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
-	 * @sofmsk: Start of (micro)Frame Mask (SofMsk)
-	 * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
-	 * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
-	 */
-	struct cvmx_usbcx_gintmsk_s {
-		uint32_t wkupintmsk		: 1;
-		uint32_t sessreqintmsk		: 1;
-		uint32_t disconnintmsk		: 1;
-		uint32_t conidstschngmsk	: 1;
-		uint32_t reserved_27_27		: 1;
-		uint32_t ptxfempmsk		: 1;
-		uint32_t hchintmsk		: 1;
-		uint32_t prtintmsk		: 1;
-		uint32_t reserved_23_23		: 1;
-		uint32_t fetsuspmsk		: 1;
-		uint32_t incomplpmsk		: 1;
-		uint32_t incompisoinmsk		: 1;
-		uint32_t oepintmsk		: 1;
-		uint32_t inepintmsk		: 1;
-		uint32_t epmismsk		: 1;
-		uint32_t reserved_16_16		: 1;
-		uint32_t eopfmsk		: 1;
-		uint32_t isooutdropmsk		: 1;
-		uint32_t enumdonemsk		: 1;
-		uint32_t usbrstmsk		: 1;
-		uint32_t usbsuspmsk		: 1;
-		uint32_t erlysuspmsk		: 1;
-		uint32_t i2cint			: 1;
-		uint32_t ulpickintmsk		: 1;
-		uint32_t goutnakeffmsk		: 1;
-		uint32_t ginnakeffmsk		: 1;
-		uint32_t nptxfempmsk		: 1;
-		uint32_t rxflvlmsk		: 1;
-		uint32_t sofmsk			: 1;
-		uint32_t otgintmsk		: 1;
-		uint32_t modemismsk		: 1;
-		uint32_t reserved_0_0		: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_gintsts
- *
- * Core Interrupt Register (GINTSTS)
- *
- * This register interrupts the application for system-level events in the
- * current mode of operation (Device mode or Host mode). It is shown in
- * Interrupt. Some of the bits in this register are valid only in Host mode,
- * while others are valid in Device mode only. This register also indicates the
- * current mode of operation. In order to clear the interrupt status bits of
- * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
- * interrupts are read only; once software reads from or writes to the FIFO
- * while servicing these interrupts, FIFO interrupt conditions are cleared
- * automatically.
- */
-union cvmx_usbcx_gintsts {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_gintsts_s
-	 * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
-	 *	In Device mode, this interrupt is asserted when a resume is
-	 *	detected on the USB. In Host mode, this interrupt is asserted
-	 *	when a remote wakeup is detected on the USB.
-	 *	For more information on how to use this interrupt, see "Partial
-	 *	Power-Down and Clock Gating Programming Model" on
-	 *	page 353.
-	 * @sessreqint: Session Request/New Session Detected Interrupt
-	 *		(SessReqInt)
-	 *	In Host mode, this interrupt is asserted when a session request
-	 *	is detected from the device. In Device mode, this interrupt is
-	 *	asserted when the utmiotg_bvalid signal goes high.
-	 *	For more information on how to use this interrupt, see "Partial
-	 *	Power-Down and Clock Gating Programming Model" on
-	 *	page 353.
-	 * @disconnint: Disconnect Detected Interrupt (DisconnInt)
-	 *	Asserted when a device disconnect is detected.
-	 * @conidstschng: Connector ID Status Change (ConIDStsChng)
-	 *	The core sets this bit when there is a change in connector ID
-	 *	status.
-	 * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
-	 *	Asserted when the Periodic Transmit FIFO is either half or
-	 *	completely empty and there is space for at least one entry to be
-	 *	written in the Periodic Request Queue. The half or completely
-	 *	empty status is determined by the Periodic TxFIFO Empty Level
-	 *	bit in the Core AHB Configuration register
-	 *	(GAHBCFG.PTxFEmpLvl).
-	 * @hchint: Host Channels Interrupt (HChInt)
-	 *	The core sets this bit to indicate that an interrupt is pending
-	 *	on one of the channels of the core (in Host mode). The
-	 *	application must read the Host All Channels Interrupt (HAINT)
-	 *	register to determine the exact number of the channel on which
-	 *	the interrupt occurred, and then read the corresponding Host
-	 *	Channel-n Interrupt (HCINTn) register to determine the exact
-	 *	cause of the interrupt. The application must clear the
-	 *	appropriate status bit in the HCINTn register to clear this bit.
-	 * @prtint: Host Port Interrupt (PrtInt)
-	 *	The core sets this bit to indicate a change in port status of
-	 *	one of the O2P USB core ports in Host mode. The application must
-	 *	read the Host Port Control and Status (HPRT) register to
-	 *	determine the exact event that caused this interrupt. The
-	 *	application must clear the appropriate status bit in the Host
-	 *	Port Control and Status register to clear this bit.
-	 * @fetsusp: Data Fetch Suspended (FetSusp)
-	 *	This interrupt is valid only in DMA mode. This interrupt
-	 *	indicates that the core has stopped fetching data for IN
-	 *	endpoints due to the unavailability of TxFIFO space or Request
-	 *	Queue space. This interrupt is used by the application for an
-	 *	endpoint mismatch algorithm.
-	 * @incomplp: Incomplete Periodic Transfer (incomplP)
-	 *	In Host mode, the core sets this interrupt bit when there are
-	 *	incomplete periodic transactions still pending which are
-	 *	scheduled for the current microframe.
-	 *	Incomplete Isochronous OUT Transfer (incompISOOUT)
-	 *	The Device mode, the core sets this interrupt to indicate that
-	 *	there is at least one isochronous OUT endpoint on which the
-	 *	transfer is not completed in the current microframe. This
-	 *	interrupt is asserted along with the End of Periodic Frame
-	 *	Interrupt (EOPF) bit in this register.
-	 * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
-	 *	The core sets this interrupt to indicate that there is at least
-	 *	one isochronous IN endpoint on which the transfer is not
-	 *	completed in the current microframe. This interrupt is asserted
-	 *	along with the End of Periodic Frame Interrupt (EOPF) bit in
-	 *	this register.
-	 * @oepint: OUT Endpoints Interrupt (OEPInt)
-	 *	The core sets this bit to indicate that an interrupt is pending
-	 *	on one of the OUT endpoints of the core (in Device mode). The
-	 *	application must read the Device All Endpoints Interrupt
-	 *	(DAINT) register to determine the exact number of the OUT
-	 *	endpoint on which the interrupt occurred, and then read the
-	 *	corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
-	 *	register to determine the exact cause of the interrupt. The
-	 *	application must clear the appropriate status bit in the
-	 *	corresponding DOEPINTn register to clear this bit.
-	 * @iepint: IN Endpoints Interrupt (IEPInt)
-	 *	The core sets this bit to indicate that an interrupt is pending
-	 *	on one of the IN endpoints of the core (in Device mode). The
-	 *	application must read the Device All Endpoints Interrupt
-	 *	(DAINT) register to determine the exact number of the IN
-	 *	endpoint on which the interrupt occurred, and then read the
-	 *	corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
-	 *	register to determine the exact cause of the interrupt. The
-	 *	application must clear the appropriate status bit in the
-	 *	corresponding DIEPINTn register to clear this bit.
-	 * @epmis: Endpoint Mismatch Interrupt (EPMis)
-	 *	Indicates that an IN token has been received for a non-periodic
-	 *	endpoint, but the data for another endpoint is present in the
-	 *	top of the Non-Periodic Transmit FIFO and the IN endpoint
-	 *	mismatch count programmed by the application has expired.
-	 * @eopf: End of Periodic Frame Interrupt (EOPF)
-	 *	Indicates that the period specified in the Periodic Frame
-	 *	Interval field of the Device Configuration register
-	 *	(DCFG.PerFrInt) has been reached in the current microframe.
-	 * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
-	 *	The core sets this bit when it fails to write an isochronous OUT
-	 *	packet into the RxFIFO because the RxFIFO doesn't have
-	 *	enough space to accommodate a maximum packet size packet
-	 *	for the isochronous OUT endpoint.
-	 * @enumdone: Enumeration Done (EnumDone)
-	 *	The core sets this bit to indicate that speed enumeration is
-	 *	complete. The application must read the Device Status (DSTS)
-	 *	register to obtain the enumerated speed.
-	 * @usbrst: USB Reset (USBRst)
-	 *	The core sets this bit to indicate that a reset is detected on
-	 *	the USB.
-	 * @usbsusp: USB Suspend (USBSusp)
-	 *	The core sets this bit to indicate that a suspend was detected
-	 *	on the USB. The core enters the Suspended state when there
-	 *	is no activity on the phy_line_state_i signal for an extended
-	 *	period of time.
-	 * @erlysusp: Early Suspend (ErlySusp)
-	 *	The core sets this bit to indicate that an Idle state has been
-	 *	detected on the USB for 3 ms.
-	 * @i2cint: I2C Interrupt (I2CINT)
-	 *	This bit is always 0x0.
-	 * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
-	 *	This bit is always 0x0.
-	 * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
-	 *	Indicates that the Set Global OUT NAK bit in the Device Control
-	 *	register (DCTL.SGOUTNak), set by the application, has taken
-	 *	effect in the core. This bit can be cleared by writing the Clear
-	 *	Global OUT NAK bit in the Device Control register
-	 *	(DCTL.CGOUTNak).
-	 * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
-	 *	Indicates that the Set Global Non-Periodic IN NAK bit in the
-	 *	Device Control register (DCTL.SGNPInNak), set by the
-	 *	application, has taken effect in the core. That is, the core has
-	 *	sampled the Global IN NAK bit set by the application. This bit
-	 *	can be cleared by clearing the Clear Global Non-Periodic IN
-	 *	NAK bit in the Device Control register (DCTL.CGNPInNak).
-	 *	This interrupt does not necessarily mean that a NAK handshake
-	 *	is sent out on the USB. The STALL bit takes precedence over
-	 *	the NAK bit.
-	 * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
-	 *	This interrupt is asserted when the Non-Periodic TxFIFO is
-	 *	either half or completely empty, and there is space for at least
-	 *	one entry to be written to the Non-Periodic Transmit Request
-	 *	Queue. The half or completely empty status is determined by
-	 *	the Non-Periodic TxFIFO Empty Level bit in the Core AHB
-	 *	Configuration register (GAHBCFG.NPTxFEmpLvl).
-	 * @rxflvl: RxFIFO Non-Empty (RxFLvl)
-	 *	Indicates that there is at least one packet pending to be read
-	 *	from the RxFIFO.
-	 * @sof: Start of (micro)Frame (Sof)
-	 *	In Host mode, the core sets this bit to indicate that an SOF
-	 *	(FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
-	 *	USB. The application must write a 1 to this bit to clear the
-	 *	interrupt.
-	 *	In Device mode, in the core sets this bit to indicate that an
-	 *	SOF token has been received on the USB. The application can read
-	 *	the Device Status register to get the current (micro)frame
-	 *	number. This interrupt is seen only when the core is operating
-	 *	at either HS or FS.
-	 * @otgint: OTG Interrupt (OTGInt)
-	 *	The core sets this bit to indicate an OTG protocol event. The
-	 *	application must read the OTG Interrupt Status (GOTGINT)
-	 *	register to determine the exact event that caused this
-	 *	interrupt. The application must clear the appropriate status bit
-	 *	in the GOTGINT register to clear this bit.
-	 * @modemis: Mode Mismatch Interrupt (ModeMis)
-	 *	The core sets this bit when the application is trying to access:
-	 *	* A Host mode register, when the core is operating in Device
-	 *	mode
-	 *	* A Device mode register, when the core is operating in Host
-	 *	mode
-	 *	The register access is completed on the AHB with an OKAY
-	 *	response, but is ignored by the core internally and doesn't
-	 *	affect the operation of the core.
-	 * @curmod: Current Mode of Operation (CurMod)
-	 *	Indicates the current mode of operation.
-	 *	* 1'b0: Device mode
-	 *	* 1'b1: Host mode
-	 */
-	struct cvmx_usbcx_gintsts_s {
-		uint32_t wkupint	: 1;
-		uint32_t sessreqint	: 1;
-		uint32_t disconnint	: 1;
-		uint32_t conidstschng	: 1;
-		uint32_t reserved_27_27	: 1;
-		uint32_t ptxfemp	: 1;
-		uint32_t hchint		: 1;
-		uint32_t prtint		: 1;
-		uint32_t reserved_23_23	: 1;
-		uint32_t fetsusp	: 1;
-		uint32_t incomplp	: 1;
-		uint32_t incompisoin	: 1;
-		uint32_t oepint		: 1;
-		uint32_t iepint		: 1;
-		uint32_t epmis		: 1;
-		uint32_t reserved_16_16	: 1;
-		uint32_t eopf		: 1;
-		uint32_t isooutdrop	: 1;
-		uint32_t enumdone	: 1;
-		uint32_t usbrst		: 1;
-		uint32_t usbsusp	: 1;
-		uint32_t erlysusp	: 1;
-		uint32_t i2cint		: 1;
-		uint32_t ulpickint	: 1;
-		uint32_t goutnakeff	: 1;
-		uint32_t ginnakeff	: 1;
-		uint32_t nptxfemp	: 1;
-		uint32_t rxflvl		: 1;
-		uint32_t sof		: 1;
-		uint32_t otgint		: 1;
-		uint32_t modemis	: 1;
-		uint32_t curmod		: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_gnptxfsiz
- *
- * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
- *
- * The application can program the RAM size and the memory start address for the
- * Non-Periodic TxFIFO.
- */
-union cvmx_usbcx_gnptxfsiz {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_gnptxfsiz_s
-	 * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
-	 *	This value is in terms of 32-bit words.
-	 *	Minimum value is 16
-	 *	Maximum value is 32768
-	 * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
-	 *	This field contains the memory start address for Non-Periodic
-	 *	Transmit FIFO RAM.
-	 */
-	struct cvmx_usbcx_gnptxfsiz_s {
-		uint32_t nptxfdep	: 16;
-		uint32_t nptxfstaddr	: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_gnptxsts
- *
- * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
- *
- * This read-only register contains the free space information for the
- * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
- */
-union cvmx_usbcx_gnptxsts {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_gnptxsts_s
-	 * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
-	 *	Entry in the Non-Periodic Tx Request Queue that is currently
-	 *	being processed by the MAC.
-	 *	* Bits [30:27]: Channel/endpoint number
-	 *	* Bits [26:25]:
-	 *	- 2'b00: IN/OUT token
-	 *	- 2'b01: Zero-length transmit packet (device IN/host OUT)
-	 *	- 2'b10: PING/CSPLIT token
-	 *	- 2'b11: Channel halt command
-	 *	* Bit [24]: Terminate (last entry for selected channel/endpoint)
-	 * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
-	 *	(NPTxQSpcAvail)
-	 *	Indicates the amount of free space available in the Non-
-	 *	Periodic Transmit Request Queue. This queue holds both IN
-	 *	and OUT requests in Host mode. Device mode has only IN
-	 *	requests.
-	 *	* 8'h0: Non-Periodic Transmit Request Queue is full
-	 *	* 8'h1: 1 location available
-	 *	* 8'h2: 2 locations available
-	 *	* n: n locations available (0..8)
-	 *	* Others: Reserved
-	 * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
-	 *	Indicates the amount of free space available in the Non-
-	 *	Periodic TxFIFO.
-	 *	Values are in terms of 32-bit words.
-	 *	* 16'h0: Non-Periodic TxFIFO is full
-	 *	* 16'h1: 1 word available
-	 *	* 16'h2: 2 words available
-	 *	* 16'hn: n words available (where 0..32768)
-	 *	* 16'h8000: 32768 words available
-	 *	* Others: Reserved
-	 */
-	struct cvmx_usbcx_gnptxsts_s {
-		uint32_t reserved_31_31	: 1;
-		uint32_t nptxqtop	: 7;
-		uint32_t nptxqspcavail	: 8;
-		uint32_t nptxfspcavail	: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_grstctl
- *
- * Core Reset Register (GRSTCTL)
- *
- * The application uses this register to reset various hardware features inside
- * the core.
- */
-union cvmx_usbcx_grstctl {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_grstctl_s
-	 * @ahbidle: AHB Master Idle (AHBIdle)
-	 *	Indicates that the AHB Master State Machine is in the IDLE
-	 *	condition.
-	 * @dmareq: DMA Request Signal (DMAReq)
-	 *	Indicates that the DMA request is in progress. Used for debug.
-	 * @txfnum: TxFIFO Number (TxFNum)
-	 *	This is the FIFO number that must be flushed using the TxFIFO
-	 *	Flush bit. This field must not be changed until the core clears
-	 *	the TxFIFO Flush bit.
-	 *	* 5'h0: Non-Periodic TxFIFO flush
-	 *	* 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
-	 *	TxFIFO flush in Host mode
-	 *	* 5'h2: Periodic TxFIFO 2 flush in Device mode
-	 *	- ...
-	 *	* 5'hF: Periodic TxFIFO 15 flush in Device mode
-	 *	* 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
-	 *	core
-	 * @txfflsh: TxFIFO Flush (TxFFlsh)
-	 *	This bit selectively flushes a single or all transmit FIFOs, but
-	 *	cannot do so if the core is in the midst of a transaction.
-	 *	The application must only write this bit after checking that the
-	 *	core is neither writing to the TxFIFO nor reading from the
-	 *	TxFIFO.
-	 *	The application must wait until the core clears this bit before
-	 *	performing any operations. This bit takes 8 clocks (of phy_clk
-	 *	or hclk, whichever is slower) to clear.
-	 * @rxfflsh: RxFIFO Flush (RxFFlsh)
-	 *	The application can flush the entire RxFIFO using this bit, but
-	 *	must first ensure that the core is not in the middle of a
-	 *	transaction.
-	 *	The application must only write to this bit after checking that
-	 *	the core is neither reading from the RxFIFO nor writing to the
-	 *	RxFIFO.
-	 *	The application must wait until the bit is cleared before
-	 *	performing any other operations. This bit will take 8 clocks
-	 *	(slowest of PHY or AHB clock) to clear.
-	 * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
-	 *	The application writes this bit to flush the IN Token Sequence
-	 *	Learning Queue.
-	 * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
-	 *	The application writes this bit to reset the (micro)frame number
-	 *	counter inside the core. When the (micro)frame counter is reset,
-	 *	the subsequent SOF sent out by the core will have a
-	 *	(micro)frame number of 0.
