[RFC/RFT 14/33] staging: r8188eu: Add files for new driver - part 14

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This commit adds files hal/rtl8188e_hal_init.c, hal/rtl8188e_mp.c,
hal/rtl8188e_phycfg.c, and hal/rtl8188e_rf6052.c.

Signed-off-by: Larry Finger <Larry.Finger@xxxxxxxxxxxx>
---
 drivers/staging/rtl8188eu/hal/rtl8188e_hal_init.c | 2378 +++++++++++++++++++++
 drivers/staging/rtl8188eu/hal/rtl8188e_mp.c       |  860 ++++++++
 drivers/staging/rtl8188eu/hal/rtl8188e_phycfg.c   | 1144 ++++++++++
 drivers/staging/rtl8188eu/hal/rtl8188e_rf6052.c   |  572 +++++
 4 files changed, 4954 insertions(+)
 create mode 100644 drivers/staging/rtl8188eu/hal/rtl8188e_hal_init.c
 create mode 100644 drivers/staging/rtl8188eu/hal/rtl8188e_mp.c
 create mode 100644 drivers/staging/rtl8188eu/hal/rtl8188e_phycfg.c
 create mode 100644 drivers/staging/rtl8188eu/hal/rtl8188e_rf6052.c

diff --git a/drivers/staging/rtl8188eu/hal/rtl8188e_hal_init.c b/drivers/staging/rtl8188eu/hal/rtl8188e_hal_init.c
new file mode 100644
index 0000000..292ba62
--- /dev/null
+++ b/drivers/staging/rtl8188eu/hal/rtl8188e_hal_init.c
@@ -0,0 +1,2378 @@
+/******************************************************************************
+ *
+ * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
+ *
+ *
+ ******************************************************************************/
+#define _HAL_INIT_C_
+
+#include <drv_types.h>
+#include <rtw_efuse.h>
+
+#include <rtl8188e_hal.h>
+
+#include <rtw_iol.h>
+
+#include <usb_ops.h>
+
+static void iol_mode_enable(struct adapter *padapter, u8 enable)
+{
+	u8 reg_0xf0 = 0;
+
+	if (enable) {
+		/* Enable initial offload */
+		reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
+		rtw_write8(padapter, REG_SYS_CFG, reg_0xf0|SW_OFFLOAD_EN);
+
+		if (!padapter->bFWReady) {
+			DBG_88E("bFWReady == false call reset 8051...\n");
+			_8051Reset88E(padapter);
+		}
+
+	} else {
+		/* disable initial offload */
+		reg_0xf0 = rtw_read8(padapter, REG_SYS_CFG);
+		rtw_write8(padapter, REG_SYS_CFG, reg_0xf0 & ~SW_OFFLOAD_EN);
+	}
+}
+
+static s32 iol_execute(struct adapter *padapter, u8 control)
+{
+	s32 status = _FAIL;
+	u8 reg_0x88 = 0;
+	u32 start = 0, passing_time = 0;
+
+	control = control&0x0f;
+	reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
+	rtw_write8(padapter, REG_HMEBOX_E0,  reg_0x88|control);
+
+	start = rtw_get_current_time();
+	while ((reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0)) & control &&
+	       (passing_time = rtw_get_passing_time_ms(start)) < 1000) {
+		;
+	}
+
+	reg_0x88 = rtw_read8(padapter, REG_HMEBOX_E0);
+	status = (reg_0x88 & control) ? _FAIL : _SUCCESS;
+	if (reg_0x88 & control<<4)
+		status = _FAIL;
+	return status;
+}
+
+static s32 iol_InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
+{
+	s32 rst = _SUCCESS;
+	iol_mode_enable(padapter, 1);
+	rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
+	rst = iol_execute(padapter, CMD_INIT_LLT);
+	iol_mode_enable(padapter, 0);
+	return rst;
+}
+
+static void
+efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
+{
+	u8 *efuseTbl = NULL;
+	u8 rtemp8;
+	u16	eFuse_Addr = 0;
+	u8 offset, wren;
+	u16	i, j;
+	u16	**eFuseWord = NULL;
+	u16	efuse_utilized = 0;
+	u8 u1temp = 0;
+
+	efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E);
+	if (efuseTbl == NULL) {
+		DBG_88E("%s: alloc efuseTbl fail!\n", __func__);
+		goto exit;
+	}
+
+	eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
+	if (eFuseWord == NULL) {
+		DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
+		goto exit;
+	}
+
+	/*  0. Refresh efuse init map as all oxFF. */
+	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
+		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
+			eFuseWord[i][j] = 0xFFFF;
+
+	/*  */
+	/*  1. Read the first byte to check if efuse is empty!!! */
+	/*  */
+	/*  */
+	rtemp8 = *(phymap+eFuse_Addr);
+	if (rtemp8 != 0xFF) {
+		efuse_utilized++;
+		eFuse_Addr++;
+	} else {
+		DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8);
+		goto exit;
+	}
+
+	/*  */
+	/*  2. Read real efuse content. Filter PG header and every section data. */
+	/*  */
+	while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
+		/*  Check PG header for section num. */
+		if ((rtemp8 & 0x1F) == 0x0F) {		/* extended header */
+			u1temp = ((rtemp8 & 0xE0) >> 5);
+			rtemp8 = *(phymap+eFuse_Addr);
+			if ((rtemp8 & 0x0F) == 0x0F) {
+				eFuse_Addr++;
+				rtemp8 = *(phymap+eFuse_Addr);
+
+				if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
+					eFuse_Addr++;
+				continue;
+			} else {
+				offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
+				wren = (rtemp8 & 0x0F);
+				eFuse_Addr++;
+			}
+		} else {
+			offset = ((rtemp8 >> 4) & 0x0f);
+			wren = (rtemp8 & 0x0f);
+		}
+
+		if (offset < EFUSE_MAX_SECTION_88E) {
+			/*  Get word enable value from PG header */
+			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
+				/*  Check word enable condition in the section */
+				if (!(wren & 0x01)) {
+					rtemp8 = *(phymap+eFuse_Addr);
+					eFuse_Addr++;
+					efuse_utilized++;
+					eFuseWord[offset][i] = (rtemp8 & 0xff);
+					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
+						break;
+					rtemp8 = *(phymap+eFuse_Addr);
+					eFuse_Addr++;
+					efuse_utilized++;
+					eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
+
+					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
+						break;
+				}
+				wren >>= 1;
+			}
+		}
+		/*  Read next PG header */
+		rtemp8 = *(phymap+eFuse_Addr);
+
+		if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
+			efuse_utilized++;
+			eFuse_Addr++;
+		}
+	}
+
+	/*  */
+	/*  3. Collect 16 sections and 4 word unit into Efuse map. */
+	/*  */
+	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
+		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
+			efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff);
+			efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff);
+		}
+	}
+
+	/*  */
+	/*  4. Copy from Efuse map to output pointer memory!!! */
+	/*  */
+	for (i = 0; i < _size_byte; i++)
+		pbuf[i] = efuseTbl[_offset+i];
+
+	/*  */
+	/*  5. Calculate Efuse utilization. */
+	/*  */
+
+exit:
+	kfree(efuseTbl);
+
+	if (eFuseWord)
+		rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
+}
+
+static void efuse_read_phymap_from_txpktbuf(
+	struct adapter  *adapter,
+	int bcnhead,	/* beacon head, where FW store len(2-byte) and efuse physical map. */
+	u8 *content,	/* buffer to store efuse physical map */
+	u16 *size	/* for efuse content: the max byte to read. will update to byte read */
+	)
+{
+	u16 dbg_addr = 0;
+	u32 start  = 0, passing_time = 0;
+	u8 reg_0x143 = 0;
+	u32 lo32 = 0, hi32 = 0;
+	u16 len = 0, count = 0;
+	int i = 0;
+	u16 limit = *size;
+
+	u8 *pos = content;
+
+	if (bcnhead < 0) /* if not valid */
+		bcnhead = rtw_read8(adapter, REG_TDECTRL+1);
+
+	DBG_88E("%s bcnhead:%d\n", __func__, bcnhead);
+
+	rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
+
+	dbg_addr = bcnhead*128/8; /* 8-bytes addressing */
+
+	while (1) {
+		rtw_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
+
+		rtw_write8(adapter, REG_TXPKTBUF_DBG, 0);
+		start = rtw_get_current_time();
+		while (!(reg_0x143 = rtw_read8(adapter, REG_TXPKTBUF_DBG)) &&
+		       (passing_time = rtw_get_passing_time_ms(start)) < 1000) {
+			DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, rtw_read8(adapter, 0x106));
+			rtw_usleep_os(100);
+		}
+
+		lo32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_L);
+		hi32 = rtw_read32(adapter, REG_PKTBUF_DBG_DATA_H);
+
+		if (i == 0) {
+			u8 lenc[2];
+			u16 lenbak, aaabak;
+			u16 aaa;
+			lenc[0] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L);
+			lenc[1] = rtw_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
+
+			aaabak = le16_to_cpup((__le16 *)lenc);
+			lenbak = le16_to_cpu(*((__le16 *)lenc));
+			aaa = le16_to_cpup((__le16 *)&lo32);
+			len = le16_to_cpu(*((__le16 *)&lo32));
+
+			limit = (len-2 < limit) ? len-2 : limit;
+
+			DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);
+
+			memcpy(pos, ((u8 *)&lo32)+2, (limit >= count+2) ? 2 : limit-count);
+			count += (limit >= count+2) ? 2 : limit-count;
+			pos = content+count;
+
+		} else {
+			memcpy(pos, ((u8 *)&lo32), (limit >= count+4) ? 4 : limit-count);
+			count += (limit >= count+4) ? 4 : limit-count;
+			pos = content+count;
+		}
+
+		if (limit > count && len-2 > count) {
+			memcpy(pos, (u8 *)&hi32, (limit >= count+4) ? 4 : limit-count);
+			count += (limit >= count+4) ? 4 : limit-count;
+			pos = content+count;
+		}
+
+		if (limit <= count || len-2 <= count)
+			break;
+		i++;
+	}
+	rtw_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
+	DBG_88E("%s read count:%u\n", __func__, count);
+	*size = count;
+}
+
+static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
+{
+	s32 status = _FAIL;
+	u8 physical_map[512];
+	u16 size = 512;
+
+	rtw_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
+	_rtw_memset(physical_map, 0xFF, 512);