-	 * @hsftrst: HClk Soft Reset (HSftRst)
-	 *	The application uses this bit to flush the control logic in the
-	 *	AHB Clock domain. Only AHB Clock Domain pipelines are reset.
-	 *	* FIFOs are not flushed with this bit.
-	 *	* All state machines in the AHB clock domain are reset to the
-	 *	Idle state after terminating the transactions on the AHB,
-	 *	following the protocol.
-	 *	* CSR control bits used by the AHB clock domain state
-	 *	machines are cleared.
-	 *	* To clear this interrupt, status mask bits that control the
-	 *	interrupt status and are generated by the AHB clock domain
-	 *	state machine are cleared.
-	 *	* Because interrupt status bits are not cleared, the application
-	 *	can get the status of any core events that occurred after it set
-	 *	this bit.
-	 *	This is a self-clearing bit that the core clears after all
-	 *	necessary logic is reset in the core. This may take several
-	 *	clocks, depending on the core's current state.
-	 * @csftrst: Core Soft Reset (CSftRst)
-	 *	Resets the hclk and phy_clock domains as follows:
-	 *	* Clears the interrupts and all the CSR registers except the
-	 *	following register bits:
-	 *	- PCGCCTL.RstPdwnModule
-	 *	- PCGCCTL.GateHclk
-	 *	- PCGCCTL.PwrClmp
-	 *	- PCGCCTL.StopPPhyLPwrClkSelclk
-	 *	- GUSBCFG.PhyLPwrClkSel
-	 *	- GUSBCFG.DDRSel
-	 *	- GUSBCFG.PHYSel
-	 *	- GUSBCFG.FSIntf
-	 *	- GUSBCFG.ULPI_UTMI_Sel
-	 *	- GUSBCFG.PHYIf
-	 *	- HCFG.FSLSPclkSel
-	 *	- DCFG.DevSpd
-	 *	* All module state machines (except the AHB Slave Unit) are
-	 *	reset to the IDLE state, and all the transmit FIFOs and the
-	 *	receive FIFO are flushed.
-	 *	* Any transactions on the AHB Master are terminated as soon
-	 *	as possible, after gracefully completing the last data phase of
-	 *	an AHB transfer. Any transactions on the USB are terminated
-	 *	immediately.
-	 *	The application can write to this bit any time it wants to reset
-	 *	the core. This is a self-clearing bit and the core clears this
-	 *	bit after all the necessary logic is reset in the core, which
-	 *	may take several clocks, depending on the current state of the
-	 *	core. Once this bit is cleared software should wait at least 3
-	 *	PHY clocks before doing any access to the PHY domain
-	 *	(synchronization delay). Software should also should check that
-	 *	bit 31 of this register is 1 (AHB Master is IDLE) before
-	 *	starting any operation.
-	 *	Typically software reset is used during software development
-	 *	and also when you dynamically change the PHY selection bits
-	 *	in the USB configuration registers listed above. When you
-	 *	change the PHY, the corresponding clock for the PHY is
-	 *	selected and used in the PHY domain. Once a new clock is
-	 *	selected, the PHY domain has to be reset for proper operation.
-	 */
-	struct cvmx_usbcx_grstctl_s {
-		uint32_t ahbidle	: 1;
-		uint32_t dmareq		: 1;
-		uint32_t reserved_11_29	: 19;
-		uint32_t txfnum		: 5;
-		uint32_t txfflsh	: 1;
-		uint32_t rxfflsh	: 1;
-		uint32_t intknqflsh	: 1;
-		uint32_t frmcntrrst	: 1;
-		uint32_t hsftrst	: 1;
-		uint32_t csftrst	: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_grxfsiz
- *
- * Receive FIFO Size Register (GRXFSIZ)
- *
- * The application can program the RAM size that must be allocated to the
- * RxFIFO.
- */
-union cvmx_usbcx_grxfsiz {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_grxfsiz_s
-	 * @rxfdep: RxFIFO Depth (RxFDep)
-	 *	This value is in terms of 32-bit words.
-	 *	* Minimum value is 16
-	 *	* Maximum value is 32768
-	 */
-	struct cvmx_usbcx_grxfsiz_s {
-		uint32_t reserved_16_31	: 16;
-		uint32_t rxfdep		: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_grxstsph
- *
- * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
- *
- * A read to the Receive Status Read and Pop register returns and additionally
- * pops the top data entry out of the RxFIFO.
- * This Description is only valid when the core is in Host Mode. For Device Mode
- * use USBC_GRXSTSPD instead.
- * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
- *	 same offset in the O2P USB core. The offset difference shown in this
- *	 document is for software clarity and is actually ignored by the
- *       hardware.
- */
-union cvmx_usbcx_grxstsph {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_grxstsph_s
-	 * @pktsts: Packet Status (PktSts)
-	 *	Indicates the status of the received packet
-	 *	* 4'b0010: IN data packet received
-	 *	* 4'b0011: IN transfer completed (triggers an interrupt)
-	 *	* 4'b0101: Data toggle error (triggers an interrupt)
-	 *	* 4'b0111: Channel halted (triggers an interrupt)
-	 *	* Others: Reserved
-	 * @dpid: Data PID (DPID)
-	 *	* 2'b00: DATA0
-	 *	* 2'b10: DATA1
-	 *	* 2'b01: DATA2
-	 *	* 2'b11: MDATA
-	 * @bcnt: Byte Count (BCnt)
-	 *	Indicates the byte count of the received IN data packet
-	 * @chnum: Channel Number (ChNum)
-	 *	Indicates the channel number to which the current received
-	 *	packet belongs.
-	 */
-	struct cvmx_usbcx_grxstsph_s {
-		uint32_t reserved_21_31	: 11;
-		uint32_t pktsts		: 4;
-		uint32_t dpid		: 2;
-		uint32_t bcnt		: 11;
-		uint32_t chnum		: 4;
-	} s;
-};
-
-/**
- * cvmx_usbc#_gusbcfg
- *
- * Core USB Configuration Register (GUSBCFG)
- *
- * This register can be used to configure the core after power-on or a changing
- * to Host mode or Device mode. It contains USB and USB-PHY related
- * configuration parameters. The application must program this register before
- * starting any transactions on either the AHB or the USB. Do not make changes
- * to this register after the initial programming.
- */
-union cvmx_usbcx_gusbcfg {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_gusbcfg_s
-	 * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
-	 *	This bit is always 0x0.
-	 * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
-	 *	Software should set this bit to 0x0.
-	 *	Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
-	 *	FS and LS modes, the PHY can usually operate on a 48-MHz
-	 *	clock to save power.
-	 *	* 1'b0: 480-MHz Internal PLL clock
-	 *	* 1'b1: 48-MHz External Clock
-	 *	In 480 MHz mode, the UTMI interface operates at either 60 or
-	 *	30-MHz, depending upon whether 8- or 16-bit data width is
-	 *	selected. In 48-MHz mode, the UTMI interface operates at 48
-	 *	MHz in FS mode and at either 48 or 6 MHz in LS mode
-	 *	(depending on the PHY vendor).
-	 *	This bit drives the utmi_fsls_low_power core output signal, and
-	 *	is valid only for UTMI+ PHYs.
-	 * @usbtrdtim: USB Turnaround Time (USBTrdTim)
-	 *	Sets the turnaround time in PHY clocks.
-	 *	Specifies the response time for a MAC request to the Packet
-	 *	FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
-	 *	This must be programmed to 0x5.
-	 * @hnpcap: HNP-Capable (HNPCap)
-	 *	This bit is always 0x0.
-	 * @srpcap: SRP-Capable (SRPCap)
-	 *	This bit is always 0x0.
-	 * @ddrsel: ULPI DDR Select (DDRSel)
-	 *	Software should set this bit to 0x0.
-	 * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
-	 *	Software should set this bit to 0x0.
-	 * @fsintf: Full-Speed Serial Interface Select (FSIntf)
-	 *	Software should set this bit to 0x0.
-	 * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
-	 *	This bit is always 0x0.
-	 * @phyif: PHY Interface (PHYIf)
-	 *	This bit is always 0x1.
-	 * @toutcal: HS/FS Timeout Calibration (TOutCal)
-	 *	The number of PHY clocks that the application programs in this
-	 *	field is added to the high-speed/full-speed interpacket timeout
-	 *	duration in the core to account for any additional delays
-	 *	introduced by the PHY. This may be required, since the delay
-	 *	introduced by the PHY in generating the linestate condition may
-	 *	vary from one PHY to another.
-	 *	The USB standard timeout value for high-speed operation is
-	 *	736 to 816 (inclusive) bit times. The USB standard timeout
-	 *	value for full-speed operation is 16 to 18 (inclusive) bit
-	 *	times. The application must program this field based on the
-	 *	speed of enumeration. The number of bit times added per PHY
-	 *	clock are:
-	 *	High-speed operation:
-	 *	* One 30-MHz PHY clock = 16 bit times
-	 *	* One 60-MHz PHY clock = 8 bit times
-	 *	Full-speed operation:
-	 *	* One 30-MHz PHY clock = 0.4 bit times
-	 *	* One 60-MHz PHY clock = 0.2 bit times
-	 *	* One 48-MHz PHY clock = 0.25 bit times
-	 */
-	struct cvmx_usbcx_gusbcfg_s {
-		uint32_t reserved_17_31	: 15;
-		uint32_t otgi2csel	: 1;
-		uint32_t phylpwrclksel	: 1;
-		uint32_t reserved_14_14	: 1;
-		uint32_t usbtrdtim	: 4;
-		uint32_t hnpcap		: 1;
-		uint32_t srpcap		: 1;
-		uint32_t ddrsel		: 1;
-		uint32_t physel		: 1;
-		uint32_t fsintf		: 1;
-		uint32_t ulpi_utmi_sel	: 1;
-		uint32_t phyif		: 1;
-		uint32_t toutcal	: 3;
-	} s;
-};
-
-/**
- * cvmx_usbc#_haint
- *
- * Host All Channels Interrupt Register (HAINT)
- *
- * When a significant event occurs on a channel, the Host All Channels Interrupt
- * register interrupts the application using the Host Channels Interrupt bit of
- * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
- * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
- * this register are set and cleared when the application sets and clears bits
- * in the corresponding Host Channel-n Interrupt register.
- */
-union cvmx_usbcx_haint {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_haint_s
-	 * @haint: Channel Interrupts (HAINT)
-	 *	One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
-	 */
-	struct cvmx_usbcx_haint_s {
-		uint32_t reserved_16_31	: 16;
-		uint32_t haint		: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_haintmsk
- *
- * Host All Channels Interrupt Mask Register (HAINTMSK)
- *
- * The Host All Channel Interrupt Mask register works with the Host All Channel
- * Interrupt register to interrupt the application when an event occurs on a
- * channel. There is one interrupt mask bit per channel, up to a maximum of 16
- * bits.
- * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
- */
-union cvmx_usbcx_haintmsk {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_haintmsk_s
-	 * @haintmsk: Channel Interrupt Mask (HAINTMsk)
-	 *	One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
-	 */
-	struct cvmx_usbcx_haintmsk_s {
-		uint32_t reserved_16_31	: 16;
-		uint32_t haintmsk	: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hcchar#
- *
- * Host Channel-n Characteristics Register (HCCHAR)
- *
- */
-union cvmx_usbcx_hccharx {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hccharx_s
-	 * @chena: Channel Enable (ChEna)
-	 *	This field is set by the application and cleared by the OTG
-	 *	host.
-	 *	* 1'b0: Channel disabled
-	 *	* 1'b1: Channel enabled
-	 * @chdis: Channel Disable (ChDis)
-	 *	The application sets this bit to stop transmitting/receiving
-	 *	data on a channel, even before the transfer for that channel is
-	 *	complete. The application must wait for the Channel Disabled
-	 *	interrupt before treating the channel as disabled.
-	 * @oddfrm: Odd Frame (OddFrm)
-	 *	This field is set (reset) by the application to indicate that
-	 *	the OTG host must perform a transfer in an odd (micro)frame.
-	 *	This field is applicable for only periodic (isochronous and
-	 *	interrupt) transactions.
-	 *	* 1'b0: Even (micro)frame
-	 *	* 1'b1: Odd (micro)frame
-	 * @devaddr: Device Address (DevAddr)
-	 *	This field selects the specific device serving as the data
-	 *	source or sink.
-	 * @ec: Multi Count (MC) / Error Count (EC)
-	 *	When the Split Enable bit of the Host Channel-n Split Control
-	 *	register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
-	 *	to the host the number of transactions that should be executed
-	 *	per microframe for this endpoint.
-	 *	* 2'b00: Reserved. This field yields undefined results.
-	 *	* 2'b01: 1 transaction
-	 *	* 2'b10: 2 transactions to be issued for this endpoint per
-	 *	microframe
-	 *	* 2'b11: 3 transactions to be issued for this endpoint per
-	 *	microframe
-	 *	When HCSPLTn.SpltEna is set (1'b1), this field indicates the
-	 *	number of immediate retries to be performed for a periodic split
-	 *	transactions on transaction errors. This field must be set to at
-	 *	least 2'b01.
-	 * @eptype: Endpoint Type (EPType)
-	 *	Indicates the transfer type selected.
-	 *	* 2'b00: Control
-	 *	* 2'b01: Isochronous
-	 *	* 2'b10: Bulk
-	 *	* 2'b11: Interrupt
-	 * @lspddev: Low-Speed Device (LSpdDev)
-	 *	This field is set by the application to indicate that this
-	 *	channel is communicating to a low-speed device.
-	 * @epdir: Endpoint Direction (EPDir)
-	 *	Indicates whether the transaction is IN or OUT.
-	 *	* 1'b0: OUT
-	 *	* 1'b1: IN
-	 * @epnum: Endpoint Number (EPNum)
-	 *	Indicates the endpoint number on the device serving as the
-	 *	data source or sink.
-	 * @mps: Maximum Packet Size (MPS)
-	 *	Indicates the maximum packet size of the associated endpoint.
-	 */
-	struct cvmx_usbcx_hccharx_s {
-		uint32_t chena		: 1;
-		uint32_t chdis		: 1;
-		uint32_t oddfrm		: 1;
-		uint32_t devaddr	: 7;
-		uint32_t ec		: 2;
-		uint32_t eptype		: 2;
-		uint32_t lspddev	: 1;
-		uint32_t reserved_16_16	: 1;
-		uint32_t epdir		: 1;
-		uint32_t epnum		: 4;
-		uint32_t mps		: 11;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hcfg
- *
- * Host Configuration Register (HCFG)
- *
- * This register configures the core after power-on. Do not make changes to this
- * register after initializing the host.
- */
-union cvmx_usbcx_hcfg {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hcfg_s
-	 * @fslssupp: FS- and LS-Only Support (FSLSSupp)
-	 *	The application uses this bit to control the core's enumeration
-	 *	speed. Using this bit, the application can make the core
-	 *	enumerate as a FS host, even if the connected device supports
-	 *	HS traffic. Do not make changes to this field after initial
-	 *	programming.
-	 *	* 1'b0: HS/FS/LS, based on the maximum speed supported by
-	 *	the connected device
-	 *	* 1'b1: FS/LS-only, even if the connected device can support HS
-	 * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
-	 *	When the core is in FS Host mode
-	 *	* 2'b00: PHY clock is running at 30/60 MHz
-	 *	* 2'b01: PHY clock is running at 48 MHz
-	 *	* Others: Reserved
-	 *	When the core is in LS Host mode
-	 *	* 2'b00: PHY clock is running at 30/60 MHz. When the
-	 *	UTMI+/ULPI PHY Low Power mode is not selected, use
-	 *	30/60 MHz.
-	 *	* 2'b01: PHY clock is running at 48 MHz. When the UTMI+
-	 *	PHY Low Power mode is selected, use 48MHz if the PHY
-	 *	supplies a 48 MHz clock during LS mode.
-	 *	* 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
-	 *	use 6 MHz when the UTMI+ PHY Low Power mode is
-	 *	selected and the PHY supplies a 6 MHz clock during LS
-	 *	mode. If you select a 6 MHz clock during LS mode, you must
-	 *	do a soft reset.
-	 *	* 2'b11: Reserved
-	 */
-	struct cvmx_usbcx_hcfg_s {
-		uint32_t reserved_3_31	: 29;
-		uint32_t fslssupp	: 1;
-		uint32_t fslspclksel	: 2;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hcint#
- *
- * Host Channel-n Interrupt Register (HCINT)
- *
- * This register indicates the status of a channel with respect to USB- and
- * AHB-related events. The application must read this register when the Host
- * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
- * set. Before the application can read this register, it must first read
- * the Host All Channels Interrupt (HAINT) register to get the exact channel
- * number for the Host Channel-n Interrupt register. The application must clear
- * the appropriate bit in this register to clear the corresponding bits in the
- * HAINT and GINTSTS registers.
- */
-union cvmx_usbcx_hcintx {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hcintx_s
-	 * @datatglerr: Data Toggle Error (DataTglErr)
-	 * @frmovrun: Frame Overrun (FrmOvrun)
-	 * @bblerr: Babble Error (BblErr)
-	 * @xacterr: Transaction Error (XactErr)
-	 * @nyet: NYET Response Received Interrupt (NYET)
-	 * @ack: ACK Response Received Interrupt (ACK)
-	 * @nak: NAK Response Received Interrupt (NAK)
-	 * @stall: STALL Response Received Interrupt (STALL)
-	 * @ahberr: This bit is always 0x0.
-	 * @chhltd: Channel Halted (ChHltd)
-	 *	Indicates the transfer completed abnormally either because of
-	 *	any USB transaction error or in response to disable request by
-	 *	the application.
-	 * @xfercompl: Transfer Completed (XferCompl)
-	 *	Transfer completed normally without any errors.
-	 */
-	struct cvmx_usbcx_hcintx_s {
-		uint32_t reserved_11_31	: 21;
-		uint32_t datatglerr	: 1;
-		uint32_t frmovrun	: 1;
-		uint32_t bblerr		: 1;
-		uint32_t xacterr	: 1;
-		uint32_t nyet		: 1;
-		uint32_t ack		: 1;
-		uint32_t nak		: 1;
-		uint32_t stall		: 1;
-		uint32_t ahberr		: 1;
-		uint32_t chhltd		: 1;
-		uint32_t xfercompl	: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hcintmsk#
- *
- * Host Channel-n Interrupt Mask Register (HCINTMSKn)
- *
- * This register reflects the mask for each channel status described in the
- * previous section.
- * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
- */
-union cvmx_usbcx_hcintmskx {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hcintmskx_s
-	 * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
-	 * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
-	 * @bblerrmsk: Babble Error Mask (BblErrMsk)
-	 * @xacterrmsk: Transaction Error Mask (XactErrMsk)
-	 * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
-	 * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
-	 * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
-	 * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
-	 * @ahberrmsk: AHB Error Mask (AHBErrMsk)
-	 * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
-	 * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
-	 */
-	struct cvmx_usbcx_hcintmskx_s {
-		uint32_t reserved_11_31	: 21;
-		uint32_t datatglerrmsk	: 1;
-		uint32_t frmovrunmsk	: 1;
-		uint32_t bblerrmsk	: 1;
-		uint32_t xacterrmsk	: 1;
-		uint32_t nyetmsk	: 1;
-		uint32_t ackmsk		: 1;
-		uint32_t nakmsk		: 1;
-		uint32_t stallmsk	: 1;
-		uint32_t ahberrmsk	: 1;
-		uint32_t chhltdmsk	: 1;
-		uint32_t xfercomplmsk	: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hcsplt#
- *
- * Host Channel-n Split Control Register (HCSPLT)
- *
- */
-union cvmx_usbcx_hcspltx {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hcspltx_s
-	 * @spltena: Split Enable (SpltEna)
-	 *	The application sets this field to indicate that this channel is
-	 *	enabled to perform split transactions.
-	 * @compsplt: Do Complete Split (CompSplt)
-	 *	The application sets this field to request the OTG host to
-	 *	perform a complete split transaction.
-	 * @xactpos: Transaction Position (XactPos)
-	 *	This field is used to determine whether to send all, first,
-	 *	middle, or last payloads with each OUT transaction.
-	 *	* 2'b11: All. This is the entire data payload is of this
-	 *	transaction (which is less than or equal to 188 bytes).
-	 *	* 2'b10: Begin. This is the first data payload of this
-	 *	transaction (which is larger than 188 bytes).
-	 *	* 2'b00: Mid. This is the middle payload of this transaction
-	 *	(which is larger than 188 bytes).
-	 *	* 2'b01: End. This is the last payload of this transaction
-	 *	(which is larger than 188 bytes).
-	 * @hubaddr: Hub Address (HubAddr)
-	 *	This field holds the device address of the transaction
-	 *	translator's hub.
-	 * @prtaddr: Port Address (PrtAddr)
-	 *	This field is the port number of the recipient transaction
-	 *	translator.
-	 */
-	struct cvmx_usbcx_hcspltx_s {
-		uint32_t spltena	: 1;
-		uint32_t reserved_17_30	: 14;
-		uint32_t compsplt	: 1;
-		uint32_t xactpos	: 2;
-		uint32_t hubaddr	: 7;
-		uint32_t prtaddr	: 7;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hctsiz#
- *
- * Host Channel-n Transfer Size Register (HCTSIZ)
- *
- */
-union cvmx_usbcx_hctsizx {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hctsizx_s
-	 * @dopng: Do Ping (DoPng)
-	 *	Setting this field to 1 directs the host to do PING protocol.
-	 * @pid: PID (Pid)
-	 *	The application programs this field with the type of PID to use
-	 *	for the initial transaction. The host will maintain this field
-	 *	for the rest of the transfer.
-	 *	* 2'b00: DATA0
-	 *	* 2'b01: DATA2
-	 *	* 2'b10: DATA1
-	 *	* 2'b11: MDATA (non-control)/SETUP (control)
-	 * @pktcnt: Packet Count (PktCnt)
-	 *	This field is programmed by the application with the expected
-	 *	number of packets to be transmitted (OUT) or received (IN).
-	 *	The host decrements this count on every successful
-	 *	transmission or reception of an OUT/IN packet. Once this count
-	 *	reaches zero, the application is interrupted to indicate normal
-	 *	completion.
-	 * @xfersize: Transfer Size (XferSize)
-	 *	For an OUT, this field is the number of data bytes the host will
-	 *	send during the transfer.
-	 *	For an IN, this field is the buffer size that the application
-	 *	has reserved for the transfer. The application is expected to
-	 *	program this field as an integer multiple of the maximum packet
-	 *	size for IN transactions (periodic and non-periodic).
-	 */
-	struct cvmx_usbcx_hctsizx_s {
-		uint32_t dopng		: 1;
-		uint32_t pid		: 2;
-		uint32_t pktcnt		: 10;
-		uint32_t xfersize	: 19;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hfir
- *
- * Host Frame Interval Register (HFIR)
- *
- * This register stores the frame interval information for the current speed to
- * which the O2P USB core has enumerated.
- */
-union cvmx_usbcx_hfir {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hfir_s
-	 * @frint: Frame Interval (FrInt)
-	 *	The value that the application programs to this field specifies
-	 *	the interval between two consecutive SOFs (FS) or micro-
-	 *	SOFs (HS) or Keep-Alive tokens (HS). This field contains the
-	 *	number of PHY clocks that constitute the required frame
-	 *	interval. The default value set in this field for a FS operation
-	 *	when the PHY clock frequency is 60 MHz. The application can
-	 *	write a value to this register only after the Port Enable bit of
-	 *	the Host Port Control and Status register (HPRT.PrtEnaPort)
-	 *	has been set. If no value is programmed, the core calculates
-	 *	the value based on the PHY clock specified in the FS/LS PHY
-	 *	Clock Select field of the Host Configuration register
-	 *	(HCFG.FSLSPclkSel). Do not change the value of this field
-	 *	after the initial configuration.
-	 *	* 125 us (PHY clock frequency for HS)
-	 *	* 1 ms (PHY clock frequency for FS/LS)
-	 */
-	struct cvmx_usbcx_hfir_s {
-		uint32_t reserved_16_31	: 16;
-		uint32_t frint		: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hfnum
- *
- * Host Frame Number/Frame Time Remaining Register (HFNUM)
- *
- * This register indicates the current frame number.
- * It also indicates the time remaining (in terms of the number of PHY clocks)
- * in the current (micro)frame.
- */
-union cvmx_usbcx_hfnum {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hfnum_s
-	 * @frrem: Frame Time Remaining (FrRem)
-	 *	Indicates the amount of time remaining in the current
-	 *	microframe (HS) or frame (FS/LS), in terms of PHY clocks.
-	 *	This field decrements on each PHY clock. When it reaches
-	 *	zero, this field is reloaded with the value in the Frame
-	 *	Interval register and a new SOF is transmitted on the USB.
-	 * @frnum: Frame Number (FrNum)
-	 *	This field increments when a new SOF is transmitted on the
-	 *	USB, and is reset to 0 when it reaches 16'h3FFF.
-	 */
-	struct cvmx_usbcx_hfnum_s {
-		uint32_t frrem	: 16;
-		uint32_t frnum	: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hprt
- *
- * Host Port Control and Status Register (HPRT)
- *
- * This register is available in both Host and Device modes.
- * Currently, the OTG Host supports only one port.
- * A single register holds USB port-related information such as USB reset,
- * enable, suspend, resume, connect status, and test mode for each port. The
- * R_SS_WC bits in this register can trigger an interrupt to the application
- * through the Host Port Interrupt bit of the Core Interrupt register
- * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
- * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
- * the application must write a 1 to the bit to clear the interrupt.
- */
-union cvmx_usbcx_hprt {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hprt_s
-	 * @prtspd: Port Speed (PrtSpd)
-	 *	Indicates the speed of the device attached to this port.
-	 *	* 2'b00: High speed
-	 *	* 2'b01: Full speed
-	 *	* 2'b10: Low speed
-	 *	* 2'b11: Reserved
-	 * @prttstctl: Port Test Control (PrtTstCtl)
-	 *	The application writes a nonzero value to this field to put
-	 *	the port into a Test mode, and the corresponding pattern is
-	 *	signaled on the port.
-	 *	* 4'b0000: Test mode disabled
-	 *	* 4'b0001: Test_J mode
-	 *	* 4'b0010: Test_K mode
-	 *	* 4'b0011: Test_SE0_NAK mode
-	 *	* 4'b0100: Test_Packet mode
-	 *	* 4'b0101: Test_Force_Enable
-	 *	* Others: Reserved
-	 *	PrtSpd must be zero (i.e. the interface must be in high-speed
-	 *	mode) to use the PrtTstCtl test modes.
-	 * @prtpwr: Port Power (PrtPwr)
-	 *	The application uses this field to control power to this port,
-	 *	and the core clears this bit on an overcurrent condition.
-	 *	* 1'b0: Power off
-	 *	* 1'b1: Power on
-	 * @prtlnsts: Port Line Status (PrtLnSts)
-	 *	Indicates the current logic level USB data lines
-	 *	* Bit [10]: Logic level of D-
-	 *	* Bit [11]: Logic level of D+
-	 * @prtrst: Port Reset (PrtRst)
-	 *	When the application sets this bit, a reset sequence is
-	 *	started on this port. The application must time the reset
-	 *	period and clear this bit after the reset sequence is
-	 *	complete.
-	 *	* 1'b0: Port not in reset
-	 *	* 1'b1: Port in reset
-	 *	The application must leave this bit set for at least a
-	 *	minimum duration mentioned below to start a reset on the
-	 *	port. The application can leave it set for another 10 ms in
-	 *	addition to the required minimum duration, before clearing
-	 *	the bit, even though there is no maximum limit set by the
-	 *	USB standard.
-	 *	* High speed: 50 ms
-	 *	* Full speed/Low speed: 10 ms
-	 * @prtsusp: Port Suspend (PrtSusp)
-	 *	The application sets this bit to put this port in Suspend
-	 *	mode. The core only stops sending SOFs when this is set.
-	 *	To stop the PHY clock, the application must set the Port
-	 *	Clock Stop bit, which will assert the suspend input pin of
-	 *	the PHY.
-	 *	The read value of this bit reflects the current suspend
-	 *	status of the port. This bit is cleared by the core after a
-	 *	remote wakeup signal is detected or the application sets
-	 *	the Port Reset bit or Port Resume bit in this register or the
-	 *	Resume/Remote Wakeup Detected Interrupt bit or
-	 *	Disconnect Detected Interrupt bit in the Core Interrupt
-	 *	register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
-	 *	respectively).
-	 *	* 1'b0: Port not in Suspend mode
-	 *	* 1'b1: Port in Suspend mode
-	 * @prtres: Port Resume (PrtRes)
-	 *	The application sets this bit to drive resume signaling on
-	 *	the port. The core continues to drive the resume signal
-	 *	until the application clears this bit.
-	 *	If the core detects a USB remote wakeup sequence, as
-	 *	indicated by the Port Resume/Remote Wakeup Detected
-	 *	Interrupt bit of the Core Interrupt register
-	 *	(GINTSTS.WkUpInt), the core starts driving resume
-	 *	signaling without application intervention and clears this bit
-	 *	when it detects a disconnect condition. The read value of
-	 *	this bit indicates whether the core is currently driving
-	 *	resume signaling.
-	 *	* 1'b0: No resume driven
-	 *	* 1'b1: Resume driven
-	 * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
-	 *	The core sets this bit when the status of the Port
-	 *	Overcurrent Active bit (bit 4) in this register changes.
-	 * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
-	 *	Indicates the overcurrent condition of the port.
-	 *	* 1'b0: No overcurrent condition
-	 *	* 1'b1: Overcurrent condition
-	 * @prtenchng: Port Enable/Disable Change (PrtEnChng)
-	 *	The core sets this bit when the status of the Port Enable bit
-	 *	[2] of this register changes.
-	 * @prtena: Port Enable (PrtEna)
-	 *	A port is enabled only by the core after a reset sequence,
-	 *	and is disabled by an overcurrent condition, a disconnect
-	 *	condition, or by the application clearing this bit. The
-	 *	application cannot set this bit by a register write. It can only
-	 *	clear it to disable the port. This bit does not trigger any
-	 *	interrupt to the application.
-	 *	* 1'b0: Port disabled
-	 *	* 1'b1: Port enabled
-	 * @prtconndet: Port Connect Detected (PrtConnDet)
-	 *	The core sets this bit when a device connection is detected
-	 *	to trigger an interrupt to the application using the Host Port
-	 *	Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
-	 *	The application must write a 1 to this bit to clear the
-	 *	interrupt.
-	 * @prtconnsts: Port Connect Status (PrtConnSts)
-	 *	* 0: No device is attached to the port.
-	 *	* 1: A device is attached to the port.
-	 */
-	struct cvmx_usbcx_hprt_s {
-		uint32_t reserved_19_31	: 13;
-		uint32_t prtspd		: 2;
-		uint32_t prttstctl	: 4;
-		uint32_t prtpwr		: 1;
-		uint32_t prtlnsts	: 2;
-		uint32_t reserved_9_9	: 1;
-		uint32_t prtrst		: 1;
-		uint32_t prtsusp	: 1;
-		uint32_t prtres		: 1;
-		uint32_t prtovrcurrchng	: 1;
-		uint32_t prtovrcurract	: 1;
-		uint32_t prtenchng	: 1;
-		uint32_t prtena		: 1;
-		uint32_t prtconndet	: 1;
-		uint32_t prtconnsts	: 1;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hptxfsiz
- *
- * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
- *
- * This register holds the size and the memory start address of the Periodic
- * TxFIFO, as shown in Figures 310 and 311.
- */
-union cvmx_usbcx_hptxfsiz {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hptxfsiz_s
-	 * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
-	 *	This value is in terms of 32-bit words.
-	 *	* Minimum value is 16
-	 *	* Maximum value is 32768
-	 * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
-	 */
-	struct cvmx_usbcx_hptxfsiz_s {
-		uint32_t ptxfsize	: 16;
-		uint32_t ptxfstaddr	: 16;
-	} s;
-};
-
-/**
- * cvmx_usbc#_hptxsts
- *
- * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
- *
- * This read-only register contains the free space information for the Periodic
- * TxFIFO and the Periodic Transmit Request Queue
- */
-union cvmx_usbcx_hptxsts {
-	uint32_t u32;
-	/**
-	 * struct cvmx_usbcx_hptxsts_s
-	 * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
-	 *	This indicates the entry in the Periodic Tx Request Queue that
-	 *	is currently being processes by the MAC.
-	 *	This register is used for debugging.
-	 *	* Bit [31]: Odd/Even (micro)frame
-	 *	- 1'b0: send in even (micro)frame
-	 *	- 1'b1: send in odd (micro)frame
-	 *	* Bits [30:27]: Channel/endpoint number
-	 *	* Bits [26:25]: Type
-	 *	- 2'b00: IN/OUT
-	 *	- 2'b01: Zero-length packet
-	 *	- 2'b10: CSPLIT
-	 *	- 2'b11: Disable channel command
-	 *	* Bit [24]: Terminate (last entry for the selected
-	 *	channel/endpoint)
-	 * @ptxqspcavail: Periodic Transmit Request Queue Space Available
-	 *	(PTxQSpcAvail)
-	 *	Indicates the number of free locations available to be written
-	 *	in the Periodic Transmit Request Queue. This queue holds both
-	 *	IN and OUT requests.
-	 *	* 8'h0: Periodic Transmit Request Queue is full
-	 *	* 8'h1: 1 location available
-	 *	* 8'h2: 2 locations available
-	 *	* n: n locations available (0..8)
-	 *	* Others: Reserved
-	 * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
-	 *		  (PTxFSpcAvail)
-	 *	Indicates the number of free locations available to be written
-	 *	to in the Periodic TxFIFO.
-	 *	Values are in terms of 32-bit words
-	 *	* 16'h0: Periodic TxFIFO is full
-	 *	* 16'h1: 1 word available
-	 *	* 16'h2: 2 words available
-	 *	* 16'hn: n words available (where 0..32768)
-	 *	* 16'h8000: 32768 words available
-	 *	* Others: Reserved
-	 */
-	struct cvmx_usbcx_hptxsts_s {
-		uint32_t ptxqtop	: 8;
-		uint32_t ptxqspcavail	: 8;
-		uint32_t ptxfspcavail	: 16;
-	} s;
-};
-
-#endif
diff --git a/drivers/staging/octeon-usb/cvmx-usbnx-defs.h b/drivers/staging/octeon-usb/cvmx-usbnx-defs.h
deleted file mode 100644
index 6a1c777..0000000
--- a/drivers/staging/octeon-usb/cvmx-usbnx-defs.h
+++ /dev/null
@@ -1,343 +0,0 @@
-/***********************license start***************
- * Copyright (c) 2003-2010  Cavium Networks (support@xxxxxxxxxx). All rights
- * reserved.
- *
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met:
- *
- *   * Redistributions of source code must retain the above copyright
- *     notice, this list of conditions and the following disclaimer.
- *
- *   * Redistributions in binary form must reproduce the above
- *     copyright notice, this list of conditions and the following
- *     disclaimer in the documentation and/or other materials provided
- *     with the distribution.
-
- *   * Neither the name of Cavium Networks nor the names of
- *     its contributors may be used to endorse or promote products
- *     derived from this software without specific prior written
- *     permission.
-
- * This Software, including technical data, may be subject to U.S. export
- * control laws, including the U.S. Export Administration Act and its associated
- * regulations, and may be subject to export or import  regulations in other
- * countries.
-
- * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
- * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
- * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
- * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
- * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
- * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
- * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
- * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
- * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
- * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
- ***********************license end**************************************/
-
-
-/**
- * cvmx-usbnx-defs.h
- *
- * Configuration and status register (CSR) type definitions for
- * Octeon usbnx.
- *
- */
-#ifndef __CVMX_USBNX_TYPEDEFS_H__
-#define __CVMX_USBNX_TYPEDEFS_H__
-
-#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
-#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
-
-#define CVMX_USBNXREG1(reg, bid) \
-	(CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
-#define CVMX_USBNXREG2(reg, bid) \
-	(CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
-
-#define CVMX_USBNX_CLK_CTL(bid)		CVMX_USBNXREG1(0x10, bid)
-#define CVMX_USBNX_DMA0_INB_CHN0(bid)	CVMX_USBNXREG2(0x818, bid)
-#define CVMX_USBNX_DMA0_OUTB_CHN0(bid)	CVMX_USBNXREG2(0x858, bid)
-#define CVMX_USBNX_USBP_CTL_STATUS(bid)	CVMX_USBNXREG1(0x18, bid)
-
-/**
- * cvmx_usbn#_clk_ctl
- *
- * USBN_CLK_CTL = USBN's Clock Control
- *
- * This register is used to control the frequency of the hclk and the
- * hreset and phy_rst signals.