+	rtw_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
+	status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
+	if (status == _SUCCESS)
+		efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
+	efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
+	return status;
+}
+
+s32 rtl8188e_iol_efuse_patch(struct adapter *padapter)
+{
+	s32	result = _SUCCESS;
+
+	DBG_88E("==> %s\n", __func__);
+	if (rtw_IOL_applied(padapter)) {
+		iol_mode_enable(padapter, 1);
+		result = iol_execute(padapter, CMD_READ_EFUSE_MAP);
+		if (result == _SUCCESS)
+			result = iol_execute(padapter, CMD_EFUSE_PATCH);
+
+		iol_mode_enable(padapter, 0);
+	}
+	return result;
+}
+
+static s32 iol_ioconfig(struct adapter *padapter, u8 iocfg_bndy)
+{
+	s32 rst = _SUCCESS;
+
+	rtw_write8(padapter, REG_TDECTRL+1, iocfg_bndy);
+	rst = iol_execute(padapter, CMD_IOCONFIG);
+	return rst;
+}
+
+static int rtl8188e_IOL_exec_cmds_sync(struct adapter *adapter, struct xmit_frame *xmit_frame, u32 max_wating_ms, u32 bndy_cnt)
+{
+	struct pkt_attrib *pattrib = &xmit_frame->attrib;
+	u8 i;
+	int ret = _FAIL;
+
+	if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
+		goto exit;
+	if (rtw_usb_bulk_size_boundary(adapter, TXDESC_SIZE+pattrib->last_txcmdsz)) {
+		if (rtw_IOL_append_END_cmd(xmit_frame) != _SUCCESS)
+			goto exit;
+	}
+
+	dump_mgntframe_and_wait(adapter, xmit_frame, max_wating_ms);
+
+	iol_mode_enable(adapter, 1);
+	for (i = 0; i < bndy_cnt; i++) {
+		u8 page_no = 0;
+		page_no = i*2;
+		ret = iol_ioconfig(adapter, page_no);
+		if (ret != _SUCCESS)
+			break;
+	}
+	iol_mode_enable(adapter, 0);
+exit:
+	/* restore BCN_HEAD */
+	rtw_write8(adapter, REG_TDECTRL+1, 0);
+	return ret;
+}
+
+void rtw_IOL_cmd_tx_pkt_buf_dump(struct adapter *Adapter, int data_len)
+{
+	u32 fifo_data, reg_140;
+	u32 addr, rstatus, loop = 0;
+	u16 data_cnts = (data_len/8)+1;
+	u8 *pbuf = rtw_zvmalloc(data_len+10);
+	DBG_88E("###### %s ######\n", __func__);
+
+	rtw_write8(Adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
+	if (pbuf) {
+		for (addr = 0; addr < data_cnts; addr++) {
+			rtw_write32(Adapter, 0x140, addr);
+			rtw_usleep_os(2);
+			loop = 0;
+			do {
+				rstatus = (reg_140 = rtw_read32(Adapter, REG_PKTBUF_DBG_CTRL)&BIT24);
+				if (rstatus) {
+					fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_L);
+					memcpy(pbuf+(addr*8), &fifo_data, 4);
+
+					fifo_data = rtw_read32(Adapter, REG_PKTBUF_DBG_DATA_H);
+					memcpy(pbuf+(addr*8+4), &fifo_data, 4);
+				}
+				rtw_usleep_os(2);
+			} while (!rstatus && (loop++ < 10));
+		}
+		rtw_IOL_cmd_buf_dump(Adapter, data_len, pbuf);
+		rtw_vmfree(pbuf, data_len+10);
+	}
+	DBG_88E("###### %s ######\n", __func__);
+}
+
+static void _FWDownloadEnable(struct adapter *padapter, bool enable)
+{
+	u8 tmp;
+
+	if (enable) {
+		/*  MCU firmware download enable. */
+		tmp = rtw_read8(padapter, REG_MCUFWDL);
+		rtw_write8(padapter, REG_MCUFWDL, tmp | 0x01);
+
+		/*  8051 reset */
+		tmp = rtw_read8(padapter, REG_MCUFWDL+2);
+		rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
+	} else {
+		/*  MCU firmware download disable. */
+		tmp = rtw_read8(padapter, REG_MCUFWDL);
+		rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
+
+		/*  Reserved for fw extension. */
+		rtw_write8(padapter, REG_MCUFWDL+1, 0x00);
+	}
+}
+
+#define MAX_REG_BOLCK_SIZE	196
+
+static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
+{
+	int ret = _SUCCESS;
+	u32	blockSize_p1 = 4;	/*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
+	u32	blockSize_p2 = 8;	/*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
+	u32	blockSize_p3 = 1;	/*  Phase #3 : Use 1-byte, the remnant of FW image. */
+	u32	blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
+	u32	remainSize_p1 = 0, remainSize_p2 = 0;
+	u8 *bufferPtr	= (u8 *)buffer;
+	u32	i = 0, offset = 0;
+
+	blockSize_p1 = MAX_REG_BOLCK_SIZE;
+
+	/* 3 Phase #1 */
+	blockCount_p1 = buffSize / blockSize_p1;
+	remainSize_p1 = buffSize % blockSize_p1;
+
+	if (blockCount_p1) {
+		RT_TRACE(_module_hal_init_c_, _drv_notice_,
+			 ("_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
+			 buffSize, blockSize_p1, blockCount_p1, remainSize_p1));
+	}
+
+	for (i = 0; i < blockCount_p1; i++) {
+		ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + i * blockSize_p1), blockSize_p1, (bufferPtr + i * blockSize_p1));
+		if (ret == _FAIL)
+			goto exit;
+	}
+
+	/* 3 Phase #2 */
+	if (remainSize_p1) {
+		offset = blockCount_p1 * blockSize_p1;
+
+		blockCount_p2 = remainSize_p1/blockSize_p2;
+		remainSize_p2 = remainSize_p1%blockSize_p2;
+
+		if (blockCount_p2) {
+				RT_TRACE(_module_hal_init_c_, _drv_notice_,
+					 ("_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
+					 (buffSize-offset), blockSize_p2 , blockCount_p2, remainSize_p2));
+		}
+
+		for (i = 0; i < blockCount_p2; i++) {
+			ret = rtw_writeN(padapter, (FW_8188E_START_ADDRESS + offset + i*blockSize_p2), blockSize_p2, (bufferPtr + offset + i*blockSize_p2));
+
+			if (ret == _FAIL)
+				goto exit;
+		}
+	}
+
+	/* 3 Phase #3 */
+	if (remainSize_p2) {
+		offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
+
+		blockCount_p3 = remainSize_p2 / blockSize_p3;
+
+		RT_TRACE(_module_hal_init_c_, _drv_notice_,
+			 ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
+			 (buffSize-offset), blockSize_p3, blockCount_p3));
+
+		for (i = 0; i < blockCount_p3; i++) {
+			ret = rtw_write8(padapter, (FW_8188E_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
+
+			if (ret == _FAIL)
+				goto exit;
+		}
+	}
+
+exit:
+	return ret;
+}
+
+static int _PageWrite(struct adapter *padapter, u32 page, void *buffer, u32 size)
+{
+	u8 value8;
+	u8 u8Page = (u8)(page & 0x07);
+
+	value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
+	rtw_write8(padapter, REG_MCUFWDL+2, value8);
+
+	return _BlockWrite(padapter, buffer, size);
+}
+
+static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
+{
+	/*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
+	/*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
+	int ret = _SUCCESS;
+	u32	pageNums, remainSize;
+	u32	page, offset;
+	u8 *bufferPtr = (u8 *)buffer;
+
+	pageNums = size / MAX_PAGE_SIZE;
+	remainSize = size % MAX_PAGE_SIZE;
+
+	for (page = 0; page < pageNums; page++) {
+		offset = page * MAX_PAGE_SIZE;
+		ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_PAGE_SIZE);
+
+		if (ret == _FAIL)
+			goto exit;
+	}
+	if (remainSize) {
+		offset = pageNums * MAX_PAGE_SIZE;
+		page = pageNums;
+		ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
+
+		if (ret == _FAIL)
+			goto exit;
+	}
+	RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
+exit:
+	return ret;
+}
+
+void _8051Reset88E(struct adapter *padapter)
+{
+	u8 u1bTmp;
+
+	u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
+	rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
+	rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp|(BIT2));
+	DBG_88E("=====> _8051Reset88E(): 8051 reset success .\n");
+}
+
+static s32 _FWFreeToGo(struct adapter *padapter)
+{
+	u32	counter = 0;
+	u32	value32;
+
+	/*  polling CheckSum report */
+	do {
+		value32 = rtw_read32(padapter, REG_MCUFWDL);
+		if (value32 & FWDL_ChkSum_rpt)
+			break;
+	} while (counter++ < POLLING_READY_TIMEOUT_COUNT);
+
+	if (counter >= POLLING_READY_TIMEOUT_COUNT) {
+		DBG_88E("%s: chksum report fail! REG_MCUFWDL:0x%08x\n", __func__, value32);
+		return _FAIL;
+	}
+	DBG_88E("%s: Checksum report OK! REG_MCUFWDL:0x%08x\n", __func__, value32);
+
+	value32 = rtw_read32(padapter, REG_MCUFWDL);
+	value32 |= MCUFWDL_RDY;
+	value32 &= ~WINTINI_RDY;
+	rtw_write32(padapter, REG_MCUFWDL, value32);
+
+	_8051Reset88E(padapter);
+
+	/*  polling for FW ready */
+	counter = 0;
+	do {
+		value32 = rtw_read32(padapter, REG_MCUFWDL);
+		if (value32 & WINTINI_RDY) {
+			DBG_88E("%s: Polling FW ready success!! REG_MCUFWDL:0x%08x\n", __func__, value32);
+			return _SUCCESS;
+		}
+		rtw_udelay_os(5);
+	} while (counter++ < POLLING_READY_TIMEOUT_COUNT);
+
+	DBG_88E("%s: Polling FW ready fail!! REG_MCUFWDL:0x%08x\n", __func__, value32);
+	return _FAIL;
+}
+
+#define IS_FW_81xxC(padapter)	(((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
+
+s32 rtl8188e_FirmwareDownload(struct adapter *padapter)
+{
+	s32	rtStatus = _SUCCESS;
+	u8 writeFW_retry = 0;
+	u32 fwdl_start_time;
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
+
+	u8 *FwImage;
+	u32			FwImageLen;
+	struct rt_firmware *pFirmware = NULL;
+	struct rt_firmware_hdr *pFwHdr = NULL;
+	u8 *pFirmwareBuf;
+	u32			FirmwareLen;
+
+	RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
+	pFirmware = (struct rt_firmware *)rtw_zmalloc(sizeof(struct rt_firmware));
+	if (!pFirmware) {
+		rtStatus = _FAIL;
+		goto Exit;
+	}
+
+	FwImage = (u8 *)Rtl8188E_FwImageArray;
+	FwImageLen = Rtl8188E_FWImgArrayLength;
+
+	pFirmware->eFWSource = FW_SOURCE_HEADER_FILE;
+
+	switch (pFirmware->eFWSource) {
+	case FW_SOURCE_IMG_FILE:
+		break;
+	case FW_SOURCE_HEADER_FILE:
+		if (FwImageLen > FW_8188E_SIZE) {