- */
-union cvmx_usbnx_clk_ctl {
-	uint64_t u64;
-	/**
-	 * struct cvmx_usbnx_clk_ctl_s
-	 * @divide2: The 'hclk' used by the USB subsystem is derived
-	 *	from the eclk.
-	 *	Also see the field DIVIDE. DIVIDE2<1> must currently
-	 *	be zero because it is not implemented, so the maximum
-	 *	ratio of eclk/hclk is currently 16.
-	 *	The actual divide number for hclk is:
-	 *	(DIVIDE2 + 1) * (DIVIDE + 1)
-	 * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
-	 *	generate the hclk in the USB Subsystem is held
-	 *	in reset. This bit must be set to '0' before
-	 *	changing the value os DIVIDE in this register.
-	 *	The reset to the HCLK_DIVIDERis also asserted
-	 *	when core reset is asserted.
-	 * @p_x_on: Force USB-PHY on during suspend.
-	 *	'1' USB-PHY XO block is powered-down during
-	 *	suspend.
-	 *	'0' USB-PHY XO block is powered-up during
-	 *	suspend.
-	 *	The value of this field must be set while POR is
-	 *	active.
-	 * @p_rtype: PHY reference clock type
-	 *	On CN50XX/CN52XX/CN56XX the values are:
-	 *		'0' The USB-PHY uses a 12MHz crystal as a clock source
-	 *		    at the USB_XO and USB_XI pins.
-	 *		'1' Reserved.
-	 *		'2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the
-	 *		    USB_XO pin. USB_XI should be tied to ground in this
-	 *		    case.
-	 *		'3' Reserved.
-	 *	On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are:
-	 *		'0' Reserved.
-	 *		'1' Reserved.
-	 *		'2' The PHY PLL uses the XO block output as a reference.
-	 *		    The XO block uses an external clock supplied on the
-	 *		    XO pin. USB_XI should be tied to ground for this
-	 *		    usage.
-	 *		'3' The XO block uses the clock from a crystal.
-	 * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
-	 *	remain powered in Suspend Mode.
-	 *	'1' The USB-PHY XO Bias, Bandgap and PLL are
-	 *	powered down in suspend mode.
-	 *	The value of this field must be set while POR is
-	 *	active.
-	 * @p_c_sel: Phy clock speed select.
-	 *	Selects the reference clock / crystal frequency.
-	 *	'11': Reserved
-	 *	'10': 48 MHz (reserved when a crystal is used)
-	 *	'01': 24 MHz (reserved when a crystal is used)
-	 *	'00': 12 MHz
-	 *	The value of this field must be set while POR is
-	 *	active.
-	 *	NOTE: if a crystal is used as a reference clock,
-	 *	this field must be set to 12 MHz.
-	 * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
-	 * @sd_mode: Scaledown mode for the USBC. Control timing events
-	 *	in the USBC, for normal operation this must be '0'.
-	 * @s_bist: Starts bist on the hclk memories, during the '0'
-	 *	to '1' transition.
-	 * @por: Power On Reset for the PHY.
-	 *	Resets all the PHYS registers and state machines.
-	 * @enable: When '1' allows the generation of the hclk. When
-	 *	'0' the hclk will not be generated. SEE DIVIDE
-	 *	field of this register.
-	 * @prst: When this field is '0' the reset associated with
-	 *	the phy_clk functionality in the USB Subsystem is
-	 *	help in reset. This bit should not be set to '1'
-	 *	until the time it takes 6 clocks (hclk or phy_clk,
-	 *	whichever is slower) has passed. Under normal
-	 *	operation once this bit is set to '1' it should not
-	 *	be set to '0'.
-	 * @hrst: When this field is '0' the reset associated with
-	 *	the hclk functioanlity in the USB Subsystem is
-	 *	held in reset.This bit should not be set to '1'
-	 *	until 12ms after phy_clk is stable. Under normal
-	 *	operation, once this bit is set to '1' it should
-	 *	not be set to '0'.
-	 * @divide: The frequency of 'hclk' used by the USB subsystem
-	 *	is the eclk frequency divided by the value of
-	 *	(DIVIDE2 + 1) * (DIVIDE + 1), also see the field
-	 *	DIVIDE2 of this register.
-	 *	The hclk frequency should be less than 125Mhz.
-	 *	After writing a value to this field the SW should
-	 *	read the field for the value written.
-	 *	The ENABLE field of this register should not be set
-	 *	until AFTER this field is set and then read.
-	 */
-	struct cvmx_usbnx_clk_ctl_s {
-		uint64_t reserved_20_63	: 44;
-		uint64_t divide2	: 2;
-		uint64_t hclk_rst	: 1;
-		uint64_t p_x_on		: 1;
-		uint64_t p_rtype	: 2;
-		uint64_t p_com_on	: 1;
-		uint64_t p_c_sel	: 2;
-		uint64_t cdiv_byp	: 1;
-		uint64_t sd_mode	: 2;
-		uint64_t s_bist		: 1;
-		uint64_t por		: 1;
-		uint64_t enable		: 1;
-		uint64_t prst		: 1;
-		uint64_t hrst		: 1;
-		uint64_t divide		: 3;
-	} s;
-};
-
-/**
- * cvmx_usbn#_usbp_ctl_status
- *
- * USBN_USBP_CTL_STATUS = USBP Control And Status Register
- *
- * Contains general control and status information for the USBN block.
- */
-union cvmx_usbnx_usbp_ctl_status {
-	uint64_t u64;
-	/**
-	 * struct cvmx_usbnx_usbp_ctl_status_s
-	 * @txrisetune: HS Transmitter Rise/Fall Time Adjustment
-	 * @txvreftune: HS DC Voltage Level Adjustment
-	 * @txfslstune: FS/LS Source Impedence Adjustment
-	 * @txhsxvtune: Transmitter High-Speed Crossover Adjustment
-	 * @sqrxtune: Squelch Threshold Adjustment
-	 * @compdistune: Disconnect Threshold Adjustment
-	 * @otgtune: VBUS Valid Threshold Adjustment
-	 * @otgdisable: OTG Block Disable
-	 * @portreset: Per_Port Reset
-	 * @drvvbus: Drive VBUS
-	 * @lsbist: Low-Speed BIST Enable.
-	 * @fsbist: Full-Speed BIST Enable.
-	 * @hsbist: High-Speed BIST Enable.
-	 * @bist_done: PHY Bist Done.
-	 *	Asserted at the end of the PHY BIST sequence.
-	 * @bist_err: PHY Bist Error.
-	 *	Indicates an internal error was detected during
-	 *	the BIST sequence.
-	 * @tdata_out: PHY Test Data Out.
-	 *	Presents either internaly generated signals or
-	 *	test register contents, based upon the value of
-	 *	test_data_out_sel.
-	 * @siddq: Drives the USBP (USB-PHY) SIDDQ input.
-	 *	Normally should be set to zero.
-	 *	When customers have no intent to use USB PHY
-	 *	interface, they should:
-	 *	- still provide 3.3V to USB_VDD33, and
-	 *	- tie USB_REXT to 3.3V supply, and
-	 *	- set USBN*_USBP_CTL_STATUS[SIDDQ]=1
-	 * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
-	 * @dma_bmode: When set to 1 the L2C DMA address will be updated
-	 *	with byte-counts between packets. When set to 0
-	 *	the L2C DMA address is incremented to the next
-	 *	4-byte aligned address after adding byte-count.
-	 * @usbc_end: Bigendian input to the USB Core. This should be
-	 *	set to '0' for operation.
-	 * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
-	 * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
-	 * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
-	 *	This signal enables the pull-down resistance on
-	 *	the D+ line. '1' pull down-resistance is connected
-	 *	to D+/ '0' pull down resistance is not connected
-	 *	to D+. When an A/B device is acting as a host
-	 *	(downstream-facing port), dp_pulldown and
-	 *	dm_pulldown are enabled. This must not toggle
-	 *	during normal opeartion.
-	 * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
-	 *	This signal enables the pull-down resistance on
-	 *	the D- line. '1' pull down-resistance is connected
-	 *	to D-. '0' pull down resistance is not connected
-	 *	to D-. When an A/B device is acting as a host
-	 *	(downstream-facing port), dp_pulldown and
-	 *	dm_pulldown are enabled. This must not toggle
-	 *	during normal opeartion.
-	 * @hst_mode: When '0' the USB is acting as HOST, when '1'
-	 *	USB is acting as device. This field needs to be
-	 *	set while the USB is in reset.
-	 * @tuning: Transmitter Tuning for High-Speed Operation.
-	 *	Tunes the current supply and rise/fall output
-	 *	times for high-speed operation.
-	 *	[20:19] == 11: Current supply increased
-	 *	approximately 9%
-	 *	[20:19] == 10: Current supply increased
-	 *	approximately 4.5%
-	 *	[20:19] == 01: Design default.
-	 *	[20:19] == 00: Current supply decreased
-	 *	approximately 4.5%
-	 *	[22:21] == 11: Rise and fall times are increased.
-	 *	[22:21] == 10: Design default.
-	 *	[22:21] == 01: Rise and fall times are decreased.
-	 *	[22:21] == 00: Rise and fall times are decreased
-	 *	further as compared to the 01 setting.
-	 * @tx_bs_enh: Transmit Bit Stuffing on [15:8].
-	 *	Enables or disables bit stuffing on data[15:8]
-	 *	when bit-stuffing is enabled.
-	 * @tx_bs_en: Transmit Bit Stuffing on [7:0].
-	 *	Enables or disables bit stuffing on data[7:0]
-	 *	when bit-stuffing is enabled.
-	 * @loop_enb: PHY Loopback Test Enable.
-	 *	'1': During data transmission the receive is
-	 *	enabled.
-	 *	'0': During data transmission the receive is
-	 *	disabled.
-	 *	Must be '0' for normal operation.
-	 * @vtest_enb: Analog Test Pin Enable.
-	 *	'1' The PHY's analog_test pin is enabled for the
-	 *	input and output of applicable analog test signals.
-	 *	'0' THe analog_test pin is disabled.
-	 * @bist_enb: Built-In Self Test Enable.
-	 *	Used to activate BIST in the PHY.
-	 * @tdata_sel: Test Data Out Select.
-	 *	'1' test_data_out[3:0] (PHY) register contents
-	 *	are output. '0' internaly generated signals are
-	 *	output.
-	 * @taddr_in: Mode Address for Test Interface.
-	 *	Specifies the register address for writing to or
-	 *	reading from the PHY test interface register.
-	 * @tdata_in: Internal Testing Register Input Data and Select
-	 *	This is a test bus. Data is present on [3:0],
-	 *	and its corresponding select (enable) is present
-	 *	on bits [7:4].
-	 * @ate_reset: Reset input from automatic test equipment.
-	 *	This is a test signal. When the USB Core is
-	 *	powered up (not in Susned Mode), an automatic
-	 *	tester can use this to disable phy_clock and
-	 *	free_clk, then re-eanable them with an aligned
-	 *	phase.
-	 *	'1': The phy_clk and free_clk outputs are
-	 *	disabled. "0": The phy_clock and free_clk outputs
-	 *	are available within a specific period after the
-	 *	de-assertion.
-	 */
-	struct cvmx_usbnx_usbp_ctl_status_s {
-		uint64_t txrisetune		: 1;
-		uint64_t txvreftune		: 4;
-		uint64_t txfslstune		: 4;
-		uint64_t txhsxvtune		: 2;
-		uint64_t sqrxtune		: 3;
-		uint64_t compdistune		: 3;
-		uint64_t otgtune		: 3;
-		uint64_t otgdisable		: 1;
-		uint64_t portreset		: 1;
-		uint64_t drvvbus		: 1;
-		uint64_t lsbist			: 1;
-		uint64_t fsbist			: 1;
-		uint64_t hsbist			: 1;
-		uint64_t bist_done		: 1;
-		uint64_t bist_err		: 1;
-		uint64_t tdata_out		: 4;
-		uint64_t siddq			: 1;
-		uint64_t txpreemphasistune	: 1;
-		uint64_t dma_bmode		: 1;
-		uint64_t usbc_end		: 1;
-		uint64_t usbp_bist		: 1;
-		uint64_t tclk			: 1;
-		uint64_t dp_pulld		: 1;
-		uint64_t dm_pulld		: 1;
-		uint64_t hst_mode		: 1;
-		uint64_t tuning			: 4;
-		uint64_t tx_bs_enh		: 1;
-		uint64_t tx_bs_en		: 1;
-		uint64_t loop_enb		: 1;
-		uint64_t vtest_enb		: 1;
-		uint64_t bist_enb		: 1;
-		uint64_t tdata_sel		: 1;
-		uint64_t taddr_in		: 4;
-		uint64_t tdata_in		: 8;
-		uint64_t ate_reset		: 1;
-	} s;
-};
-
-#endif
diff --git a/drivers/staging/octeon-usb/octeon-hcd.c b/drivers/staging/octeon-usb/octeon-hcd.c
index 2226c7d..da96461 100644
--- a/drivers/staging/octeon-usb/octeon-hcd.c
+++ b/drivers/staging/octeon-usb/octeon-hcd.c
@@ -66,8 +66,7 @@
 #include <asm/octeon/cvmx-sysinfo.h>
 #include <asm/octeon/cvmx-helper-board.h>
 
-#include "cvmx-usbcx-defs.h"
-#include "cvmx-usbnx-defs.h"
+#include "octeon-hcd.h"
 
 /**
  * enum cvmx_usb_speed - the possible USB device speeds
diff --git a/drivers/staging/octeon-usb/octeon-hcd.h b/drivers/staging/octeon-usb/octeon-hcd.h
new file mode 100644
index 0000000..42fe4fe
--- /dev/null
+++ b/drivers/staging/octeon-usb/octeon-hcd.h
@@ -0,0 +1,1819 @@
+/*
+ * Octeon HCD hardware register definitions.
+ *
+ * This file is subject to the terms and conditions of the GNU General Public
+ * License. See the file "COPYING" in the main directory of this archive
+ * for more details.
+ *
+ * Some parts of the code were originally released under BSD license:
+ *
+ * Copyright (c) 2003-2010 Cavium Networks (support@xxxxxxxxxx). All rights
+ * reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ *   * Redistributions of source code must retain the above copyright
+ *     notice, this list of conditions and the following disclaimer.
+ *
+ *   * Redistributions in binary form must reproduce the above
+ *     copyright notice, this list of conditions and the following
+ *     disclaimer in the documentation and/or other materials provided
+ *     with the distribution.
+ *
+ *   * Neither the name of Cavium Networks nor the names of
+ *     its contributors may be used to endorse or promote products
+ *     derived from this software without specific prior written
+ *     permission.
+ *
+ * This Software, including technical data, may be subject to U.S. export
+ * control laws, including the U.S. Export Administration Act and its associated
+ * regulations, and may be subject to export or import regulations in other
+ * countries.
+ *
+ * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
+ * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
+ * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
+ * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
+ * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
+ * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
+ * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
+ * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
+ * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
+ * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
+ */
+
+#ifndef __OCTEON_HCD_H__
+#define __OCTEON_HCD_H__
+
+#define CVMX_USBCXBASE 0x00016F0010000000ull
+#define CVMX_USBCXREG1(reg, bid) \
+	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
+	 ((bid) & 1) * 0x100000000000ull)
+#define CVMX_USBCXREG2(reg, bid, off) \
+	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
+	 (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
+
+#define CVMX_USBCX_GAHBCFG(bid)		CVMX_USBCXREG1(0x008, bid)
+#define CVMX_USBCX_GHWCFG3(bid)		CVMX_USBCXREG1(0x04c, bid)
+#define CVMX_USBCX_GINTMSK(bid)		CVMX_USBCXREG1(0x018, bid)
+#define CVMX_USBCX_GINTSTS(bid)		CVMX_USBCXREG1(0x014, bid)
+#define CVMX_USBCX_GNPTXFSIZ(bid)	CVMX_USBCXREG1(0x028, bid)
+#define CVMX_USBCX_GNPTXSTS(bid)	CVMX_USBCXREG1(0x02c, bid)
+#define CVMX_USBCX_GOTGCTL(bid)		CVMX_USBCXREG1(0x000, bid)
+#define CVMX_USBCX_GRSTCTL(bid)		CVMX_USBCXREG1(0x010, bid)
+#define CVMX_USBCX_GRXFSIZ(bid)		CVMX_USBCXREG1(0x024, bid)
+#define CVMX_USBCX_GRXSTSPH(bid)	CVMX_USBCXREG1(0x020, bid)
+#define CVMX_USBCX_GUSBCFG(bid)		CVMX_USBCXREG1(0x00c, bid)
+#define CVMX_USBCX_HAINT(bid)		CVMX_USBCXREG1(0x414, bid)
+#define CVMX_USBCX_HAINTMSK(bid)	CVMX_USBCXREG1(0x418, bid)
+#define CVMX_USBCX_HCCHARX(off, bid)	CVMX_USBCXREG2(0x500, bid, off)
+#define CVMX_USBCX_HCFG(bid)		CVMX_USBCXREG1(0x400, bid)
+#define CVMX_USBCX_HCINTMSKX(off, bid)	CVMX_USBCXREG2(0x50c, bid, off)
+#define CVMX_USBCX_HCINTX(off, bid)	CVMX_USBCXREG2(0x508, bid, off)
+#define CVMX_USBCX_HCSPLTX(off, bid)	CVMX_USBCXREG2(0x504, bid, off)
+#define CVMX_USBCX_HCTSIZX(off, bid)	CVMX_USBCXREG2(0x510, bid, off)
+#define CVMX_USBCX_HFIR(bid)		CVMX_USBCXREG1(0x404, bid)
+#define CVMX_USBCX_HFNUM(bid)		CVMX_USBCXREG1(0x408, bid)
+#define CVMX_USBCX_HPRT(bid)		CVMX_USBCXREG1(0x440, bid)
+#define CVMX_USBCX_HPTXFSIZ(bid)	CVMX_USBCXREG1(0x100, bid)
+#define CVMX_USBCX_HPTXSTS(bid)		CVMX_USBCXREG1(0x410, bid)
+
+#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
+#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
+
+#define CVMX_USBNXREG1(reg, bid) \
+	(CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
+#define CVMX_USBNXREG2(reg, bid) \
+	(CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
+
+#define CVMX_USBNX_CLK_CTL(bid)		CVMX_USBNXREG1(0x10, bid)
+#define CVMX_USBNX_DMA0_INB_CHN0(bid)	CVMX_USBNXREG2(0x818, bid)
+#define CVMX_USBNX_DMA0_OUTB_CHN0(bid)	CVMX_USBNXREG2(0x858, bid)
+#define CVMX_USBNX_USBP_CTL_STATUS(bid)	CVMX_USBNXREG1(0x18, bid)
+
+/**
+ * cvmx_usbc#_gahbcfg
+ *
+ * Core AHB Configuration Register (GAHBCFG)
+ *
+ * This register can be used to configure the core after power-on or a change in
+ * mode of operation. This register mainly contains AHB system-related
+ * configuration parameters. The AHB is the processor interface to the O2P USB
+ * core. In general, software need not know about this interface except to
+ * program the values as specified.
+ *
+ * The application must program this register as part of the O2P USB core
+ * initialization. Do not change this register after the initial programming.
+ */
+union cvmx_usbcx_gahbcfg {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_gahbcfg_s
+	 * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
+	 *	Software should set this bit to 0x1.
+	 *	Indicates when the Periodic TxFIFO Empty Interrupt bit in the
+	 *	Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
+	 *	bit is used only in Slave mode.
+	 *	* 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
+	 *	TxFIFO is half empty
+	 *	* 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
+	 *	TxFIFO is completely empty
+	 * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
+	 *	Software should set this bit to 0x1.
+	 *	Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
+	 *	the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
+	 *	This bit is used only in Slave mode.
+	 *	* 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
+	 *	Periodic TxFIFO is half empty
+	 *	* 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
+	 *	Periodic TxFIFO is completely empty
+	 * @dmaen: DMA Enable (DMAEn)
+	 *	* 1'b0: Core operates in Slave mode
+	 *	* 1'b1: Core operates in a DMA mode
+	 * @hbstlen: Burst Length/Type (HBstLen)
+	 *	This field has not effect and should be left as 0x0.
+	 * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
+	 *	Software should set this field to 0x1.
+	 *	The application uses this bit to mask or unmask the interrupt
+	 *	line assertion to itself. Irrespective of this bit's setting,
+	 *	the interrupt status registers are updated by the core.
+	 *	* 1'b0: Mask the interrupt assertion to the application.
+	 *	* 1'b1: Unmask the interrupt assertion to the application.
+	 */
+	struct cvmx_usbcx_gahbcfg_s {
+		uint32_t reserved_9_31	: 23;
+		uint32_t ptxfemplvl	: 1;
+		uint32_t nptxfemplvl	: 1;
+		uint32_t reserved_6_6	: 1;
+		uint32_t dmaen		: 1;
+		uint32_t hbstlen	: 4;
+		uint32_t glblintrmsk	: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_ghwcfg3
+ *
+ * User HW Config3 Register (GHWCFG3)
+ *
+ * This register contains the configuration options of the O2P USB core.
+ */
+union cvmx_usbcx_ghwcfg3 {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_ghwcfg3_s
+	 * @dfifodepth: DFIFO Depth (DfifoDepth)
+	 *	This value is in terms of 32-bit words.
+	 *	* Minimum value is 32
+	 *	* Maximum value is 32768
+	 * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
+	 *	Indicates whether AHB and PHY clocks are synchronous to
+	 *	each other.
+	 *	* 1'b0: No
+	 *	* 1'b1: Yes
+	 *	This bit is tied to 1.
+	 * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
+	 *	* 1'b0: Asynchronous reset is used in the core
+	 *	* 1'b1: Synchronous reset is used in the core
+	 * @optfeature: Optional Features Removed (OptFeature)
+	 *	Indicates whether the User ID register, GPIO interface ports,
+	 *	and SOF toggle and counter ports were removed for gate count
+	 *	optimization.
+	 * @vendor_control_interface_support: Vendor Control Interface Support
+	 *	* 1'b0: Vendor Control Interface is not available on the core.
+	 *	* 1'b1: Vendor Control Interface is available.
+	 * @i2c_selection: I2C Selection
+	 *	* 1'b0: I2C Interface is not available on the core.
+	 *	* 1'b1: I2C Interface is available on the core.
+	 * @otgen: OTG Function Enabled (OtgEn)
+	 *	The application uses this bit to indicate the O2P USB core's
+	 *	OTG capabilities.
+	 *	* 1'b0: Not OTG capable
+	 *	* 1'b1: OTG Capable
+	 * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
+	 *	* 3'b000: 4 bits
+	 *	* 3'b001: 5 bits
+	 *	* 3'b010: 6 bits
+	 *	* 3'b011: 7 bits
+	 *	* 3'b100: 8 bits
+	 *	* 3'b101: 9 bits
+	 *	* 3'b110: 10 bits
+	 *	* Others: Reserved
+	 * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
+	 *	* 4'b0000: 11 bits
+	 *	* 4'b0001: 12 bits
+	 *	- ...
+	 *	* 4'b1000: 19 bits
+	 *	* Others: Reserved
+	 */
+	struct cvmx_usbcx_ghwcfg3_s {
+		uint32_t dfifodepth				: 16;
+		uint32_t reserved_13_15				: 3;
+		uint32_t ahbphysync				: 1;
+		uint32_t rsttype				: 1;
+		uint32_t optfeature				: 1;
+		uint32_t vendor_control_interface_support	: 1;
+		uint32_t i2c_selection				: 1;
+		uint32_t otgen					: 1;
+		uint32_t pktsizewidth				: 3;
+		uint32_t xfersizewidth				: 4;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_gintmsk
+ *
+ * Core Interrupt Mask Register (GINTMSK)
+ *
+ * This register works with the Core Interrupt register to interrupt the
+ * application. When an interrupt bit is masked, the interrupt associated with
+ * that bit will not be generated. However, the Core Interrupt (GINTSTS)
+ * register bit corresponding to that interrupt will still be set.
+ * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
+ */
+union cvmx_usbcx_gintmsk {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_gintmsk_s
+	 * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
+	 *	(WkUpIntMsk)
+	 * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
+	 *	(SessReqIntMsk)
+	 * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
+	 * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
+	 * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
+	 * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
+	 * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
+	 * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
+	 * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
+	 *	Incomplete Isochronous OUT Transfer Mask
+	 *	(incompISOOUTMsk)
+	 * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
+	 *		    (incompISOINMsk)
+	 * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
+	 * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
+	 * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
+	 * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
+	 * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
+	 *	(ISOOutDropMsk)
+	 * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
+	 * @usbrstmsk: USB Reset Mask (USBRstMsk)
+	 * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
+	 * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
+	 * @i2cint: I2C Interrupt Mask (I2CINT)
+	 * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
+	 *	I2C Carkit Interrupt Mask (I2CCKINTMsk)
+	 * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
+	 * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
+	 *		  (GINNakEffMsk)
+	 * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
+	 * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
+	 * @sofmsk: Start of (micro)Frame Mask (SofMsk)
+	 * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
+	 * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
+	 */
+	struct cvmx_usbcx_gintmsk_s {
+		uint32_t wkupintmsk		: 1;
+		uint32_t sessreqintmsk		: 1;
+		uint32_t disconnintmsk		: 1;
+		uint32_t conidstschngmsk	: 1;
+		uint32_t reserved_27_27		: 1;
+		uint32_t ptxfempmsk		: 1;
+		uint32_t hchintmsk		: 1;
+		uint32_t prtintmsk		: 1;
+		uint32_t reserved_23_23		: 1;
+		uint32_t fetsuspmsk		: 1;
+		uint32_t incomplpmsk		: 1;
+		uint32_t incompisoinmsk		: 1;
+		uint32_t oepintmsk		: 1;
+		uint32_t inepintmsk		: 1;
+		uint32_t epmismsk		: 1;
+		uint32_t reserved_16_16		: 1;
+		uint32_t eopfmsk		: 1;
+		uint32_t isooutdropmsk		: 1;
+		uint32_t enumdonemsk		: 1;
+		uint32_t usbrstmsk		: 1;
+		uint32_t usbsuspmsk		: 1;
+		uint32_t erlysuspmsk		: 1;
+		uint32_t i2cint			: 1;
+		uint32_t ulpickintmsk		: 1;
+		uint32_t goutnakeffmsk		: 1;
+		uint32_t ginnakeffmsk		: 1;
+		uint32_t nptxfempmsk		: 1;
+		uint32_t rxflvlmsk		: 1;
+		uint32_t sofmsk			: 1;
+		uint32_t otgintmsk		: 1;
+		uint32_t modemismsk		: 1;
+		uint32_t reserved_0_0		: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_gintsts
+ *
+ * Core Interrupt Register (GINTSTS)
+ *
+ * This register interrupts the application for system-level events in the
+ * current mode of operation (Device mode or Host mode). It is shown in
+ * Interrupt. Some of the bits in this register are valid only in Host mode,
+ * while others are valid in Device mode only. This register also indicates the
+ * current mode of operation. In order to clear the interrupt status bits of
+ * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
+ * interrupts are read only; once software reads from or writes to the FIFO
+ * while servicing these interrupts, FIFO interrupt conditions are cleared
+ * automatically.
+ */
+union cvmx_usbcx_gintsts {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_gintsts_s
+	 * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
+	 *	In Device mode, this interrupt is asserted when a resume is
+	 *	detected on the USB. In Host mode, this interrupt is asserted
+	 *	when a remote wakeup is detected on the USB.
+	 *	For more information on how to use this interrupt, see "Partial
+	 *	Power-Down and Clock Gating Programming Model" on
+	 *	page 353.
+	 * @sessreqint: Session Request/New Session Detected Interrupt
+	 *		(SessReqInt)
+	 *	In Host mode, this interrupt is asserted when a session request
+	 *	is detected from the device. In Device mode, this interrupt is
+	 *	asserted when the utmiotg_bvalid signal goes high.
+	 *	For more information on how to use this interrupt, see "Partial
+	 *	Power-Down and Clock Gating Programming Model" on
+	 *	page 353.
+	 * @disconnint: Disconnect Detected Interrupt (DisconnInt)
+	 *	Asserted when a device disconnect is detected.
+	 * @conidstschng: Connector ID Status Change (ConIDStsChng)
+	 *	The core sets this bit when there is a change in connector ID
+	 *	status.
+	 * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
+	 *	Asserted when the Periodic Transmit FIFO is either half or
+	 *	completely empty and there is space for at least one entry to be
+	 *	written in the Periodic Request Queue. The half or completely
+	 *	empty status is determined by the Periodic TxFIFO Empty Level
+	 *	bit in the Core AHB Configuration register
+	 *	(GAHBCFG.PTxFEmpLvl).
+	 * @hchint: Host Channels Interrupt (HChInt)
+	 *	The core sets this bit to indicate that an interrupt is pending
+	 *	on one of the channels of the core (in Host mode). The
+	 *	application must read the Host All Channels Interrupt (HAINT)
+	 *	register to determine the exact number of the channel on which
+	 *	the interrupt occurred, and then read the corresponding Host
+	 *	Channel-n Interrupt (HCINTn) register to determine the exact
+	 *	cause of the interrupt. The application must clear the
+	 *	appropriate status bit in the HCINTn register to clear this bit.
+	 * @prtint: Host Port Interrupt (PrtInt)
+	 *	The core sets this bit to indicate a change in port status of
+	 *	one of the O2P USB core ports in Host mode. The application must
+	 *	read the Host Port Control and Status (HPRT) register to
+	 *	determine the exact event that caused this interrupt. The
+	 *	application must clear the appropriate status bit in the Host
+	 *	Port Control and Status register to clear this bit.
+	 * @fetsusp: Data Fetch Suspended (FetSusp)
+	 *	This interrupt is valid only in DMA mode. This interrupt
+	 *	indicates that the core has stopped fetching data for IN
+	 *	endpoints due to the unavailability of TxFIFO space or Request
+	 *	Queue space. This interrupt is used by the application for an
+	 *	endpoint mismatch algorithm.
+	 * @incomplp: Incomplete Periodic Transfer (incomplP)
+	 *	In Host mode, the core sets this interrupt bit when there are
+	 *	incomplete periodic transactions still pending which are
+	 *	scheduled for the current microframe.
+	 *	Incomplete Isochronous OUT Transfer (incompISOOUT)
+	 *	The Device mode, the core sets this interrupt to indicate that
+	 *	there is at least one isochronous OUT endpoint on which the
+	 *	transfer is not completed in the current microframe. This
+	 *	interrupt is asserted along with the End of Periodic Frame
+	 *	Interrupt (EOPF) bit in this register.
+	 * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
+	 *	The core sets this interrupt to indicate that there is at least
+	 *	one isochronous IN endpoint on which the transfer is not
+	 *	completed in the current microframe. This interrupt is asserted
+	 *	along with the End of Periodic Frame Interrupt (EOPF) bit in
+	 *	this register.
+	 * @oepint: OUT Endpoints Interrupt (OEPInt)
+	 *	The core sets this bit to indicate that an interrupt is pending
+	 *	on one of the OUT endpoints of the core (in Device mode). The
+	 *	application must read the Device All Endpoints Interrupt
+	 *	(DAINT) register to determine the exact number of the OUT
+	 *	endpoint on which the interrupt occurred, and then read the
+	 *	corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
+	 *	register to determine the exact cause of the interrupt. The
+	 *	application must clear the appropriate status bit in the
+	 *	corresponding DOEPINTn register to clear this bit.
+	 * @iepint: IN Endpoints Interrupt (IEPInt)
+	 *	The core sets this bit to indicate that an interrupt is pending
+	 *	on one of the IN endpoints of the core (in Device mode). The
+	 *	application must read the Device All Endpoints Interrupt
+	 *	(DAINT) register to determine the exact number of the IN
+	 *	endpoint on which the interrupt occurred, and then read the
+	 *	corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
+	 *	register to determine the exact cause of the interrupt. The
+	 *	application must clear the appropriate status bit in the
+	 *	corresponding DIEPINTn register to clear this bit.
+	 * @epmis: Endpoint Mismatch Interrupt (EPMis)
+	 *	Indicates that an IN token has been received for a non-periodic
+	 *	endpoint, but the data for another endpoint is present in the
+	 *	top of the Non-Periodic Transmit FIFO and the IN endpoint
+	 *	mismatch count programmed by the application has expired.
+	 * @eopf: End of Periodic Frame Interrupt (EOPF)
+	 *	Indicates that the period specified in the Periodic Frame
+	 *	Interval field of the Device Configuration register
+	 *	(DCFG.PerFrInt) has been reached in the current microframe.
+	 * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
+	 *	The core sets this bit when it fails to write an isochronous OUT
+	 *	packet into the RxFIFO because the RxFIFO doesn't have
+	 *	enough space to accommodate a maximum packet size packet
+	 *	for the isochronous OUT endpoint.
+	 * @enumdone: Enumeration Done (EnumDone)
+	 *	The core sets this bit to indicate that speed enumeration is
+	 *	complete. The application must read the Device Status (DSTS)
+	 *	register to obtain the enumerated speed.
+	 * @usbrst: USB Reset (USBRst)
+	 *	The core sets this bit to indicate that a reset is detected on
+	 *	the USB.
+	 * @usbsusp: USB Suspend (USBSusp)
+	 *	The core sets this bit to indicate that a suspend was detected
+	 *	on the USB. The core enters the Suspended state when there
+	 *	is no activity on the phy_line_state_i signal for an extended
+	 *	period of time.
+	 * @erlysusp: Early Suspend (ErlySusp)
+	 *	The core sets this bit to indicate that an Idle state has been
+	 *	detected on the USB for 3 ms.
+	 * @i2cint: I2C Interrupt (I2CINT)
+	 *	This bit is always 0x0.
+	 * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
+	 *	This bit is always 0x0.
+	 * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
+	 *	Indicates that the Set Global OUT NAK bit in the Device Control
+	 *	register (DCTL.SGOUTNak), set by the application, has taken
+	 *	effect in the core. This bit can be cleared by writing the Clear
+	 *	Global OUT NAK bit in the Device Control register
+	 *	(DCTL.CGOUTNak).
+	 * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
+	 *	Indicates that the Set Global Non-Periodic IN NAK bit in the
+	 *	Device Control register (DCTL.SGNPInNak), set by the
+	 *	application, has taken effect in the core. That is, the core has
+	 *	sampled the Global IN NAK bit set by the application. This bit
+	 *	can be cleared by clearing the Clear Global Non-Periodic IN
+	 *	NAK bit in the Device Control register (DCTL.CGNPInNak).
+	 *	This interrupt does not necessarily mean that a NAK handshake
+	 *	is sent out on the USB. The STALL bit takes precedence over
+	 *	the NAK bit.
+	 * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
+	 *	This interrupt is asserted when the Non-Periodic TxFIFO is
+	 *	either half or completely empty, and there is space for at least
+	 *	one entry to be written to the Non-Periodic Transmit Request
+	 *	Queue. The half or completely empty status is determined by
+	 *	the Non-Periodic TxFIFO Empty Level bit in the Core AHB
+	 *	Configuration register (GAHBCFG.NPTxFEmpLvl).
+	 * @rxflvl: RxFIFO Non-Empty (RxFLvl)
+	 *	Indicates that there is at least one packet pending to be read
+	 *	from the RxFIFO.
+	 * @sof: Start of (micro)Frame (Sof)
+	 *	In Host mode, the core sets this bit to indicate that an SOF
+	 *	(FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
+	 *	USB. The application must write a 1 to this bit to clear the
+	 *	interrupt.
+	 *	In Device mode, in the core sets this bit to indicate that an
+	 *	SOF token has been received on the USB. The application can read
+	 *	the Device Status register to get the current (micro)frame
+	 *	number. This interrupt is seen only when the core is operating
+	 *	at either HS or FS.
+	 * @otgint: OTG Interrupt (OTGInt)
+	 *	The core sets this bit to indicate an OTG protocol event. The
+	 *	application must read the OTG Interrupt Status (GOTGINT)
+	 *	register to determine the exact event that caused this
+	 *	interrupt. The application must clear the appropriate status bit
+	 *	in the GOTGINT register to clear this bit.