+			rtStatus = _FAIL;
+			RT_TRACE(_module_hal_init_c_, _drv_err_, ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE));
+			goto Exit;
+		}
+
+		pFirmware->szFwBuffer = FwImage;
+		pFirmware->ulFwLength = FwImageLen;
+		break;
+	}
+	pFirmwareBuf = pFirmware->szFwBuffer;
+	FirmwareLen = pFirmware->ulFwLength;
+	DBG_88E_LEVEL(_drv_info_, "+%s: !bUsedWoWLANFw, FmrmwareLen:%d+\n", __func__, FirmwareLen);
+
+	/*  To Check Fw header. Added by tynli. 2009.12.04. */
+	pFwHdr = (struct rt_firmware_hdr *)pFirmware->szFwBuffer;
+
+	pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->Version);
+	pHalData->FirmwareSubVersion = pFwHdr->Subversion;
+	pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
+
+	DBG_88E("%s: fw_ver =%d fw_subver =%d sig = 0x%x\n",
+		__func__, pHalData->FirmwareVersion, pHalData->FirmwareSubVersion, pHalData->FirmwareSignature);
+
+	if (IS_FW_HEADER_EXIST(pFwHdr)) {
+		/*  Shift 32 bytes for FW header */
+		pFirmwareBuf = pFirmwareBuf + 32;
+		FirmwareLen = FirmwareLen - 32;
+	}
+
+	/*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
+	/*  or it will cause download Fw fail. 2010.02.01. by tynli. */
+	if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
+		rtw_write8(padapter, REG_MCUFWDL, 0x00);
+		_8051Reset88E(padapter);
+	}
+
+	_FWDownloadEnable(padapter, true);
+	fwdl_start_time = rtw_get_current_time();
+	while (1) {
+		/* reset the FWDL chksum */
+		rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL) | FWDL_ChkSum_rpt);
+
+		rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
+
+		if (rtStatus == _SUCCESS ||
+		    (rtw_get_passing_time_ms(fwdl_start_time) > 500 && writeFW_retry++ >= 3))
+			break;
+
+		DBG_88E("%s writeFW_retry:%u, time after fwdl_start_time:%ums\n",
+			__func__, writeFW_retry, rtw_get_passing_time_ms(fwdl_start_time)
+		);
+	}
+	_FWDownloadEnable(padapter, false);
+	if (_SUCCESS != rtStatus) {
+		DBG_88E("DL Firmware failed!\n");
+		goto Exit;
+	}
+
+	rtStatus = _FWFreeToGo(padapter);
+	if (_SUCCESS != rtStatus) {
+		DBG_88E("DL Firmware failed!\n");
+		goto Exit;
+	}
+	RT_TRACE(_module_hal_init_c_, _drv_info_, ("Firmware is ready to run!\n"));
+
+Exit:
+
+	kfree(pFirmware);
+	return rtStatus;
+}
+
+void rtl8188e_InitializeFirmwareVars(struct adapter *padapter)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
+
+	/*  Init Fw LPS related. */
+	padapter->pwrctrlpriv.bFwCurrentInPSMode = false;
+
+	/*  Init H2C counter. by tynli. 2009.12.09. */
+	pHalData->LastHMEBoxNum = 0;
+}
+
+static void rtl8188e_free_hal_data(struct adapter *padapter)
+{
+_func_enter_;
+	kfree(padapter->HalData);
+	padapter->HalData = NULL;
+_func_exit_;
+}
+
+/*  */
+/*			Efuse related code */
+/*  */
+enum{
+		VOLTAGE_V25						= 0x03,
+		LDOE25_SHIFT						= 28 ,
+	};
+
+static bool
+hal_EfusePgPacketWrite2ByteHeader(
+		struct adapter *pAdapter,
+		u8 efuseType,
+		u16				*pAddr,
+		struct pgpkt *pTargetPkt,
+		bool bPseudoTest);
+static bool
+hal_EfusePgPacketWrite1ByteHeader(
+		struct adapter *pAdapter,
+		u8 efuseType,
+		u16				*pAddr,
+		struct pgpkt *pTargetPkt,
+		bool bPseudoTest);
+static bool
+hal_EfusePgPacketWriteData(
+		struct adapter *pAdapter,
+		u8 efuseType,
+		u16				*pAddr,
+		struct pgpkt *pTargetPkt,
+		bool bPseudoTest);
+
+static void
+hal_EfusePowerSwitch_RTL8188E(
+		struct adapter *pAdapter,
+		u8 bWrite,
+		u8 PwrState)
+{
+	u8 tempval;
+	u16	tmpV16;
+
+	if (PwrState) {
+		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
+
+		/*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */
+		tmpV16 = rtw_read16(pAdapter, REG_SYS_ISO_CTRL);
+		if (!(tmpV16 & PWC_EV12V)) {
+			tmpV16 |= PWC_EV12V;
+			 rtw_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16);
+		}
+		/*  Reset: 0x0000h[28], default valid */
+		tmpV16 =  rtw_read16(pAdapter, REG_SYS_FUNC_EN);
+		if (!(tmpV16 & FEN_ELDR)) {
+			tmpV16 |= FEN_ELDR;
+			rtw_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
+		}
+
+		/*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
+		tmpV16 = rtw_read16(pAdapter, REG_SYS_CLKR);
+		if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
+			tmpV16 |= (LOADER_CLK_EN | ANA8M);
+			rtw_write16(pAdapter, REG_SYS_CLKR, tmpV16);
+		}
+
+		if (bWrite) {
+			/*  Enable LDO 2.5V before read/write action */
+			tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
+			tempval &= 0x0F;
+			tempval |= (VOLTAGE_V25 << 4);
+			rtw_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
+		}
+	} else {
+		rtw_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
+
+		if (bWrite) {
+			/*  Disable LDO 2.5V after read/write action */
+			tempval = rtw_read8(pAdapter, EFUSE_TEST+3);
+			rtw_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
+		}
+	}
+}
+
+static void
+rtl8188e_EfusePowerSwitch(
+		struct adapter *pAdapter,
+		u8 bWrite,
+		u8 PwrState)
+{
+	hal_EfusePowerSwitch_RTL8188E(pAdapter, bWrite, PwrState);
+}
+
+
+static void Hal_EfuseReadEFuse88E(struct adapter *Adapter,
+	u16			_offset,
+	u16			_size_byte,
+	u8 *pbuf,
+		bool bPseudoTest
+	)
+{
+	u8 *efuseTbl = NULL;
+	u8 rtemp8[1];
+	u16	eFuse_Addr = 0;
+	u8 offset, wren;
+	u16	i, j;
+	u16	**eFuseWord = NULL;
+	u16	efuse_utilized = 0;
+	u8 u1temp = 0;
+
+	/*  */
+	/*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
+	/*  */
+	if ((_offset + _size_byte) > EFUSE_MAP_LEN_88E) {/*  total E-Fuse table is 512bytes */
+		DBG_88E("Hal_EfuseReadEFuse88E(): Invalid offset(%#x) with read bytes(%#x)!!\n", _offset, _size_byte);
+		goto exit;
+	}
+
+	efuseTbl = (u8 *)rtw_zmalloc(EFUSE_MAP_LEN_88E);
+	if (efuseTbl == NULL) {
+		DBG_88E("%s: alloc efuseTbl fail!\n", __func__);
+		goto exit;
+	}
+
+	eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
+	if (eFuseWord == NULL) {
+		DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
+		goto exit;
+	}
+
+	/*  0. Refresh efuse init map as all oxFF. */
+	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
+		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
+			eFuseWord[i][j] = 0xFFFF;
+
+	/*  */
+	/*  1. Read the first byte to check if efuse is empty!!! */
+	/*  */
+	/*  */
+	ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
+	if (*rtemp8 != 0xFF) {
+		efuse_utilized++;
+		eFuse_Addr++;
+	} else {
+		DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, *rtemp8);
+		goto exit;
+	}
+
+	/*  */
+	/*  2. Read real efuse content. Filter PG header and every section data. */
+	/*  */
+	while ((*rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
+		/*  Check PG header for section num. */
+		if ((*rtemp8 & 0x1F) == 0x0F) {		/* extended header */
+			u1temp = ((*rtemp8 & 0xE0) >> 5);
+
+			ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
+
+			if ((*rtemp8 & 0x0F) == 0x0F) {
+				eFuse_Addr++;
+				ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
+
+				if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
+					eFuse_Addr++;
+				continue;
+			} else {
+				offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
+				wren = (*rtemp8 & 0x0F);
+				eFuse_Addr++;
+			}
+		} else {
+			offset = ((*rtemp8 >> 4) & 0x0f);
+			wren = (*rtemp8 & 0x0f);
+		}
+
+		if (offset < EFUSE_MAX_SECTION_88E) {
+			/*  Get word enable value from PG header */
+
+			for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
+				/*  Check word enable condition in the section */
+				if (!(wren & 0x01)) {
+					ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
+					eFuse_Addr++;
+					efuse_utilized++;
+					eFuseWord[offset][i] = (*rtemp8 & 0xff);
+					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
+						break;
+					ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
+					eFuse_Addr++;
+					efuse_utilized++;
+					eFuseWord[offset][i] |= (((u16)*rtemp8 << 8) & 0xff00);
+					if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
+						break;
+				}
+				wren >>= 1;
+			}
+		}
+
+		/*  Read next PG header */
+		ReadEFuseByte(Adapter, eFuse_Addr, rtemp8, bPseudoTest);
+
+		if (*rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
+			efuse_utilized++;
+			eFuse_Addr++;
+		}
+	}
+
+	/*  3. Collect 16 sections and 4 word unit into Efuse map. */
+	for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
+		for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
+			efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff);
+			efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff);
+		}
+	}
+
+	/*  4. Copy from Efuse map to output pointer memory!!! */
+	for (i = 0; i < _size_byte; i++)
+		pbuf[i] = efuseTbl[_offset+i];
+
+	/*  5. Calculate Efuse utilization. */
+	rtw_hal_set_hwreg(Adapter, HW_VAR_EFUSE_BYTES, (u8 *)&eFuse_Addr);
+
+exit:
+	kfree(efuseTbl);
+
+	if (eFuseWord)
+		rtw_mfree2d((void *)eFuseWord, EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
+}
+
+static void ReadEFuseByIC(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest)
+{
+	if (!bPseudoTest) {
+		int ret = _FAIL;
+		if (rtw_IOL_applied(Adapter)) {
+			rtw_hal_power_on(Adapter);
+
+			iol_mode_enable(Adapter, 1);