+	 * @modemis: Mode Mismatch Interrupt (ModeMis)
+	 *	The core sets this bit when the application is trying to access:
+	 *	* A Host mode register, when the core is operating in Device
+	 *	mode
+	 *	* A Device mode register, when the core is operating in Host
+	 *	mode
+	 *	The register access is completed on the AHB with an OKAY
+	 *	response, but is ignored by the core internally and doesn't
+	 *	affect the operation of the core.
+	 * @curmod: Current Mode of Operation (CurMod)
+	 *	Indicates the current mode of operation.
+	 *	* 1'b0: Device mode
+	 *	* 1'b1: Host mode
+	 */
+	struct cvmx_usbcx_gintsts_s {
+		uint32_t wkupint	: 1;
+		uint32_t sessreqint	: 1;
+		uint32_t disconnint	: 1;
+		uint32_t conidstschng	: 1;
+		uint32_t reserved_27_27	: 1;
+		uint32_t ptxfemp	: 1;
+		uint32_t hchint		: 1;
+		uint32_t prtint		: 1;
+		uint32_t reserved_23_23	: 1;
+		uint32_t fetsusp	: 1;
+		uint32_t incomplp	: 1;
+		uint32_t incompisoin	: 1;
+		uint32_t oepint		: 1;
+		uint32_t iepint		: 1;
+		uint32_t epmis		: 1;
+		uint32_t reserved_16_16	: 1;
+		uint32_t eopf		: 1;
+		uint32_t isooutdrop	: 1;
+		uint32_t enumdone	: 1;
+		uint32_t usbrst		: 1;
+		uint32_t usbsusp	: 1;
+		uint32_t erlysusp	: 1;
+		uint32_t i2cint		: 1;
+		uint32_t ulpickint	: 1;
+		uint32_t goutnakeff	: 1;
+		uint32_t ginnakeff	: 1;
+		uint32_t nptxfemp	: 1;
+		uint32_t rxflvl		: 1;
+		uint32_t sof		: 1;
+		uint32_t otgint		: 1;
+		uint32_t modemis	: 1;
+		uint32_t curmod		: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_gnptxfsiz
+ *
+ * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
+ *
+ * The application can program the RAM size and the memory start address for the
+ * Non-Periodic TxFIFO.
+ */
+union cvmx_usbcx_gnptxfsiz {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_gnptxfsiz_s
+	 * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
+	 *	This value is in terms of 32-bit words.
+	 *	Minimum value is 16
+	 *	Maximum value is 32768
+	 * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
+	 *	This field contains the memory start address for Non-Periodic
+	 *	Transmit FIFO RAM.
+	 */
+	struct cvmx_usbcx_gnptxfsiz_s {
+		uint32_t nptxfdep	: 16;
+		uint32_t nptxfstaddr	: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_gnptxsts
+ *
+ * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
+ *
+ * This read-only register contains the free space information for the
+ * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
+ */
+union cvmx_usbcx_gnptxsts {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_gnptxsts_s
+	 * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
+	 *	Entry in the Non-Periodic Tx Request Queue that is currently
+	 *	being processed by the MAC.
+	 *	* Bits [30:27]: Channel/endpoint number
+	 *	* Bits [26:25]:
+	 *	- 2'b00: IN/OUT token
+	 *	- 2'b01: Zero-length transmit packet (device IN/host OUT)
+	 *	- 2'b10: PING/CSPLIT token
+	 *	- 2'b11: Channel halt command
+	 *	* Bit [24]: Terminate (last entry for selected channel/endpoint)
+	 * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
+	 *	(NPTxQSpcAvail)
+	 *	Indicates the amount of free space available in the Non-
+	 *	Periodic Transmit Request Queue. This queue holds both IN
+	 *	and OUT requests in Host mode. Device mode has only IN
+	 *	requests.
+	 *	* 8'h0: Non-Periodic Transmit Request Queue is full
+	 *	* 8'h1: 1 location available
+	 *	* 8'h2: 2 locations available
+	 *	* n: n locations available (0..8)
+	 *	* Others: Reserved
+	 * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
+	 *	Indicates the amount of free space available in the Non-
+	 *	Periodic TxFIFO.
+	 *	Values are in terms of 32-bit words.
+	 *	* 16'h0: Non-Periodic TxFIFO is full
+	 *	* 16'h1: 1 word available
+	 *	* 16'h2: 2 words available
+	 *	* 16'hn: n words available (where 0..32768)
+	 *	* 16'h8000: 32768 words available
+	 *	* Others: Reserved
+	 */
+	struct cvmx_usbcx_gnptxsts_s {
+		uint32_t reserved_31_31	: 1;
+		uint32_t nptxqtop	: 7;
+		uint32_t nptxqspcavail	: 8;
+		uint32_t nptxfspcavail	: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_grstctl
+ *
+ * Core Reset Register (GRSTCTL)
+ *
+ * The application uses this register to reset various hardware features inside
+ * the core.
+ */
+union cvmx_usbcx_grstctl {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_grstctl_s
+	 * @ahbidle: AHB Master Idle (AHBIdle)
+	 *	Indicates that the AHB Master State Machine is in the IDLE
+	 *	condition.
+	 * @dmareq: DMA Request Signal (DMAReq)
+	 *	Indicates that the DMA request is in progress. Used for debug.
+	 * @txfnum: TxFIFO Number (TxFNum)
+	 *	This is the FIFO number that must be flushed using the TxFIFO
+	 *	Flush bit. This field must not be changed until the core clears
+	 *	the TxFIFO Flush bit.
+	 *	* 5'h0: Non-Periodic TxFIFO flush
+	 *	* 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
+	 *	TxFIFO flush in Host mode
+	 *	* 5'h2: Periodic TxFIFO 2 flush in Device mode
+	 *	- ...
+	 *	* 5'hF: Periodic TxFIFO 15 flush in Device mode
+	 *	* 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
+	 *	core
+	 * @txfflsh: TxFIFO Flush (TxFFlsh)
+	 *	This bit selectively flushes a single or all transmit FIFOs, but
+	 *	cannot do so if the core is in the midst of a transaction.
+	 *	The application must only write this bit after checking that the
+	 *	core is neither writing to the TxFIFO nor reading from the
+	 *	TxFIFO.
+	 *	The application must wait until the core clears this bit before
+	 *	performing any operations. This bit takes 8 clocks (of phy_clk
+	 *	or hclk, whichever is slower) to clear.
+	 * @rxfflsh: RxFIFO Flush (RxFFlsh)
+	 *	The application can flush the entire RxFIFO using this bit, but
+	 *	must first ensure that the core is not in the middle of a
+	 *	transaction.
+	 *	The application must only write to this bit after checking that
+	 *	the core is neither reading from the RxFIFO nor writing to the
+	 *	RxFIFO.
+	 *	The application must wait until the bit is cleared before
+	 *	performing any other operations. This bit will take 8 clocks
+	 *	(slowest of PHY or AHB clock) to clear.
+	 * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
+	 *	The application writes this bit to flush the IN Token Sequence
+	 *	Learning Queue.
+	 * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
+	 *	The application writes this bit to reset the (micro)frame number
+	 *	counter inside the core. When the (micro)frame counter is reset,
+	 *	the subsequent SOF sent out by the core will have a
+	 *	(micro)frame number of 0.
+	 * @hsftrst: HClk Soft Reset (HSftRst)
+	 *	The application uses this bit to flush the control logic in the
+	 *	AHB Clock domain. Only AHB Clock Domain pipelines are reset.
+	 *	* FIFOs are not flushed with this bit.
+	 *	* All state machines in the AHB clock domain are reset to the
+	 *	Idle state after terminating the transactions on the AHB,
+	 *	following the protocol.
+	 *	* CSR control bits used by the AHB clock domain state
+	 *	machines are cleared.
+	 *	* To clear this interrupt, status mask bits that control the
+	 *	interrupt status and are generated by the AHB clock domain
+	 *	state machine are cleared.
+	 *	* Because interrupt status bits are not cleared, the application
+	 *	can get the status of any core events that occurred after it set
+	 *	this bit.
+	 *	This is a self-clearing bit that the core clears after all
+	 *	necessary logic is reset in the core. This may take several
+	 *	clocks, depending on the core's current state.
+	 * @csftrst: Core Soft Reset (CSftRst)
+	 *	Resets the hclk and phy_clock domains as follows:
+	 *	* Clears the interrupts and all the CSR registers except the
+	 *	following register bits:
+	 *	- PCGCCTL.RstPdwnModule
+	 *	- PCGCCTL.GateHclk
+	 *	- PCGCCTL.PwrClmp
+	 *	- PCGCCTL.StopPPhyLPwrClkSelclk
+	 *	- GUSBCFG.PhyLPwrClkSel
+	 *	- GUSBCFG.DDRSel
+	 *	- GUSBCFG.PHYSel
+	 *	- GUSBCFG.FSIntf
+	 *	- GUSBCFG.ULPI_UTMI_Sel
+	 *	- GUSBCFG.PHYIf
+	 *	- HCFG.FSLSPclkSel
+	 *	- DCFG.DevSpd
+	 *	* All module state machines (except the AHB Slave Unit) are
+	 *	reset to the IDLE state, and all the transmit FIFOs and the
+	 *	receive FIFO are flushed.
+	 *	* Any transactions on the AHB Master are terminated as soon
+	 *	as possible, after gracefully completing the last data phase of
+	 *	an AHB transfer. Any transactions on the USB are terminated
+	 *	immediately.
+	 *	The application can write to this bit any time it wants to reset
+	 *	the core. This is a self-clearing bit and the core clears this
+	 *	bit after all the necessary logic is reset in the core, which
+	 *	may take several clocks, depending on the current state of the
+	 *	core. Once this bit is cleared software should wait at least 3
+	 *	PHY clocks before doing any access to the PHY domain
+	 *	(synchronization delay). Software should also should check that
+	 *	bit 31 of this register is 1 (AHB Master is IDLE) before
+	 *	starting any operation.
+	 *	Typically software reset is used during software development
+	 *	and also when you dynamically change the PHY selection bits
+	 *	in the USB configuration registers listed above. When you
+	 *	change the PHY, the corresponding clock for the PHY is
+	 *	selected and used in the PHY domain. Once a new clock is
+	 *	selected, the PHY domain has to be reset for proper operation.
+	 */
+	struct cvmx_usbcx_grstctl_s {
+		uint32_t ahbidle	: 1;
+		uint32_t dmareq		: 1;
+		uint32_t reserved_11_29	: 19;
+		uint32_t txfnum		: 5;
+		uint32_t txfflsh	: 1;
+		uint32_t rxfflsh	: 1;
+		uint32_t intknqflsh	: 1;
+		uint32_t frmcntrrst	: 1;
+		uint32_t hsftrst	: 1;
+		uint32_t csftrst	: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_grxfsiz
+ *
+ * Receive FIFO Size Register (GRXFSIZ)
+ *
+ * The application can program the RAM size that must be allocated to the
+ * RxFIFO.
+ */
+union cvmx_usbcx_grxfsiz {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_grxfsiz_s
+	 * @rxfdep: RxFIFO Depth (RxFDep)
+	 *	This value is in terms of 32-bit words.
+	 *	* Minimum value is 16
+	 *	* Maximum value is 32768
+	 */
+	struct cvmx_usbcx_grxfsiz_s {
+		uint32_t reserved_16_31	: 16;
+		uint32_t rxfdep		: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_grxstsph
+ *
+ * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
+ *
+ * A read to the Receive Status Read and Pop register returns and additionally
+ * pops the top data entry out of the RxFIFO.
+ * This Description is only valid when the core is in Host Mode. For Device Mode
+ * use USBC_GRXSTSPD instead.
+ * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
+ *	 same offset in the O2P USB core. The offset difference shown in this
+ *	 document is for software clarity and is actually ignored by the
+ *       hardware.
+ */
+union cvmx_usbcx_grxstsph {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_grxstsph_s
+	 * @pktsts: Packet Status (PktSts)
+	 *	Indicates the status of the received packet
+	 *	* 4'b0010: IN data packet received
+	 *	* 4'b0011: IN transfer completed (triggers an interrupt)
+	 *	* 4'b0101: Data toggle error (triggers an interrupt)
+	 *	* 4'b0111: Channel halted (triggers an interrupt)
+	 *	* Others: Reserved
+	 * @dpid: Data PID (DPID)
+	 *	* 2'b00: DATA0
+	 *	* 2'b10: DATA1
+	 *	* 2'b01: DATA2
+	 *	* 2'b11: MDATA
+	 * @bcnt: Byte Count (BCnt)
+	 *	Indicates the byte count of the received IN data packet
+	 * @chnum: Channel Number (ChNum)
+	 *	Indicates the channel number to which the current received
+	 *	packet belongs.
+	 */
+	struct cvmx_usbcx_grxstsph_s {
+		uint32_t reserved_21_31	: 11;
+		uint32_t pktsts		: 4;
+		uint32_t dpid		: 2;
+		uint32_t bcnt		: 11;
+		uint32_t chnum		: 4;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_gusbcfg
+ *
+ * Core USB Configuration Register (GUSBCFG)
+ *
+ * This register can be used to configure the core after power-on or a changing
+ * to Host mode or Device mode. It contains USB and USB-PHY related
+ * configuration parameters. The application must program this register before
+ * starting any transactions on either the AHB or the USB. Do not make changes
+ * to this register after the initial programming.
+ */
+union cvmx_usbcx_gusbcfg {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_gusbcfg_s
+	 * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
+	 *	This bit is always 0x0.
+	 * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
+	 *	Software should set this bit to 0x0.
+	 *	Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
+	 *	FS and LS modes, the PHY can usually operate on a 48-MHz
+	 *	clock to save power.
+	 *	* 1'b0: 480-MHz Internal PLL clock
+	 *	* 1'b1: 48-MHz External Clock
+	 *	In 480 MHz mode, the UTMI interface operates at either 60 or
+	 *	30-MHz, depending upon whether 8- or 16-bit data width is
+	 *	selected. In 48-MHz mode, the UTMI interface operates at 48
+	 *	MHz in FS mode and at either 48 or 6 MHz in LS mode
+	 *	(depending on the PHY vendor).
+	 *	This bit drives the utmi_fsls_low_power core output signal, and
+	 *	is valid only for UTMI+ PHYs.
+	 * @usbtrdtim: USB Turnaround Time (USBTrdTim)
+	 *	Sets the turnaround time in PHY clocks.
+	 *	Specifies the response time for a MAC request to the Packet
+	 *	FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
+	 *	This must be programmed to 0x5.
+	 * @hnpcap: HNP-Capable (HNPCap)
+	 *	This bit is always 0x0.
+	 * @srpcap: SRP-Capable (SRPCap)
+	 *	This bit is always 0x0.
+	 * @ddrsel: ULPI DDR Select (DDRSel)
+	 *	Software should set this bit to 0x0.
+	 * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
+	 *	Software should set this bit to 0x0.
+	 * @fsintf: Full-Speed Serial Interface Select (FSIntf)
+	 *	Software should set this bit to 0x0.
+	 * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
+	 *	This bit is always 0x0.
+	 * @phyif: PHY Interface (PHYIf)
+	 *	This bit is always 0x1.
+	 * @toutcal: HS/FS Timeout Calibration (TOutCal)
+	 *	The number of PHY clocks that the application programs in this
+	 *	field is added to the high-speed/full-speed interpacket timeout
+	 *	duration in the core to account for any additional delays
+	 *	introduced by the PHY. This may be required, since the delay
+	 *	introduced by the PHY in generating the linestate condition may
+	 *	vary from one PHY to another.
+	 *	The USB standard timeout value for high-speed operation is
+	 *	736 to 816 (inclusive) bit times. The USB standard timeout
+	 *	value for full-speed operation is 16 to 18 (inclusive) bit
+	 *	times. The application must program this field based on the
+	 *	speed of enumeration. The number of bit times added per PHY
+	 *	clock are:
+	 *	High-speed operation:
+	 *	* One 30-MHz PHY clock = 16 bit times
+	 *	* One 60-MHz PHY clock = 8 bit times
+	 *	Full-speed operation:
+	 *	* One 30-MHz PHY clock = 0.4 bit times
+	 *	* One 60-MHz PHY clock = 0.2 bit times
+	 *	* One 48-MHz PHY clock = 0.25 bit times
+	 */
+	struct cvmx_usbcx_gusbcfg_s {
+		uint32_t reserved_17_31	: 15;
+		uint32_t otgi2csel	: 1;
+		uint32_t phylpwrclksel	: 1;
+		uint32_t reserved_14_14	: 1;
+		uint32_t usbtrdtim	: 4;
+		uint32_t hnpcap		: 1;
+		uint32_t srpcap		: 1;
+		uint32_t ddrsel		: 1;
+		uint32_t physel		: 1;
+		uint32_t fsintf		: 1;
+		uint32_t ulpi_utmi_sel	: 1;
+		uint32_t phyif		: 1;
+		uint32_t toutcal	: 3;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_haint
+ *
+ * Host All Channels Interrupt Register (HAINT)
+ *
+ * When a significant event occurs on a channel, the Host All Channels Interrupt
+ * register interrupts the application using the Host Channels Interrupt bit of
+ * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
+ * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
+ * this register are set and cleared when the application sets and clears bits
+ * in the corresponding Host Channel-n Interrupt register.
+ */
+union cvmx_usbcx_haint {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_haint_s
+	 * @haint: Channel Interrupts (HAINT)
+	 *	One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
+	 */
+	struct cvmx_usbcx_haint_s {
+		uint32_t reserved_16_31	: 16;
+		uint32_t haint		: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_haintmsk
+ *
+ * Host All Channels Interrupt Mask Register (HAINTMSK)
+ *
+ * The Host All Channel Interrupt Mask register works with the Host All Channel
+ * Interrupt register to interrupt the application when an event occurs on a
+ * channel. There is one interrupt mask bit per channel, up to a maximum of 16
+ * bits.
+ * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
+ */
+union cvmx_usbcx_haintmsk {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_haintmsk_s
+	 * @haintmsk: Channel Interrupt Mask (HAINTMsk)
+	 *	One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
+	 */
+	struct cvmx_usbcx_haintmsk_s {
+		uint32_t reserved_16_31	: 16;
+		uint32_t haintmsk	: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hcchar#
+ *
+ * Host Channel-n Characteristics Register (HCCHAR)
+ *
+ */
+union cvmx_usbcx_hccharx {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hccharx_s
+	 * @chena: Channel Enable (ChEna)
+	 *	This field is set by the application and cleared by the OTG
+	 *	host.