+			ret = iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
+			iol_mode_enable(Adapter, 0);
+
+			if (_SUCCESS == ret)
+				goto exit;
+		}
+	}
+	Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
+
+exit:
+	return;
+}
+
+static void ReadEFuse_Pseudo(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf, bool bPseudoTest)
+{
+	Hal_EfuseReadEFuse88E(Adapter, _offset, _size_byte, pbuf, bPseudoTest);
+}
+
+static void rtl8188e_ReadEFuse(struct adapter *Adapter, u8 efuseType,
+			       u16 _offset, u16 _size_byte, u8 *pbuf,
+			       bool bPseudoTest)
+{
+	if (bPseudoTest)
+		ReadEFuse_Pseudo (Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
+	else
+		ReadEFuseByIC(Adapter, efuseType, _offset, _size_byte, pbuf, bPseudoTest);
+}
+
+/* Do not support BT */
+static void Hal_EFUSEGetEfuseDefinition88E(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut)
+{
+	switch (type) {
+	case TYPE_EFUSE_MAX_SECTION:
+		{
+			u8 *pMax_section;
+			pMax_section = (u8 *)pOut;
+			*pMax_section = EFUSE_MAX_SECTION_88E;
+		}
+		break;
+	case TYPE_EFUSE_REAL_CONTENT_LEN:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
+		}
+		break;
+	case TYPE_EFUSE_CONTENT_LEN_BANK:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
+		}
+		break;
+	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
+		}
+		break;
+	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
+		}
+		break;
+	case TYPE_EFUSE_MAP_LEN:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
+		}
+		break;
+	case TYPE_EFUSE_PROTECT_BYTES_BANK:
+		{
+			u8 *pu1Tmp;
+			pu1Tmp = (u8 *)pOut;
+			*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
+		}
+		break;
+	default:
+		{
+			u8 *pu1Tmp;
+			pu1Tmp = (u8 *)pOut;
+			*pu1Tmp = 0;
+		}
+		break;
+	}
+}
+
+static void Hal_EFUSEGetEfuseDefinition_Pseudo88E(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut)
+{
+	switch (type) {
+	case TYPE_EFUSE_MAX_SECTION:
+		{
+			u8 *pMax_section;
+			pMax_section = (u8 *)pOut;
+			*pMax_section = EFUSE_MAX_SECTION_88E;
+		}
+		break;
+	case TYPE_EFUSE_REAL_CONTENT_LEN:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
+		}
+		break;
+	case TYPE_EFUSE_CONTENT_LEN_BANK:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = EFUSE_REAL_CONTENT_LEN_88E;
+		}
+		break;
+	case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
+		}
+		break;
+	case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = (u16)(EFUSE_REAL_CONTENT_LEN_88E-EFUSE_OOB_PROTECT_BYTES_88E);
+		}
+		break;
+	case TYPE_EFUSE_MAP_LEN:
+		{
+			u16 *pu2Tmp;
+			pu2Tmp = (u16 *)pOut;
+			*pu2Tmp = (u16)EFUSE_MAP_LEN_88E;
+		}
+		break;
+	case TYPE_EFUSE_PROTECT_BYTES_BANK:
+		{
+			u8 *pu1Tmp;
+			pu1Tmp = (u8 *)pOut;
+			*pu1Tmp = (u8)(EFUSE_OOB_PROTECT_BYTES_88E);
+		}
+		break;
+	default:
+		{
+			u8 *pu1Tmp;
+			pu1Tmp = (u8 *)pOut;
+			*pu1Tmp = 0;
+		}
+		break;
+	}
+}
+
+static void rtl8188e_EFUSE_GetEfuseDefinition(struct adapter *pAdapter, u8 efuseType, u8 type, void *pOut, bool bPseudoTest)
+{
+	if (bPseudoTest)
+		Hal_EFUSEGetEfuseDefinition_Pseudo88E(pAdapter, efuseType, type, pOut);
+	else
+		Hal_EFUSEGetEfuseDefinition88E(pAdapter, efuseType, type, pOut);
+}
+
+static u8 Hal_EfuseWordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest)
+{
+	u16	tmpaddr = 0;
+	u16	start_addr = efuse_addr;
+	u8 badworden = 0x0F;
+	u8 tmpdata[8];
+
+	_rtw_memset((void *)tmpdata, 0xff, PGPKT_DATA_SIZE);
+
+	if (!(word_en&BIT0)) {
+		tmpaddr = start_addr;
+		efuse_OneByteWrite(pAdapter, start_addr++, data[0], bPseudoTest);
+		efuse_OneByteWrite(pAdapter, start_addr++, data[1], bPseudoTest);
+
+		efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0], bPseudoTest);
+		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
+		if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
+			badworden &= (~BIT0);
+	}
+	if (!(word_en&BIT1)) {
+		tmpaddr = start_addr;
+		efuse_OneByteWrite(pAdapter, start_addr++, data[2], bPseudoTest);
+		efuse_OneByteWrite(pAdapter, start_addr++, data[3], bPseudoTest);
+
+		efuse_OneByteRead(pAdapter, tmpaddr    , &tmpdata[2], bPseudoTest);
+		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
+		if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
+			badworden &= (~BIT1);
+	}
+	if (!(word_en&BIT2)) {
+		tmpaddr = start_addr;
+		efuse_OneByteWrite(pAdapter, start_addr++, data[4], bPseudoTest);
+		efuse_OneByteWrite(pAdapter, start_addr++, data[5], bPseudoTest);
+
+		efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4], bPseudoTest);
+		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
+		if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
+			badworden &= (~BIT2);
+	}
+	if (!(word_en&BIT3)) {
+		tmpaddr = start_addr;
+		efuse_OneByteWrite(pAdapter, start_addr++, data[6], bPseudoTest);
+		efuse_OneByteWrite(pAdapter, start_addr++, data[7], bPseudoTest);
+
+		efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6], bPseudoTest);
+		efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
+		if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
+			badworden &= (~BIT3);
+	}
+	return badworden;
+}
+
+static u8 Hal_EfuseWordEnableDataWrite_Pseudo(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest)
+{
+	u8 ret;
+
+	ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
+	return ret;
+}
+
+static u8 rtl8188e_Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data, bool bPseudoTest)
+{
+	u8 ret = 0;
+
+	if (bPseudoTest)
+		ret = Hal_EfuseWordEnableDataWrite_Pseudo (pAdapter, efuse_addr, word_en, data, bPseudoTest);
+	else
+		ret = Hal_EfuseWordEnableDataWrite(pAdapter, efuse_addr, word_en, data, bPseudoTest);
+	return ret;
+}
+
+static u16 hal_EfuseGetCurrentSize_8188e(struct adapter *pAdapter, bool bPseudoTest)
+{
+	int	bContinual = true;
+	u16	efuse_addr = 0;
+	u8 hoffset = 0, hworden = 0;
+	u8 efuse_data, word_cnts = 0;
+
+	if (bPseudoTest)
+		efuse_addr = (u16)(fakeEfuseUsedBytes);
+	else
+		rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
+
+	while (bContinual &&
+	       efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest) &&
+	       AVAILABLE_EFUSE_ADDR(efuse_addr)) {
+		if (efuse_data != 0xFF) {
+			if ((efuse_data&0x1F) == 0x0F) {		/* extended header */
+				hoffset = efuse_data;
+				efuse_addr++;
+				efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest);
+				if ((efuse_data & 0x0F) == 0x0F) {
+					efuse_addr++;
+					continue;
+				} else {
+					hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
+					hworden = efuse_data & 0x0F;
+				}
+			} else {
+				hoffset = (efuse_data>>4) & 0x0F;
+				hworden =  efuse_data & 0x0F;
+			}
+			word_cnts = Efuse_CalculateWordCnts(hworden);
+			/* read next header */
+			efuse_addr = efuse_addr + (word_cnts*2)+1;
+		} else {
+			bContinual = false;
+		}
+	}
+
+	if (bPseudoTest)
+		fakeEfuseUsedBytes = efuse_addr;
+	else
+		rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
+
+	return efuse_addr;
+}
+
+static u16 Hal_EfuseGetCurrentSize_Pseudo(struct adapter *pAdapter, bool bPseudoTest)
+{
+	u16	ret = 0;
+
+	ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
+	return ret;
+}
+
+static u16 rtl8188e_EfuseGetCurrentSize(struct adapter *pAdapter, u8 efuseType, bool bPseudoTest)
+{
+	u16	ret = 0;
+
+	if (bPseudoTest)
+		ret = Hal_EfuseGetCurrentSize_Pseudo(pAdapter, bPseudoTest);
+	else
+		ret = hal_EfuseGetCurrentSize_8188e(pAdapter, bPseudoTest);
+	return ret;
+}
+
+static int hal_EfusePgPacketRead_8188e(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
+{
+	u8 ReadState = PG_STATE_HEADER;
+	int	bContinual = true;
+	int	bDataEmpty = true;
+	u8 efuse_data, word_cnts = 0;
+	u16	efuse_addr = 0;
+	u8 hoffset = 0, hworden = 0;
+	u8 tmpidx = 0;
+	u8 tmpdata[8];
+	u8 max_section = 0;
+	u8 tmp_header = 0;
+
+	EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, (void *)&max_section, bPseudoTest);
+
+	if (data == NULL)
+		return false;
+	if (offset > max_section)
+		return false;
+
+	_rtw_memset((void *)data, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
+	_rtw_memset((void *)tmpdata, 0xff, sizeof(u8)*PGPKT_DATA_SIZE);
+
+	/*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
+	/*  Skip dummy parts to prevent unexpected data read from Efuse. */
+	/*  By pass right now. 2009.02.19. */
+	while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) {
+		/*   Header Read ------------- */
+		if (ReadState & PG_STATE_HEADER) {
+			if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
+				if (EXT_HEADER(efuse_data)) {
+					tmp_header = efuse_data;
+					efuse_addr++;
+					efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data, bPseudoTest);
+					if (!ALL_WORDS_DISABLED(efuse_data)) {
+						hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
+						hworden = efuse_data & 0x0F;
+					} else {
+						DBG_88E("Error, All words disabled\n");
+						efuse_addr++;
+						continue;
+					}
+				} else {
+					hoffset = (efuse_data>>4) & 0x0F;
+					hworden =  efuse_data & 0x0F;
+				}
+				word_cnts = Efuse_CalculateWordCnts(hworden);
+				bDataEmpty = true;
+