+	 *	* 1'b0: Channel disabled
+	 *	* 1'b1: Channel enabled
+	 * @chdis: Channel Disable (ChDis)
+	 *	The application sets this bit to stop transmitting/receiving
+	 *	data on a channel, even before the transfer for that channel is
+	 *	complete. The application must wait for the Channel Disabled
+	 *	interrupt before treating the channel as disabled.
+	 * @oddfrm: Odd Frame (OddFrm)
+	 *	This field is set (reset) by the application to indicate that
+	 *	the OTG host must perform a transfer in an odd (micro)frame.
+	 *	This field is applicable for only periodic (isochronous and
+	 *	interrupt) transactions.
+	 *	* 1'b0: Even (micro)frame
+	 *	* 1'b1: Odd (micro)frame
+	 * @devaddr: Device Address (DevAddr)
+	 *	This field selects the specific device serving as the data
+	 *	source or sink.
+	 * @ec: Multi Count (MC) / Error Count (EC)
+	 *	When the Split Enable bit of the Host Channel-n Split Control
+	 *	register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
+	 *	to the host the number of transactions that should be executed
+	 *	per microframe for this endpoint.
+	 *	* 2'b00: Reserved. This field yields undefined results.
+	 *	* 2'b01: 1 transaction
+	 *	* 2'b10: 2 transactions to be issued for this endpoint per
+	 *	microframe
+	 *	* 2'b11: 3 transactions to be issued for this endpoint per
+	 *	microframe
+	 *	When HCSPLTn.SpltEna is set (1'b1), this field indicates the
+	 *	number of immediate retries to be performed for a periodic split
+	 *	transactions on transaction errors. This field must be set to at
+	 *	least 2'b01.
+	 * @eptype: Endpoint Type (EPType)
+	 *	Indicates the transfer type selected.
+	 *	* 2'b00: Control
+	 *	* 2'b01: Isochronous
+	 *	* 2'b10: Bulk
+	 *	* 2'b11: Interrupt
+	 * @lspddev: Low-Speed Device (LSpdDev)
+	 *	This field is set by the application to indicate that this
+	 *	channel is communicating to a low-speed device.
+	 * @epdir: Endpoint Direction (EPDir)
+	 *	Indicates whether the transaction is IN or OUT.
+	 *	* 1'b0: OUT
+	 *	* 1'b1: IN
+	 * @epnum: Endpoint Number (EPNum)
+	 *	Indicates the endpoint number on the device serving as the
+	 *	data source or sink.
+	 * @mps: Maximum Packet Size (MPS)
+	 *	Indicates the maximum packet size of the associated endpoint.
+	 */
+	struct cvmx_usbcx_hccharx_s {
+		uint32_t chena		: 1;
+		uint32_t chdis		: 1;
+		uint32_t oddfrm		: 1;
+		uint32_t devaddr	: 7;
+		uint32_t ec		: 2;
+		uint32_t eptype		: 2;
+		uint32_t lspddev	: 1;
+		uint32_t reserved_16_16	: 1;
+		uint32_t epdir		: 1;
+		uint32_t epnum		: 4;
+		uint32_t mps		: 11;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hcfg
+ *
+ * Host Configuration Register (HCFG)
+ *
+ * This register configures the core after power-on. Do not make changes to this
+ * register after initializing the host.
+ */
+union cvmx_usbcx_hcfg {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hcfg_s
+	 * @fslssupp: FS- and LS-Only Support (FSLSSupp)
+	 *	The application uses this bit to control the core's enumeration
+	 *	speed. Using this bit, the application can make the core
+	 *	enumerate as a FS host, even if the connected device supports
+	 *	HS traffic. Do not make changes to this field after initial
+	 *	programming.
+	 *	* 1'b0: HS/FS/LS, based on the maximum speed supported by
+	 *	the connected device
+	 *	* 1'b1: FS/LS-only, even if the connected device can support HS
+	 * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
+	 *	When the core is in FS Host mode
+	 *	* 2'b00: PHY clock is running at 30/60 MHz
+	 *	* 2'b01: PHY clock is running at 48 MHz
+	 *	* Others: Reserved
+	 *	When the core is in LS Host mode
+	 *	* 2'b00: PHY clock is running at 30/60 MHz. When the
+	 *	UTMI+/ULPI PHY Low Power mode is not selected, use
+	 *	30/60 MHz.
+	 *	* 2'b01: PHY clock is running at 48 MHz. When the UTMI+
+	 *	PHY Low Power mode is selected, use 48MHz if the PHY
+	 *	supplies a 48 MHz clock during LS mode.
+	 *	* 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
+	 *	use 6 MHz when the UTMI+ PHY Low Power mode is
+	 *	selected and the PHY supplies a 6 MHz clock during LS
+	 *	mode. If you select a 6 MHz clock during LS mode, you must
+	 *	do a soft reset.
+	 *	* 2'b11: Reserved
+	 */
+	struct cvmx_usbcx_hcfg_s {
+		uint32_t reserved_3_31	: 29;
+		uint32_t fslssupp	: 1;
+		uint32_t fslspclksel	: 2;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hcint#
+ *
+ * Host Channel-n Interrupt Register (HCINT)
+ *
+ * This register indicates the status of a channel with respect to USB- and
+ * AHB-related events. The application must read this register when the Host
+ * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
+ * set. Before the application can read this register, it must first read
+ * the Host All Channels Interrupt (HAINT) register to get the exact channel
+ * number for the Host Channel-n Interrupt register. The application must clear
+ * the appropriate bit in this register to clear the corresponding bits in the
+ * HAINT and GINTSTS registers.
+ */
+union cvmx_usbcx_hcintx {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hcintx_s
+	 * @datatglerr: Data Toggle Error (DataTglErr)
+	 * @frmovrun: Frame Overrun (FrmOvrun)
+	 * @bblerr: Babble Error (BblErr)
+	 * @xacterr: Transaction Error (XactErr)
+	 * @nyet: NYET Response Received Interrupt (NYET)
+	 * @ack: ACK Response Received Interrupt (ACK)
+	 * @nak: NAK Response Received Interrupt (NAK)
+	 * @stall: STALL Response Received Interrupt (STALL)
+	 * @ahberr: This bit is always 0x0.
+	 * @chhltd: Channel Halted (ChHltd)
+	 *	Indicates the transfer completed abnormally either because of
+	 *	any USB transaction error or in response to disable request by
+	 *	the application.
+	 * @xfercompl: Transfer Completed (XferCompl)
+	 *	Transfer completed normally without any errors.
+	 */
+	struct cvmx_usbcx_hcintx_s {
+		uint32_t reserved_11_31	: 21;
+		uint32_t datatglerr	: 1;
+		uint32_t frmovrun	: 1;
+		uint32_t bblerr		: 1;
+		uint32_t xacterr	: 1;
+		uint32_t nyet		: 1;
+		uint32_t ack		: 1;
+		uint32_t nak		: 1;
+		uint32_t stall		: 1;
+		uint32_t ahberr		: 1;
+		uint32_t chhltd		: 1;
+		uint32_t xfercompl	: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hcintmsk#
+ *
+ * Host Channel-n Interrupt Mask Register (HCINTMSKn)
+ *
+ * This register reflects the mask for each channel status described in the
+ * previous section.
+ * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
+ */
+union cvmx_usbcx_hcintmskx {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hcintmskx_s
+	 * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
+	 * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
+	 * @bblerrmsk: Babble Error Mask (BblErrMsk)
+	 * @xacterrmsk: Transaction Error Mask (XactErrMsk)
+	 * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
+	 * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
+	 * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
+	 * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
+	 * @ahberrmsk: AHB Error Mask (AHBErrMsk)
+	 * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
+	 * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
+	 */
+	struct cvmx_usbcx_hcintmskx_s {
+		uint32_t reserved_11_31	: 21;
+		uint32_t datatglerrmsk	: 1;
+		uint32_t frmovrunmsk	: 1;
+		uint32_t bblerrmsk	: 1;
+		uint32_t xacterrmsk	: 1;
+		uint32_t nyetmsk	: 1;
+		uint32_t ackmsk		: 1;
+		uint32_t nakmsk		: 1;
+		uint32_t stallmsk	: 1;
+		uint32_t ahberrmsk	: 1;
+		uint32_t chhltdmsk	: 1;
+		uint32_t xfercomplmsk	: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hcsplt#
+ *
+ * Host Channel-n Split Control Register (HCSPLT)
+ *
+ */
+union cvmx_usbcx_hcspltx {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hcspltx_s
+	 * @spltena: Split Enable (SpltEna)
+	 *	The application sets this field to indicate that this channel is
+	 *	enabled to perform split transactions.
+	 * @compsplt: Do Complete Split (CompSplt)
+	 *	The application sets this field to request the OTG host to
+	 *	perform a complete split transaction.
+	 * @xactpos: Transaction Position (XactPos)
+	 *	This field is used to determine whether to send all, first,
+	 *	middle, or last payloads with each OUT transaction.
+	 *	* 2'b11: All. This is the entire data payload is of this
+	 *	transaction (which is less than or equal to 188 bytes).
+	 *	* 2'b10: Begin. This is the first data payload of this
+	 *	transaction (which is larger than 188 bytes).
+	 *	* 2'b00: Mid. This is the middle payload of this transaction
+	 *	(which is larger than 188 bytes).
+	 *	* 2'b01: End. This is the last payload of this transaction
+	 *	(which is larger than 188 bytes).
+	 * @hubaddr: Hub Address (HubAddr)
+	 *	This field holds the device address of the transaction
+	 *	translator's hub.
+	 * @prtaddr: Port Address (PrtAddr)
+	 *	This field is the port number of the recipient transaction
+	 *	translator.
+	 */
+	struct cvmx_usbcx_hcspltx_s {
+		uint32_t spltena	: 1;
+		uint32_t reserved_17_30	: 14;
+		uint32_t compsplt	: 1;
+		uint32_t xactpos	: 2;
+		uint32_t hubaddr	: 7;
+		uint32_t prtaddr	: 7;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hctsiz#
+ *
+ * Host Channel-n Transfer Size Register (HCTSIZ)
+ *
+ */
+union cvmx_usbcx_hctsizx {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hctsizx_s
+	 * @dopng: Do Ping (DoPng)
+	 *	Setting this field to 1 directs the host to do PING protocol.
+	 * @pid: PID (Pid)
+	 *	The application programs this field with the type of PID to use
+	 *	for the initial transaction. The host will maintain this field
+	 *	for the rest of the transfer.
+	 *	* 2'b00: DATA0
+	 *	* 2'b01: DATA2
+	 *	* 2'b10: DATA1
+	 *	* 2'b11: MDATA (non-control)/SETUP (control)
+	 * @pktcnt: Packet Count (PktCnt)
+	 *	This field is programmed by the application with the expected
+	 *	number of packets to be transmitted (OUT) or received (IN).
+	 *	The host decrements this count on every successful
+	 *	transmission or reception of an OUT/IN packet. Once this count
+	 *	reaches zero, the application is interrupted to indicate normal
+	 *	completion.
+	 * @xfersize: Transfer Size (XferSize)
+	 *	For an OUT, this field is the number of data bytes the host will
+	 *	send during the transfer.
+	 *	For an IN, this field is the buffer size that the application
+	 *	has reserved for the transfer. The application is expected to
+	 *	program this field as an integer multiple of the maximum packet
+	 *	size for IN transactions (periodic and non-periodic).
+	 */
+	struct cvmx_usbcx_hctsizx_s {
+		uint32_t dopng		: 1;
+		uint32_t pid		: 2;
+		uint32_t pktcnt		: 10;
+		uint32_t xfersize	: 19;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hfir
+ *
+ * Host Frame Interval Register (HFIR)
+ *
+ * This register stores the frame interval information for the current speed to
+ * which the O2P USB core has enumerated.
+ */
+union cvmx_usbcx_hfir {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hfir_s
+	 * @frint: Frame Interval (FrInt)
+	 *	The value that the application programs to this field specifies
+	 *	the interval between two consecutive SOFs (FS) or micro-
+	 *	SOFs (HS) or Keep-Alive tokens (HS). This field contains the
+	 *	number of PHY clocks that constitute the required frame
+	 *	interval. The default value set in this field for a FS operation
+	 *	when the PHY clock frequency is 60 MHz. The application can
+	 *	write a value to this register only after the Port Enable bit of
+	 *	the Host Port Control and Status register (HPRT.PrtEnaPort)
+	 *	has been set. If no value is programmed, the core calculates
+	 *	the value based on the PHY clock specified in the FS/LS PHY
+	 *	Clock Select field of the Host Configuration register
+	 *	(HCFG.FSLSPclkSel). Do not change the value of this field
+	 *	after the initial configuration.
+	 *	* 125 us (PHY clock frequency for HS)
+	 *	* 1 ms (PHY clock frequency for FS/LS)
+	 */
+	struct cvmx_usbcx_hfir_s {
+		uint32_t reserved_16_31	: 16;
+		uint32_t frint		: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hfnum
+ *
+ * Host Frame Number/Frame Time Remaining Register (HFNUM)
+ *
+ * This register indicates the current frame number.
+ * It also indicates the time remaining (in terms of the number of PHY clocks)
+ * in the current (micro)frame.
+ */
+union cvmx_usbcx_hfnum {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hfnum_s
+	 * @frrem: Frame Time Remaining (FrRem)
+	 *	Indicates the amount of time remaining in the current
+	 *	microframe (HS) or frame (FS/LS), in terms of PHY clocks.
+	 *	This field decrements on each PHY clock. When it reaches
+	 *	zero, this field is reloaded with the value in the Frame
+	 *	Interval register and a new SOF is transmitted on the USB.
+	 * @frnum: Frame Number (FrNum)
+	 *	This field increments when a new SOF is transmitted on the
+	 *	USB, and is reset to 0 when it reaches 16'h3FFF.
+	 */
+	struct cvmx_usbcx_hfnum_s {
+		uint32_t frrem	: 16;
+		uint32_t frnum	: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hprt
+ *
+ * Host Port Control and Status Register (HPRT)
+ *
+ * This register is available in both Host and Device modes.
+ * Currently, the OTG Host supports only one port.
+ * A single register holds USB port-related information such as USB reset,
+ * enable, suspend, resume, connect status, and test mode for each port. The
+ * R_SS_WC bits in this register can trigger an interrupt to the application
+ * through the Host Port Interrupt bit of the Core Interrupt register
+ * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
+ * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
+ * the application must write a 1 to the bit to clear the interrupt.
+ */
+union cvmx_usbcx_hprt {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hprt_s
+	 * @prtspd: Port Speed (PrtSpd)
+	 *	Indicates the speed of the device attached to this port.
+	 *	* 2'b00: High speed
+	 *	* 2'b01: Full speed
+	 *	* 2'b10: Low speed
+	 *	* 2'b11: Reserved
+	 * @prttstctl: Port Test Control (PrtTstCtl)
+	 *	The application writes a nonzero value to this field to put
+	 *	the port into a Test mode, and the corresponding pattern is
+	 *	signaled on the port.
+	 *	* 4'b0000: Test mode disabled
+	 *	* 4'b0001: Test_J mode
+	 *	* 4'b0010: Test_K mode
+	 *	* 4'b0011: Test_SE0_NAK mode
+	 *	* 4'b0100: Test_Packet mode
+	 *	* 4'b0101: Test_Force_Enable
+	 *	* Others: Reserved
+	 *	PrtSpd must be zero (i.e. the interface must be in high-speed
+	 *	mode) to use the PrtTstCtl test modes.
+	 * @prtpwr: Port Power (PrtPwr)
+	 *	The application uses this field to control power to this port,
+	 *	and the core clears this bit on an overcurrent condition.
+	 *	* 1'b0: Power off
+	 *	* 1'b1: Power on
+	 * @prtlnsts: Port Line Status (PrtLnSts)
+	 *	Indicates the current logic level USB data lines
+	 *	* Bit [10]: Logic level of D-
+	 *	* Bit [11]: Logic level of D+
+	 * @prtrst: Port Reset (PrtRst)
+	 *	When the application sets this bit, a reset sequence is
+	 *	started on this port. The application must time the reset
+	 *	period and clear this bit after the reset sequence is
+	 *	complete.
+	 *	* 1'b0: Port not in reset
+	 *	* 1'b1: Port in reset
+	 *	The application must leave this bit set for at least a
+	 *	minimum duration mentioned below to start a reset on the
+	 *	port. The application can leave it set for another 10 ms in
+	 *	addition to the required minimum duration, before clearing
+	 *	the bit, even though there is no maximum limit set by the
+	 *	USB standard.
+	 *	* High speed: 50 ms
+	 *	* Full speed/Low speed: 10 ms
+	 * @prtsusp: Port Suspend (PrtSusp)
+	 *	The application sets this bit to put this port in Suspend
+	 *	mode. The core only stops sending SOFs when this is set.
+	 *	To stop the PHY clock, the application must set the Port
+	 *	Clock Stop bit, which will assert the suspend input pin of
+	 *	the PHY.
+	 *	The read value of this bit reflects the current suspend
+	 *	status of the port. This bit is cleared by the core after a
+	 *	remote wakeup signal is detected or the application sets
+	 *	the Port Reset bit or Port Resume bit in this register or the
+	 *	Resume/Remote Wakeup Detected Interrupt bit or
+	 *	Disconnect Detected Interrupt bit in the Core Interrupt
+	 *	register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
+	 *	respectively).
+	 *	* 1'b0: Port not in Suspend mode
+	 *	* 1'b1: Port in Suspend mode
+	 * @prtres: Port Resume (PrtRes)
+	 *	The application sets this bit to drive resume signaling on
+	 *	the port. The core continues to drive the resume signal
+	 *	until the application clears this bit.
+	 *	If the core detects a USB remote wakeup sequence, as
+	 *	indicated by the Port Resume/Remote Wakeup Detected
+	 *	Interrupt bit of the Core Interrupt register
+	 *	(GINTSTS.WkUpInt), the core starts driving resume
+	 *	signaling without application intervention and clears this bit
+	 *	when it detects a disconnect condition. The read value of
+	 *	this bit indicates whether the core is currently driving
+	 *	resume signaling.
+	 *	* 1'b0: No resume driven
+	 *	* 1'b1: Resume driven
+	 * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
+	 *	The core sets this bit when the status of the Port
+	 *	Overcurrent Active bit (bit 4) in this register changes.