+				if (hoffset == offset) {
+					for (tmpidx = 0; tmpidx < word_cnts*2; tmpidx++) {
+						if (efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx, &efuse_data, bPseudoTest)) {
+							tmpdata[tmpidx] = efuse_data;
+							if (efuse_data != 0xff)
+								bDataEmpty = false;
+						}
+					}
+					if (bDataEmpty == false) {
+						ReadState = PG_STATE_DATA;
+					} else {/* read next header */
+						efuse_addr = efuse_addr + (word_cnts*2)+1;
+						ReadState = PG_STATE_HEADER;
+					}
+				} else {/* read next header */
+					efuse_addr = efuse_addr + (word_cnts*2)+1;
+					ReadState = PG_STATE_HEADER;
+				}
+			} else {
+				bContinual = false;
+			}
+		} else if (ReadState & PG_STATE_DATA) {
+		/*   Data section Read ------------- */
+			efuse_WordEnableDataRead(hworden, tmpdata, data);
+			efuse_addr = efuse_addr + (word_cnts*2)+1;
+			ReadState = PG_STATE_HEADER;
+		}
+
+	}
+
+	if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff)  && (data[3] == 0xff) &&
+	    (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff)  && (data[7] == 0xff))
+		return false;
+	else
+		return true;
+}
+
+static int Hal_EfusePgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
+{
+	int	ret;
+
+	ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
+	return ret;
+}
+
+static int Hal_EfusePgPacketRead_Pseudo(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
+{
+	int	ret;
+
+	ret = hal_EfusePgPacketRead_8188e(pAdapter, offset, data, bPseudoTest);
+	return ret;
+}
+
+static int rtl8188e_Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data, bool bPseudoTest)
+{
+	int	ret;
+
+	if (bPseudoTest)
+		ret = Hal_EfusePgPacketRead_Pseudo (pAdapter, offset, data, bPseudoTest);
+	else
+		ret = Hal_EfusePgPacketRead(pAdapter, offset, data, bPseudoTest);
+	return ret;
+}
+
+static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr, bool bPseudoTest)
+{
+	u8 originaldata[8], badworden = 0;
+	u16	efuse_addr = *pAddr;
+	u32	PgWriteSuccess = 0;
+
+	_rtw_memset((void *)originaldata, 0xff, 8);
+
+	if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata, bPseudoTest)) {
+		/* check if data exist */
+		badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata, bPseudoTest);
+
+		if (badworden != 0xf) {	/*  write fail */
+			PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata, bPseudoTest);
+
+			if (!PgWriteSuccess)
+				return false;
+			else
+				efuse_addr = Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest);
+		} else {
+			efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
+		}
+	} else {
+		efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
+	}
+	*pAddr = efuse_addr;
+	return true;
+}
+
+static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
+{
+	bool bRet = false;
+	u16	efuse_addr = *pAddr, efuse_max_available_len = 0;
+	u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
+	u8 repeatcnt = 0;
+
+	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
+
+	while (efuse_addr < efuse_max_available_len) {
+		pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
+		efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
+		efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
+
+		while (tmp_header == 0xFF) {
+			if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
+				return false;
+
+			efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
+			efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
+		}
+
+		/* to write ext_header */
+		if (tmp_header == pg_header) {
+			efuse_addr++;
+			pg_header_temp = pg_header;
+			pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
+
+			efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
+			efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
+
+			while (tmp_header == 0xFF) {
+				if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
+					return false;
+
+				efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
+				efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
+			}
+
+			if ((tmp_header & 0x0F) == 0x0F) {	/* word_en PG fail */
+				if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
+					return false;
+				} else {
+					efuse_addr++;
+					continue;
+				}
+			} else if (pg_header != tmp_header) {	/* offset PG fail */
+				struct pgpkt	fixPkt;
+				fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
+				fixPkt.word_en = tmp_header & 0x0F;
+				fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
+				if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
+					return false;
+			} else {
+				bRet = true;
+				break;
+			}
+		} else if ((tmp_header & 0x1F) == 0x0F) {		/* wrong extended header */
+			efuse_addr += 2;
+			continue;
+		}
+	}
+
+	*pAddr = efuse_addr;
+	return bRet;
+}
+
+static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
+{
+	bool bRet = false;
+	u8 pg_header = 0, tmp_header = 0;
+	u16	efuse_addr = *pAddr;
+	u8 repeatcnt = 0;
+
+	pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
+
+	efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
+	efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
+
+	while (tmp_header == 0xFF) {
+		if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
+			return false;
+		efuse_OneByteWrite(pAdapter, efuse_addr, pg_header, bPseudoTest);
+		efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header, bPseudoTest);
+	}
+
+	if (pg_header == tmp_header) {
+		bRet = true;
+	} else {
+		struct pgpkt	fixPkt;
+		fixPkt.offset = (tmp_header>>4) & 0x0F;
+		fixPkt.word_en = tmp_header & 0x0F;
+		fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
+		if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr, bPseudoTest))
+			return false;
+	}
+
+	*pAddr = efuse_addr;
+	return bRet;
+}
+
+static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
+{
+	bool bRet = false;
+	u16	efuse_addr = *pAddr;
+	u8 badworden = 0;
+	u32	PgWriteSuccess = 0;
+
+	badworden = 0x0f;
+	badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
+	if (badworden == 0x0F) {
+		/*  write ok */
+		return true;
+	} else {
+		/* reorganize other pg packet */
+		PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
+		if (!PgWriteSuccess)
+			return false;
+		else
+			return true;
+	}
+	return bRet;
+}
+
+static bool
+hal_EfusePgPacketWriteHeader(
+				struct adapter *pAdapter,
+				u8 efuseType,
+				u16				*pAddr,
+				struct pgpkt *pTargetPkt,
+				bool bPseudoTest)
+{
+	bool bRet = false;
+
+	if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
+		bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
+	else
+		bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
+
+	return bRet;
+}
+
+static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt,
+			  u8 *pWden)
+{
+	u8 match_word_en = 0x0F;	/*  default all words are disabled */
+
+	/*  check if the same words are enabled both target and current PG packet */
+	if (((pTargetPkt->word_en & BIT0) == 0) &&
+	    ((pCurPkt->word_en & BIT0) == 0))
+		match_word_en &= ~BIT0;				/*  enable word 0 */
+	if (((pTargetPkt->word_en & BIT1) == 0) &&
+	    ((pCurPkt->word_en & BIT1) == 0))
+		match_word_en &= ~BIT1;				/*  enable word 1 */
+	if (((pTargetPkt->word_en & BIT2) == 0) &&
+	    ((pCurPkt->word_en & BIT2) == 0))
+		match_word_en &= ~BIT2;				/*  enable word 2 */
+	if (((pTargetPkt->word_en & BIT3) == 0) &&
+	    ((pCurPkt->word_en & BIT3) == 0))
+		match_word_en &= ~BIT3;				/*  enable word 3 */
+
+	*pWden = match_word_en;
+
+	if (match_word_en != 0xf)
+		return true;
+	else
+		return false;
+}
+
+static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr, bool bPseudoTest)
+{
+	bool bRet = false;
+	u8 i, efuse_data;
+
+	for (i = 0; i < (word_cnts*2); i++) {
+		if (efuse_OneByteRead(pAdapter, (startAddr+i), &efuse_data, bPseudoTest) && (efuse_data != 0xFF))
+			bRet = true;
+	}
+	return bRet;
+}
+
+static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt, bool bPseudoTest)
+{
+	bool bRet = false;
+	u8 i, efuse_data = 0, cur_header = 0;
+	u8 matched_wden = 0, badworden = 0;
+	u16	startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
+	struct pgpkt curPkt;
+
+	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, (void *)&efuse_max_available_len, bPseudoTest);
+	EFUSE_GetEfuseDefinition(pAdapter, efuseType, TYPE_EFUSE_REAL_CONTENT_LEN, (void *)&efuse_max, bPseudoTest);
+
+	if (efuseType == EFUSE_WIFI) {
+		if (bPseudoTest) {
+			startAddr = (u16)(fakeEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
+		} else {
+			rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
+			startAddr %= EFUSE_REAL_CONTENT_LEN;
+		}
+	} else {
+		if (bPseudoTest)
+			startAddr = (u16)(fakeBTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
+		else
+			startAddr = (u16)(BTEfuseUsedBytes%EFUSE_REAL_CONTENT_LEN);
+	}
+
+	while (1) {
+		if (startAddr >= efuse_max_available_len) {
+			bRet = false;
+			break;
+		}
+
+		if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
+			if (EXT_HEADER(efuse_data)) {
+				cur_header = efuse_data;
+				startAddr++;
+				efuse_OneByteRead(pAdapter, startAddr, &efuse_data, bPseudoTest);