+	 * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
+	 *	Indicates the overcurrent condition of the port.
+	 *	* 1'b0: No overcurrent condition
+	 *	* 1'b1: Overcurrent condition
+	 * @prtenchng: Port Enable/Disable Change (PrtEnChng)
+	 *	The core sets this bit when the status of the Port Enable bit
+	 *	[2] of this register changes.
+	 * @prtena: Port Enable (PrtEna)
+	 *	A port is enabled only by the core after a reset sequence,
+	 *	and is disabled by an overcurrent condition, a disconnect
+	 *	condition, or by the application clearing this bit. The
+	 *	application cannot set this bit by a register write. It can only
+	 *	clear it to disable the port. This bit does not trigger any
+	 *	interrupt to the application.
+	 *	* 1'b0: Port disabled
+	 *	* 1'b1: Port enabled
+	 * @prtconndet: Port Connect Detected (PrtConnDet)
+	 *	The core sets this bit when a device connection is detected
+	 *	to trigger an interrupt to the application using the Host Port
+	 *	Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
+	 *	The application must write a 1 to this bit to clear the
+	 *	interrupt.
+	 * @prtconnsts: Port Connect Status (PrtConnSts)
+	 *	* 0: No device is attached to the port.
+	 *	* 1: A device is attached to the port.
+	 */
+	struct cvmx_usbcx_hprt_s {
+		uint32_t reserved_19_31	: 13;
+		uint32_t prtspd		: 2;
+		uint32_t prttstctl	: 4;
+		uint32_t prtpwr		: 1;
+		uint32_t prtlnsts	: 2;
+		uint32_t reserved_9_9	: 1;
+		uint32_t prtrst		: 1;
+		uint32_t prtsusp	: 1;
+		uint32_t prtres		: 1;
+		uint32_t prtovrcurrchng	: 1;
+		uint32_t prtovrcurract	: 1;
+		uint32_t prtenchng	: 1;
+		uint32_t prtena		: 1;
+		uint32_t prtconndet	: 1;
+		uint32_t prtconnsts	: 1;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hptxfsiz
+ *
+ * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
+ *
+ * This register holds the size and the memory start address of the Periodic
+ * TxFIFO, as shown in Figures 310 and 311.
+ */
+union cvmx_usbcx_hptxfsiz {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hptxfsiz_s
+	 * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
+	 *	This value is in terms of 32-bit words.
+	 *	* Minimum value is 16
+	 *	* Maximum value is 32768
+	 * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
+	 */
+	struct cvmx_usbcx_hptxfsiz_s {
+		uint32_t ptxfsize	: 16;
+		uint32_t ptxfstaddr	: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbc#_hptxsts
+ *
+ * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
+ *
+ * This read-only register contains the free space information for the Periodic
+ * TxFIFO and the Periodic Transmit Request Queue
+ */
+union cvmx_usbcx_hptxsts {
+	uint32_t u32;
+	/**
+	 * struct cvmx_usbcx_hptxsts_s
+	 * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
+	 *	This indicates the entry in the Periodic Tx Request Queue that
+	 *	is currently being processes by the MAC.
+	 *	This register is used for debugging.
+	 *	* Bit [31]: Odd/Even (micro)frame
+	 *	- 1'b0: send in even (micro)frame
+	 *	- 1'b1: send in odd (micro)frame
+	 *	* Bits [30:27]: Channel/endpoint number
+	 *	* Bits [26:25]: Type
+	 *	- 2'b00: IN/OUT
+	 *	- 2'b01: Zero-length packet
+	 *	- 2'b10: CSPLIT
+	 *	- 2'b11: Disable channel command
+	 *	* Bit [24]: Terminate (last entry for the selected
+	 *	channel/endpoint)
+	 * @ptxqspcavail: Periodic Transmit Request Queue Space Available
+	 *	(PTxQSpcAvail)
+	 *	Indicates the number of free locations available to be written
+	 *	in the Periodic Transmit Request Queue. This queue holds both
+	 *	IN and OUT requests.
+	 *	* 8'h0: Periodic Transmit Request Queue is full
+	 *	* 8'h1: 1 location available
+	 *	* 8'h2: 2 locations available
+	 *	* n: n locations available (0..8)
+	 *	* Others: Reserved
+	 * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
+	 *		  (PTxFSpcAvail)
+	 *	Indicates the number of free locations available to be written
+	 *	to in the Periodic TxFIFO.
+	 *	Values are in terms of 32-bit words
+	 *	* 16'h0: Periodic TxFIFO is full
+	 *	* 16'h1: 1 word available
+	 *	* 16'h2: 2 words available
+	 *	* 16'hn: n words available (where 0..32768)
+	 *	* 16'h8000: 32768 words available
+	 *	* Others: Reserved
+	 */
+	struct cvmx_usbcx_hptxsts_s {
+		uint32_t ptxqtop	: 8;
+		uint32_t ptxqspcavail	: 8;
+		uint32_t ptxfspcavail	: 16;
+	} s;
+};
+
+/**
+ * cvmx_usbn#_clk_ctl
+ *
+ * USBN_CLK_CTL = USBN's Clock Control
+ *
+ * This register is used to control the frequency of the hclk and the
+ * hreset and phy_rst signals.
+ */
+union cvmx_usbnx_clk_ctl {
+	uint64_t u64;
+	/**
+	 * struct cvmx_usbnx_clk_ctl_s
+	 * @divide2: The 'hclk' used by the USB subsystem is derived
+	 *	from the eclk.
+	 *	Also see the field DIVIDE. DIVIDE2<1> must currently
+	 *	be zero because it is not implemented, so the maximum
+	 *	ratio of eclk/hclk is currently 16.
+	 *	The actual divide number for hclk is:
+	 *	(DIVIDE2 + 1) * (DIVIDE + 1)
+	 * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
+	 *	generate the hclk in the USB Subsystem is held
+	 *	in reset. This bit must be set to '0' before
+	 *	changing the value os DIVIDE in this register.
+	 *	The reset to the HCLK_DIVIDERis also asserted
+	 *	when core reset is asserted.
+	 * @p_x_on: Force USB-PHY on during suspend.
+	 *	'1' USB-PHY XO block is powered-down during
+	 *	suspend.
+	 *	'0' USB-PHY XO block is powered-up during
+	 *	suspend.
+	 *	The value of this field must be set while POR is
+	 *	active.
+	 * @p_rtype: PHY reference clock type
+	 *	On CN50XX/CN52XX/CN56XX the values are:
+	 *		'0' The USB-PHY uses a 12MHz crystal as a clock source
+	 *		    at the USB_XO and USB_XI pins.
+	 *		'1' Reserved.
+	 *		'2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the
+	 *		    USB_XO pin. USB_XI should be tied to ground in this
+	 *		    case.
+	 *		'3' Reserved.
+	 *	On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are:
+	 *		'0' Reserved.
+	 *		'1' Reserved.
+	 *		'2' The PHY PLL uses the XO block output as a reference.
+	 *		    The XO block uses an external clock supplied on the
+	 *		    XO pin. USB_XI should be tied to ground for this
+	 *		    usage.
+	 *		'3' The XO block uses the clock from a crystal.
+	 * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
+	 *	remain powered in Suspend Mode.
+	 *	'1' The USB-PHY XO Bias, Bandgap and PLL are
+	 *	powered down in suspend mode.
+	 *	The value of this field must be set while POR is
+	 *	active.
+	 * @p_c_sel: Phy clock speed select.
+	 *	Selects the reference clock / crystal frequency.
+	 *	'11': Reserved
+	 *	'10': 48 MHz (reserved when a crystal is used)
+	 *	'01': 24 MHz (reserved when a crystal is used)
+	 *	'00': 12 MHz
+	 *	The value of this field must be set while POR is
+	 *	active.
+	 *	NOTE: if a crystal is used as a reference clock,
+	 *	this field must be set to 12 MHz.
+	 * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
+	 * @sd_mode: Scaledown mode for the USBC. Control timing events
+	 *	in the USBC, for normal operation this must be '0'.
+	 * @s_bist: Starts bist on the hclk memories, during the '0'
+	 *	to '1' transition.
+	 * @por: Power On Reset for the PHY.
+	 *	Resets all the PHYS registers and state machines.
+	 * @enable: When '1' allows the generation of the hclk. When
+	 *	'0' the hclk will not be generated. SEE DIVIDE
+	 *	field of this register.
+	 * @prst: When this field is '0' the reset associated with
+	 *	the phy_clk functionality in the USB Subsystem is
+	 *	help in reset. This bit should not be set to '1'
+	 *	until the time it takes 6 clocks (hclk or phy_clk,
+	 *	whichever is slower) has passed. Under normal
+	 *	operation once this bit is set to '1' it should not
+	 *	be set to '0'.
+	 * @hrst: When this field is '0' the reset associated with
+	 *	the hclk functioanlity in the USB Subsystem is
+	 *	held in reset.This bit should not be set to '1'
+	 *	until 12ms after phy_clk is stable. Under normal
+	 *	operation, once this bit is set to '1' it should
+	 *	not be set to '0'.
+	 * @divide: The frequency of 'hclk' used by the USB subsystem
+	 *	is the eclk frequency divided by the value of
+	 *	(DIVIDE2 + 1) * (DIVIDE + 1), also see the field
+	 *	DIVIDE2 of this register.
+	 *	The hclk frequency should be less than 125Mhz.
+	 *	After writing a value to this field the SW should
+	 *	read the field for the value written.
+	 *	The ENABLE field of this register should not be set
+	 *	until AFTER this field is set and then read.
+	 */
+	struct cvmx_usbnx_clk_ctl_s {
+		uint64_t reserved_20_63	: 44;
+		uint64_t divide2	: 2;
+		uint64_t hclk_rst	: 1;
+		uint64_t p_x_on		: 1;
+		uint64_t p_rtype	: 2;
+		uint64_t p_com_on	: 1;
+		uint64_t p_c_sel	: 2;
+		uint64_t cdiv_byp	: 1;
+		uint64_t sd_mode	: 2;
+		uint64_t s_bist		: 1;
+		uint64_t por		: 1;
+		uint64_t enable		: 1;
+		uint64_t prst		: 1;
+		uint64_t hrst		: 1;
+		uint64_t divide		: 3;
+	} s;
+};
+
+/**
+ * cvmx_usbn#_usbp_ctl_status
+ *
+ * USBN_USBP_CTL_STATUS = USBP Control And Status Register
+ *
+ * Contains general control and status information for the USBN block.
+ */
+union cvmx_usbnx_usbp_ctl_status {
+	uint64_t u64;
+	/**
+	 * struct cvmx_usbnx_usbp_ctl_status_s
+	 * @txrisetune: HS Transmitter Rise/Fall Time Adjustment
+	 * @txvreftune: HS DC Voltage Level Adjustment
+	 * @txfslstune: FS/LS Source Impedence Adjustment
+	 * @txhsxvtune: Transmitter High-Speed Crossover Adjustment
+	 * @sqrxtune: Squelch Threshold Adjustment
+	 * @compdistune: Disconnect Threshold Adjustment
+	 * @otgtune: VBUS Valid Threshold Adjustment
+	 * @otgdisable: OTG Block Disable
+	 * @portreset: Per_Port Reset
+	 * @drvvbus: Drive VBUS
+	 * @lsbist: Low-Speed BIST Enable.
+	 * @fsbist: Full-Speed BIST Enable.
+	 * @hsbist: High-Speed BIST Enable.
+	 * @bist_done: PHY Bist Done.
+	 *	Asserted at the end of the PHY BIST sequence.
+	 * @bist_err: PHY Bist Error.
+	 *	Indicates an internal error was detected during
+	 *	the BIST sequence.
+	 * @tdata_out: PHY Test Data Out.
+	 *	Presents either internaly generated signals or
+	 *	test register contents, based upon the value of
+	 *	test_data_out_sel.
+	 * @siddq: Drives the USBP (USB-PHY) SIDDQ input.
+	 *	Normally should be set to zero.
+	 *	When customers have no intent to use USB PHY
+	 *	interface, they should:
+	 *	- still provide 3.3V to USB_VDD33, and
+	 *	- tie USB_REXT to 3.3V supply, and
+	 *	- set USBN*_USBP_CTL_STATUS[SIDDQ]=1
+	 * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
+	 * @dma_bmode: When set to 1 the L2C DMA address will be updated
+	 *	with byte-counts between packets. When set to 0
+	 *	the L2C DMA address is incremented to the next
+	 *	4-byte aligned address after adding byte-count.
+	 * @usbc_end: Bigendian input to the USB Core. This should be
+	 *	set to '0' for operation.
+	 * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
+	 * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
+	 * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
+	 *	This signal enables the pull-down resistance on
+	 *	the D+ line. '1' pull down-resistance is connected
+	 *	to D+/ '0' pull down resistance is not connected
+	 *	to D+. When an A/B device is acting as a host
+	 *	(downstream-facing port), dp_pulldown and
+	 *	dm_pulldown are enabled. This must not toggle
+	 *	during normal opeartion.
+	 * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
+	 *	This signal enables the pull-down resistance on
+	 *	the D- line. '1' pull down-resistance is connected
+	 *	to D-. '0' pull down resistance is not connected
+	 *	to D-. When an A/B device is acting as a host
+	 *	(downstream-facing port), dp_pulldown and
+	 *	dm_pulldown are enabled. This must not toggle
+	 *	during normal opeartion.
+	 * @hst_mode: When '0' the USB is acting as HOST, when '1'
+	 *	USB is acting as device. This field needs to be
+	 *	set while the USB is in reset.
+	 * @tuning: Transmitter Tuning for High-Speed Operation.
+	 *	Tunes the current supply and rise/fall output
+	 *	times for high-speed operation.
+	 *	[20:19] == 11: Current supply increased
+	 *	approximately 9%
+	 *	[20:19] == 10: Current supply increased
+	 *	approximately 4.5%
+	 *	[20:19] == 01: Design default.
+	 *	[20:19] == 00: Current supply decreased
+	 *	approximately 4.5%
+	 *	[22:21] == 11: Rise and fall times are increased.
+	 *	[22:21] == 10: Design default.
+	 *	[22:21] == 01: Rise and fall times are decreased.
+	 *	[22:21] == 00: Rise and fall times are decreased
+	 *	further as compared to the 01 setting.
+	 * @tx_bs_enh: Transmit Bit Stuffing on [15:8].
+	 *	Enables or disables bit stuffing on data[15:8]
+	 *	when bit-stuffing is enabled.
+	 * @tx_bs_en: Transmit Bit Stuffing on [7:0].
+	 *	Enables or disables bit stuffing on data[7:0]
+	 *	when bit-stuffing is enabled.
+	 * @loop_enb: PHY Loopback Test Enable.
+	 *	'1': During data transmission the receive is
+	 *	enabled.
+	 *	'0': During data transmission the receive is
+	 *	disabled.
+	 *	Must be '0' for normal operation.
+	 * @vtest_enb: Analog Test Pin Enable.
+	 *	'1' The PHY's analog_test pin is enabled for the
+	 *	input and output of applicable analog test signals.
+	 *	'0' THe analog_test pin is disabled.
+	 * @bist_enb: Built-In Self Test Enable.
+	 *	Used to activate BIST in the PHY.
+	 * @tdata_sel: Test Data Out Select.
+	 *	'1' test_data_out[3:0] (PHY) register contents
+	 *	are output. '0' internaly generated signals are
+	 *	output.
+	 * @taddr_in: Mode Address for Test Interface.
+	 *	Specifies the register address for writing to or
+	 *	reading from the PHY test interface register.
+	 * @tdata_in: Internal Testing Register Input Data and Select
+	 *	This is a test bus. Data is present on [3:0],
+	 *	and its corresponding select (enable) is present
+	 *	on bits [7:4].
+	 * @ate_reset: Reset input from automatic test equipment.
+	 *	This is a test signal. When the USB Core is
+	 *	powered up (not in Susned Mode), an automatic
+	 *	tester can use this to disable phy_clock and
+	 *	free_clk, then re-eanable them with an aligned
+	 *	phase.
+	 *	'1': The phy_clk and free_clk outputs are
+	 *	disabled. "0": The phy_clock and free_clk outputs
+	 *	are available within a specific period after the
+	 *	de-assertion.
+	 */
+	struct cvmx_usbnx_usbp_ctl_status_s {
+		uint64_t txrisetune		: 1;
+		uint64_t txvreftune		: 4;
+		uint64_t txfslstune		: 4;
+		uint64_t txhsxvtune		: 2;
+		uint64_t sqrxtune		: 3;
+		uint64_t compdistune		: 3;
+		uint64_t otgtune		: 3;
+		uint64_t otgdisable		: 1;
+		uint64_t portreset		: 1;
+		uint64_t drvvbus		: 1;
+		uint64_t lsbist			: 1;
+		uint64_t fsbist			: 1;
+		uint64_t hsbist			: 1;
+		uint64_t bist_done		: 1;
+		uint64_t bist_err		: 1;
+		uint64_t tdata_out		: 4;
+		uint64_t siddq			: 1;
+		uint64_t txpreemphasistune	: 1;
+		uint64_t dma_bmode		: 1;
+		uint64_t usbc_end		: 1;
+		uint64_t usbp_bist		: 1;
+		uint64_t tclk			: 1;
+		uint64_t dp_pulld		: 1;
+		uint64_t dm_pulld		: 1;
+		uint64_t hst_mode		: 1;
+		uint64_t tuning			: 4;
+		uint64_t tx_bs_enh		: 1;
+		uint64_t tx_bs_en		: 1;
+		uint64_t loop_enb		: 1;
+		uint64_t vtest_enb		: 1;
+		uint64_t bist_enb		: 1;
+		uint64_t tdata_sel		: 1;
+		uint64_t taddr_in		: 4;
+		uint64_t tdata_in		: 8;
+		uint64_t ate_reset		: 1;
+	} s;
+};
+
+#endif /* __OCTEON_HCD_H__ */
-- 
1.8.4.rc3

_______________________________________________
devel mailing list
devel@xxxxxxxxxxxxxxxxxxxxxx
http://driverdev.linuxdriverproject.org/mailman/listinfo/driverdev-devel




[Index of Archives]     [Linux Driver Backports]     [DMA Engine]     [Linux GPIO]     [Linux SPI]     [Video for Linux]     [Linux USB Devel]     [Linux Coverity]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [Yosemite Backpacking]
  Powered by Linux