+				if (ALL_WORDS_DISABLED(efuse_data)) {
+					bRet = false;
+					break;
+				} else {
+					curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
+					curPkt.word_en = efuse_data & 0x0F;
+				}
+			} else {
+				cur_header  =  efuse_data;
+				curPkt.offset = (cur_header>>4) & 0x0F;
+				curPkt.word_en = cur_header & 0x0F;
+			}
+
+			curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
+			/*  if same header is found but no data followed */
+			/*  write some part of data followed by the header. */
+			if ((curPkt.offset == pTargetPkt->offset) &&
+			    (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1, bPseudoTest)) &&
+			    wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
+				/*  Here to write partial data */
+				badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
+				if (badworden != 0x0F) {
+					u32	PgWriteSuccess = 0;
+					/*  if write fail on some words, write these bad words again */
+
+					PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
+
+					if (!PgWriteSuccess) {
+						bRet = false;	/*  write fail, return */
+						break;
+					}
+				}
+				/*  partial write ok, update the target packet for later use */
+				for (i = 0; i < 4; i++) {
+					if ((matched_wden & (0x1<<i)) == 0)	/*  this word has been written */
+						pTargetPkt->word_en |= (0x1<<i);	/*  disable the word */
+				}
+				pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
+			}
+			/*  read from next header */
+			startAddr = startAddr + (curPkt.word_cnts*2) + 1;
+		} else {
+			/*  not used header, 0xff */
+			*pAddr = startAddr;
+			bRet = true;
+			break;
+		}
+	}
+	return bRet;
+}
+
+static bool
+hal_EfusePgCheckAvailableAddr(
+		struct adapter *pAdapter,
+		u8 efuseType,
+		bool bPseudoTest
+	)
+{
+	u16	efuse_max_available_len = 0;
+
+	/* Change to check TYPE_EFUSE_MAP_LEN , beacuse 8188E raw 256, logic map over 256. */
+	EFUSE_GetEfuseDefinition(pAdapter, EFUSE_WIFI, TYPE_EFUSE_MAP_LEN, (void *)&efuse_max_available_len, false);
+
+	if (Efuse_GetCurrentSize(pAdapter, efuseType, bPseudoTest) >= efuse_max_available_len)
+		return false;
+	return true;
+}
+
+static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt)
+{
+	_rtw_memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8);
+	pTargetPkt->offset = offset;
+	pTargetPkt->word_en = word_en;
+	efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
+	pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
+}
+
+static bool hal_EfusePgPacketWrite_8188e(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData, bool bPseudoTest)
+{
+	struct pgpkt	targetPkt;
+	u16			startAddr = 0;
+	u8 efuseType = EFUSE_WIFI;
+
+	if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType, bPseudoTest))
+		return false;
+
+	hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
+
+	if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
+		return false;
+
+	if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
+		return false;
+
+	if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
+		return false;
+
+	return true;
+}
+
+static int Hal_EfusePgPacketWrite_Pseudo(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest)
+{
+	int ret;
+
+	ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
+	return ret;
+}
+
+static int Hal_EfusePgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest)
+{
+	int	ret = 0;
+	ret = hal_EfusePgPacketWrite_8188e(pAdapter, offset, word_en, data, bPseudoTest);
+
+	return ret;
+}
+
+static int rtl8188e_Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *data, bool bPseudoTest)
+{
+	int	ret;
+
+	if (bPseudoTest)
+		ret = Hal_EfusePgPacketWrite_Pseudo (pAdapter, offset, word_en, data, bPseudoTest);
+	else
+		ret = Hal_EfusePgPacketWrite(pAdapter, offset, word_en, data, bPseudoTest);
+	return ret;
+}
+
+static struct HAL_VERSION ReadChipVersion8188E(struct adapter *padapter)
+{
+	u32				value32;
+	struct HAL_VERSION		ChipVersion;
+	struct hal_data_8188e	*pHalData;
+
+	pHalData = GET_HAL_DATA(padapter);
+
+	value32 = rtw_read32(padapter, REG_SYS_CFG);
+	ChipVersion.ICType = CHIP_8188E;
+	ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
+
+	ChipVersion.RFType = RF_TYPE_1T1R;
+	ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
+	ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
+
+	/*  For regulator mode. by tynli. 2011.01.14 */
+	pHalData->RegulatorMode = ((value32 & TRP_BT_EN) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
+
+	ChipVersion.ROMVer = 0;	/*  ROM code version. */
+	pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
+
+	dump_chip_info(ChipVersion);
+
+	pHalData->VersionID = ChipVersion;
+
+	if (IS_1T2R(ChipVersion)) {
+		pHalData->rf_type = RF_1T2R;
+		pHalData->NumTotalRFPath = 2;
+	} else if (IS_2T2R(ChipVersion)) {
+		pHalData->rf_type = RF_2T2R;
+		pHalData->NumTotalRFPath = 2;
+	} else{
+		pHalData->rf_type = RF_1T1R;
+		pHalData->NumTotalRFPath = 1;
+	}
+
+	MSG_88E("RF_Type is %x!!\n", pHalData->rf_type);
+
+	return ChipVersion;
+}
+
+static void rtl8188e_read_chip_version(struct adapter *padapter)
+{
+	ReadChipVersion8188E(padapter);
+}
+
+static void rtl8188e_GetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
+{
+}
+
+static void rtl8188e_SetHalODMVar(struct adapter *Adapter, enum hal_odm_variable eVariable, void *pValue1, bool bSet)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	struct odm_dm_struct *podmpriv = &pHalData->odmpriv;
+	switch (eVariable) {
+	case HAL_ODM_STA_INFO:
+		{
+			struct sta_info *psta = (struct sta_info *)pValue1;
+			if (bSet) {
+				DBG_88E("### Set STA_(%d) info\n", psta->mac_id);
+				ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, psta);
+				ODM_RAInfo_Init(podmpriv, psta->mac_id);
+			} else {
+				DBG_88E("### Clean STA_(%d) info\n", psta->mac_id);
+				ODM_CmnInfoPtrArrayHook(podmpriv, ODM_CMNINFO_STA_STATUS, psta->mac_id, NULL);
+		       }
+		}
+		break;
+	case HAL_ODM_P2P_STATE:
+			ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DIRECT, bSet);
+		break;
+	case HAL_ODM_WIFI_DISPLAY_STATE:
+			ODM_CmnInfoUpdate(podmpriv, ODM_CMNINFO_WIFI_DISPLAY, bSet);
+		break;
+	default:
+		break;
+	}
+}
+
+void rtl8188e_clone_haldata(struct adapter *dst_adapter, struct adapter *src_adapter)
+{
+	memcpy(dst_adapter->HalData, src_adapter->HalData, dst_adapter->hal_data_sz);
+}
+
+void rtl8188e_start_thread(struct adapter *padapter)
+{
+}
+
+void rtl8188e_stop_thread(struct adapter *padapter)
+{
+}
+
+static void hal_notch_filter_8188e(struct adapter *adapter, bool enable)
+{
+	if (enable) {
+		DBG_88E("Enable notch filter\n");
+		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
+	} else {
+		DBG_88E("Disable notch filter\n");
+		rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
+	}
+}
+void rtl8188e_set_hal_ops(struct hal_ops *pHalFunc)
+{
+	pHalFunc->free_hal_data = &rtl8188e_free_hal_data;
+
+	pHalFunc->dm_init = &rtl8188e_init_dm_priv;
+	pHalFunc->dm_deinit = &rtl8188e_deinit_dm_priv;
+
+	pHalFunc->read_chip_version = &rtl8188e_read_chip_version;
+
+	pHalFunc->set_bwmode_handler = &PHY_SetBWMode8188E;
+	pHalFunc->set_channel_handler = &PHY_SwChnl8188E;
+
+	pHalFunc->hal_dm_watchdog = &rtl8188e_HalDmWatchDog;
+
+	pHalFunc->Add_RateATid = &rtl8188e_Add_RateATid;
+	pHalFunc->run_thread = &rtl8188e_start_thread;
+	pHalFunc->cancel_thread = &rtl8188e_stop_thread;
+
+	pHalFunc->AntDivBeforeLinkHandler = &AntDivBeforeLink8188E;
+	pHalFunc->AntDivCompareHandler = &AntDivCompare8188E;
+	pHalFunc->read_bbreg = &rtl8188e_PHY_QueryBBReg;
+	pHalFunc->write_bbreg = &rtl8188e_PHY_SetBBReg;
+	pHalFunc->read_rfreg = &rtl8188e_PHY_QueryRFReg;
+	pHalFunc->write_rfreg = &rtl8188e_PHY_SetRFReg;
+
+	/*  Efuse related function */
+	pHalFunc->EfusePowerSwitch = &rtl8188e_EfusePowerSwitch;
+	pHalFunc->ReadEFuse = &rtl8188e_ReadEFuse;
+	pHalFunc->EFUSEGetEfuseDefinition = &rtl8188e_EFUSE_GetEfuseDefinition;
+	pHalFunc->EfuseGetCurrentSize = &rtl8188e_EfuseGetCurrentSize;
+	pHalFunc->Efuse_PgPacketRead = &rtl8188e_Efuse_PgPacketRead;
+	pHalFunc->Efuse_PgPacketWrite = &rtl8188e_Efuse_PgPacketWrite;
+	pHalFunc->Efuse_WordEnableDataWrite = &rtl8188e_Efuse_WordEnableDataWrite;
+
+	pHalFunc->sreset_init_value = &sreset_init_value;
+	pHalFunc->sreset_reset_value = &sreset_reset_value;
+	pHalFunc->silentreset = &rtl8188e_silentreset_for_specific_platform;
+	pHalFunc->sreset_xmit_status_check = &rtl8188e_sreset_xmit_status_check;
+	pHalFunc->sreset_linked_status_check  = &rtl8188e_sreset_linked_status_check;
+	pHalFunc->sreset_get_wifi_status  = &sreset_get_wifi_status;
+
+	pHalFunc->GetHalODMVarHandler = &rtl8188e_GetHalODMVar;
+	pHalFunc->SetHalODMVarHandler = &rtl8188e_SetHalODMVar;
+
+	pHalFunc->IOL_exec_cmds_sync = &rtl8188e_IOL_exec_cmds_sync;
+
+	pHalFunc->hal_notch_filter = &hal_notch_filter_8188e;
+}
+
+u8 GetEEPROMSize8188E(struct adapter *padapter)
+{
+	u8 size = 0;
+	u32	cr;
+
+	cr = rtw_read16(padapter, REG_9346CR);
+	/*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
+	size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
+
+	MSG_88E("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
+
+	return size;
+}
+
+/*  */
+/*  */
+/*  LLT R/W/Init function */
+/*  */
+/*  */
+static s32 _LLTWrite(struct adapter *padapter, u32 address, u32 data)
+{
+	s32	status = _SUCCESS;
+	s32	count = 0;
+	u32	value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
+	u16	LLTReg = REG_LLT_INIT;
+
+	rtw_write32(padapter, LLTReg, value);
+
+	/* polling */
+	do {
+		value = rtw_read32(padapter, LLTReg);
+		if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
+			break;
+
+		if (count > POLLING_LLT_THRESHOLD) {
+			RT_TRACE(_module_hal_init_c_, _drv_err_, ("Failed to polling write LLT done at address %d!\n", address));
+			status = _FAIL;
+			break;
+		}
+	} while (count++);
+
+	return status;
+}
+
+s32 InitLLTTable(struct adapter *padapter, u8 txpktbuf_bndy)
+{
+	s32	status = _FAIL;
+	u32	i;
+	u32	Last_Entry_Of_TxPktBuf = LAST_ENTRY_OF_TX_PKT_BUFFER;/*  176, 22k */
+
+	if (rtw_IOL_applied(padapter)) {
+		status = iol_InitLLTTable(padapter, txpktbuf_bndy);
+	} else {
+		for (i = 0; i < (txpktbuf_bndy - 1); i++) {
+			status = _LLTWrite(padapter, i, i + 1);
+			if (_SUCCESS != status)
+				return status;
+		}
+
+		/*  end of list */
+		status = _LLTWrite(padapter, (txpktbuf_bndy - 1), 0xFF);
+		if (_SUCCESS != status)
+			return status;
+
+		/*  Make the other pages as ring buffer */
+		/*  This ring buffer is used as beacon buffer if we config this MAC as two MAC transfer. */
+		/*  Otherwise used as local loopback buffer. */
+		for (i = txpktbuf_bndy; i < Last_Entry_Of_TxPktBuf; i++) {
+			status = _LLTWrite(padapter, i, (i + 1));
+			if (_SUCCESS != status)
+				return status;
+		}
+
+		/*  Let last entry point to the start entry of ring buffer */
+		status = _LLTWrite(padapter, Last_Entry_Of_TxPktBuf, txpktbuf_bndy);
+		if (_SUCCESS != status) {
+			return status;
+		}
+	}
+
+	return status;
+}
+
+void
+Hal_InitPGData88E(struct adapter *padapter)
+{
+	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
+
+	if (!pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
+		if (!is_boot_from_eeprom(padapter)) {
+			/*  Read EFUSE real map to shadow. */
+			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
+		}
+	} else {/* autoload fail */
+		RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
+		/* update to default value 0xFF */
+		if (!is_boot_from_eeprom(padapter))
+			EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
+	}
+}
+
+void
+Hal_EfuseParseIDCode88E(
+		struct adapter *padapter,
+		u8 *hwinfo
+	)
+{
+	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
+	u16			EEPROMId;
+
+	/*  Checl 0x8129 again for making sure autoload status!! */
+	EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
+	if (EEPROMId != RTL_EEPROM_ID) {
+		DBG_88E("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
+		pEEPROM->bautoload_fail_flag = true;
+	} else {
+		pEEPROM->bautoload_fail_flag = false;
+	}
+
+	DBG_88E("EEPROM ID = 0x%04x\n", EEPROMId);
+}
+
+static void Hal_ReadPowerValueFromPROM_8188E(struct txpowerinfo24g *pwrInfo24G, u8 *PROMContent, bool AutoLoadFail)
+{
+	u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_88E, group, TxCount = 0;
+
+	_rtw_memset(pwrInfo24G, 0, sizeof(struct txpowerinfo24g));
+
+	if (AutoLoadFail) {
+		for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
+			/* 2.4G default value */
+			for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
+				pwrInfo24G->IndexCCK_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
+				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
+			}
+			for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
+				if (TxCount == 0) {
+					pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
+					pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
+				} else {
+					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
+					pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
+					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
+					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
+				}
+			}
+		}
+		return;
+	}
+
+	for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
+		/* 2.4G default value */
+		for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
+			pwrInfo24G->IndexCCK_Base[rfPath][group] =	PROMContent[eeAddr++];
+			if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
+				pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
+		}
+		for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
+			pwrInfo24G->IndexBW40_Base[rfPath][group] =	PROMContent[eeAddr++];
+			if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
+				pwrInfo24G->IndexBW40_Base[rfPath][group] =	EEPROM_DEFAULT_24G_INDEX;
+		}
+		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
+			if (TxCount == 0) {
+				pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
+				if (PROMContent[eeAddr] == 0xFF) {
+					pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_HT20_DIFF;
+				} else {
+					pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
+					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
+						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
+				}
+
+				if (PROMContent[eeAddr] == 0xFF) {
+					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_24G_OFDM_DIFF;
+				} else {
+					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);
+					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
+						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
+				}
+				pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
+				eeAddr++;
+			} else {
+				if (PROMContent[eeAddr] == 0xFF) {
+					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
+				} else {
+					pwrInfo24G->BW40_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
+					if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
+						pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
+				}
+
+				if (PROMContent[eeAddr] == 0xFF) {
+					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
+				} else {
+					pwrInfo24G->BW20_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);
+					if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
+						pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
+				}
+				eeAddr++;
+
+				if (PROMContent[eeAddr] == 0xFF) {
+					pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
+				} else {
+					pwrInfo24G->OFDM_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0xf0)>>4;
+					if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
+						pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
+				}
+
+				if (PROMContent[eeAddr] == 0xFF) {
+					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	EEPROM_DEFAULT_DIFF;
+				} else {
+					pwrInfo24G->CCK_Diff[rfPath][TxCount] =	(PROMContent[eeAddr]&0x0f);
+					if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)		/* 4bit sign number to 8 bit sign number */
+						pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
+				}
+				eeAddr++;
+			}
+		}
+	}
+}
+
+static u8 Hal_GetChnlGroup88E(u8 chnl, u8 *pGroup)
+{
+	u8 bIn24G = true;
+
+	if (chnl <= 14) {
+		bIn24G = true;
+
+		if (chnl < 3)			/*  Chanel 1-2 */
+			*pGroup = 0;
+		else if (chnl < 6)		/*  Channel 3-5 */
+			*pGroup = 1;
+		else	 if (chnl < 9)		/*  Channel 6-8 */
+			*pGroup = 2;
+		else if (chnl < 12)		/*  Channel 9-11 */
+			*pGroup = 3;
+		else if (chnl < 14)		/*  Channel 12-13 */
+			*pGroup = 4;
+		else if (chnl == 14)		/*  Channel 14 */
+			*pGroup = 5;
+	} else {
+		bIn24G = false;
+
+		if (chnl <= 40)
+			*pGroup = 0;
+		else if (chnl <= 48)
+			*pGroup = 1;
+		else	 if (chnl <= 56)
+			*pGroup = 2;
+		else if (chnl <= 64)
+			*pGroup = 3;
+		else if (chnl <= 104)
+			*pGroup = 4;
+		else if (chnl <= 112)
+			*pGroup = 5;
+		else if (chnl <= 120)
+			*pGroup = 5;
+		else if (chnl <= 128)
+			*pGroup = 6;
+		else if (chnl <= 136)
+			*pGroup = 7;
+		else if (chnl <= 144)
+			*pGroup = 8;
+		else if (chnl <= 153)
+			*pGroup = 9;
+		else if (chnl <= 161)
+			*pGroup = 10;
+		else if (chnl <= 177)
+			*pGroup = 11;
+	}
+	return bIn24G;
+}
+
+void Hal_ReadPowerSavingMode88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
+{
+	if (AutoLoadFail) {
+		padapter->pwrctrlpriv.bHWPowerdown = false;
+		padapter->pwrctrlpriv.bSupportRemoteWakeup = false;
+	} else {
+		/* hw power down mode selection , 0:rf-off / 1:power down */
+
+		if (padapter->registrypriv.hwpdn_mode == 2)
+			padapter->pwrctrlpriv.bHWPowerdown = (hwinfo[EEPROM_RF_FEATURE_OPTION_88E] & BIT4);
+		else
+			padapter->pwrctrlpriv.bHWPowerdown = padapter->registrypriv.hwpdn_mode;
+
+		/*  decide hw if support remote wakeup function */
+		/*  if hw supported, 8051 (SIE) will generate WeakUP signal(D+/D- toggle) when autoresume */
+		padapter->pwrctrlpriv.bSupportRemoteWakeup = (hwinfo[EEPROM_USB_OPTIONAL_FUNCTION0] & BIT1) ? true : false;
+
+		DBG_88E("%s...bHWPwrPindetect(%x)-bHWPowerdown(%x) , bSupportRemoteWakeup(%x)\n", __func__,
+		padapter->pwrctrlpriv.bHWPwrPindetect, padapter->pwrctrlpriv.bHWPowerdown , padapter->pwrctrlpriv.bSupportRemoteWakeup);
+
+		DBG_88E("### PS params =>  power_mgnt(%x), usbss_enable(%x) ###\n", padapter->registrypriv.power_mgnt, padapter->registrypriv.usbss_enable);
+	}
+}
+
+void Hal_ReadTxPowerInfo88E(struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(padapter);
+	struct txpowerinfo24g pwrInfo24G;
+	u8 rfPath, ch, group;
+	u8 bIn24G, TxCount;
+
+	Hal_ReadPowerValueFromPROM_8188E(&pwrInfo24G, PROMContent, AutoLoadFail);
+
+	if (!AutoLoadFail)
+		pHalData->bTXPowerDataReadFromEEPORM = true;
+
+	for (rfPath = 0; rfPath < pHalData->NumTotalRFPath; rfPath++) {
+		for (ch = 0; ch <= CHANNEL_MAX_NUMBER; ch++) {
+			bIn24G = Hal_GetChnlGroup88E(ch, &group);
+			if (bIn24G) {
+				pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
+				if (ch == 14)
+					pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][4];
+				else
+					pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
+			}
+			if (bIn24G) {
+				DBG_88E("======= Path %d, Channel %d =======\n", rfPath, ch);
+				DBG_88E("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_CCK_Base[rfPath][ch]);
+				DBG_88E("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch , pHalData->Index24G_BW40_Base[rfPath][ch]);
+			}
+		}
+		for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
+			pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
+			pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
+			pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
+			pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
+			DBG_88E("======= TxCount %d =======\n", TxCount);
+			DBG_88E("CCK_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]);
+			DBG_88E("OFDM_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]);
+			DBG_88E("BW20_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]);
+			DBG_88E("BW40_24G_Diff[%d][%d] = %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]);
+		}
+	}
+
+	/*  2010/10/19 MH Add Regulator recognize for CU. */
+	if (!AutoLoadFail) {
+		pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x7);	/* bit0~2 */
+		if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
+			pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7);	/* bit0~2 */
+	} else {
+		pHalData->EEPROMRegulatory = 0;
+	}
+	DBG_88E("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory);
+}
+
+void Hal_EfuseParseXtal_8188E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
+
+	if (!AutoLoadFail) {
+		pHalData->CrystalCap = hwinfo[EEPROM_XTAL_88E];
+		if (pHalData->CrystalCap == 0xFF)
+			pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
+	} else {
+		pHalData->CrystalCap = EEPROM_Default_CrystalCap_88E;
+	}
+	DBG_88E("CrystalCap: 0x%2x\n", pHalData->CrystalCap);
+}
+
+void Hal_EfuseParseBoardType88E(struct adapter *pAdapter, u8 *hwinfo, bool AutoLoadFail)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
+
+	if (!AutoLoadFail)
+		pHalData->BoardType = ((hwinfo[EEPROM_RF_BOARD_OPTION_88E]&0xE0)>>5);
+	else
+		pHalData->BoardType = 0;
+	DBG_88E("Board Type: 0x%2x\n", pHalData->BoardType);
+}
+
+void Hal_EfuseParseEEPROMVer88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(padapter);
+
+	if (!AutoLoadFail) {
+		pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_88E];
+		if (pHalData->EEPROMVersion == 0xFF)
+			pHalData->EEPROMVersion = EEPROM_Default_Version;
+	} else {
+		pHalData->EEPROMVersion = 1;
+	}
+	RT_TRACE(_module_hci_hal_init_c_, _drv_info_,
+		 ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
+		 pHalData->EEPROMVersion));
+}
+
+void rtl8188e_EfuseParseChnlPlan(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
+{
+	padapter->mlmepriv.ChannelPlan =
+		 hal_com_get_channel_plan(padapter,
+					  hwinfo ? hwinfo[EEPROM_ChannelPlan_88E] : 0xFF,
+					  padapter->registrypriv.channel_plan,
+					  RT_CHANNEL_DOMAIN_WORLD_WIDE_13, AutoLoadFail);
+
+	DBG_88E("mlmepriv.ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan);
+}
+
+void Hal_EfuseParseCustomerID88E(struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(padapter);
+
+	if (!AutoLoadFail) {
+		pHalData->EEPROMCustomerID = hwinfo[EEPROM_CUSTOMERID_88E];
+	} else {
+		pHalData->EEPROMCustomerID = 0;
+		pHalData->EEPROMSubCustomerID = 0;
+	}
+	DBG_88E("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID);
+}
+
+void Hal_ReadAntennaDiversity88E(struct adapter *pAdapter, u8 *PROMContent, bool AutoLoadFail)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
+	struct registry_priv	*registry_par = &pAdapter->registrypriv;
+
+	if (!AutoLoadFail) {
+		/*  Antenna Diversity setting. */
+		if (registry_par->antdiv_cfg == 2) { /*  2:By EFUSE */
+			pHalData->AntDivCfg = (PROMContent[EEPROM_RF_BOARD_OPTION_88E]&0x18)>>3;
+			if (PROMContent[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
+				pHalData->AntDivCfg = (EEPROM_DEFAULT_BOARD_OPTION&0x18)>>3;;
+		} else {
+			pHalData->AntDivCfg = registry_par->antdiv_cfg;  /*  0:OFF , 1:ON, 2:By EFUSE */
+		}
+
+		if (registry_par->antdiv_type == 0) {
+			/* If TRxAntDivType is AUTO in advanced setting, use EFUSE value instead. */
+			pHalData->TRxAntDivType = PROMContent[EEPROM_RF_ANTENNA_OPT_88E];
+			if (pHalData->TRxAntDivType == 0xFF)
+				pHalData->TRxAntDivType = CG_TRX_HW_ANTDIV; /*  For 88EE, 1Tx and 1RxCG are fixed.(1Ant, Tx and RxCG are both on aux port) */
+		} else {
+			pHalData->TRxAntDivType = registry_par->antdiv_type;
+		}
+
+		if (pHalData->TRxAntDivType == CG_TRX_HW_ANTDIV || pHalData->TRxAntDivType == CGCS_RX_HW_ANTDIV)
+			pHalData->AntDivCfg = 1; /*  0xC1[3] is ignored. */
+	} else {
+		pHalData->AntDivCfg = 0;
+		pHalData->TRxAntDivType = pHalData->TRxAntDivType; /*  The value in the driver setting of device manager. */
+	}
+	DBG_88E("EEPROM : AntDivCfg = %x, TRxAntDivType = %x\n", pHalData->AntDivCfg, pHalData->TRxAntDivType);
+}
+
+void Hal_ReadThermalMeter_88E(struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+
+	/*  ThermalMeter from EEPROM */
+	if (!AutoloadFail)
+		pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_88E];
+	else
+		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
+
+	if (pHalData->EEPROMThermalMeter == 0xff || AutoloadFail) {
+		pHalData->bAPKThermalMeterIgnore = true;
+		pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_88E;
+	}
+	DBG_88E("ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter);
+}
+
+void Hal_InitChannelPlan(struct adapter *padapter)
+{
+}
+
+bool HalDetectPwrDownMode88E(struct adapter *Adapter)
+{
+	u8 tmpvalue = 0;
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	struct pwrctrl_priv *pwrctrlpriv = &Adapter->pwrctrlpriv;
+
+	EFUSE_ShadowRead(Adapter, 1, EEPROM_RF_FEATURE_OPTION_88E, (u32 *)&tmpvalue);
+
+	/*  2010/08/25 MH INF priority > PDN Efuse value. */
+	if (tmpvalue & BIT(4) && pwrctrlpriv->reg_pdnmode)
+		pHalData->pwrdown = true;
+	else
+		pHalData->pwrdown = false;
+
+	DBG_88E("HalDetectPwrDownMode(): PDN =%d\n", pHalData->pwrdown);
+
+	return pHalData->pwrdown;
+}	/*  HalDetectPwrDownMode */
+
+/*  This function is used only for 92C to set REG_BCN_CTRL(0x550) register. */
+/*  We just reserve the value of the register in variable pHalData->RegBcnCtrlVal and then operate */
+/*  the value of the register via atomic operation. */
+/*  This prevents from race condition when setting this register. */
+/*  The value of pHalData->RegBcnCtrlVal is initialized in HwConfigureRTL8192CE() function. */
+
+void SetBcnCtrlReg(struct adapter *padapter, u8 SetBits, u8 ClearBits)
+{
+	struct hal_data_8188e *pHalData;
+
+	pHalData = GET_HAL_DATA(padapter);
+
+	pHalData->RegBcnCtrlVal |= SetBits;
+	pHalData->RegBcnCtrlVal &= ~ClearBits;
+
+	rtw_write8(padapter, REG_BCN_CTRL, (u8)pHalData->RegBcnCtrlVal);
+}
diff --git a/drivers/staging/rtl8188eu/hal/rtl8188e_mp.c b/drivers/staging/rtl8188eu/hal/rtl8188e_mp.c
new file mode 100644
index 0000000..e97ba02
--- /dev/null
+++ b/drivers/staging/rtl8188eu/hal/rtl8188e_mp.c
@@ -0,0 +1,860 @@
+/******************************************************************************
+ *
+ * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
+ *
+ *
+ ******************************************************************************/
+#define _RTL8188E_MP_C_
+
+#include <drv_types.h>
+#include <rtw_mp.h>
+#include <rtl8188e_hal.h>
+#include <rtl8188e_dm.h>
+
+s32 Hal_SetPowerTracking(struct adapter *padapter, u8 enable)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(padapter);
+	struct odm_dm_struct *pDM_Odm = &(pHalData->odmpriv);
+
+	if (!netif_running(padapter->pnetdev)) {
+		RT_TRACE(_module_mp_, _drv_warning_,
+			 ("SetPowerTracking! Fail: interface not opened!\n"));
+		return _FAIL;
+	}
+
+	if (!check_fwstate(&padapter->mlmepriv, WIFI_MP_STATE)) {
+		RT_TRACE(_module_mp_, _drv_warning_,
+			 ("SetPowerTracking! Fail: not in MP mode!\n"));
+		return _FAIL;
+	}
+
+	if (enable)
+		pDM_Odm->RFCalibrateInfo.bTXPowerTracking = true;
+	else
+		pDM_Odm->RFCalibrateInfo.bTXPowerTrackingInit = false;
+
+	return _SUCCESS;
+}
+
+void Hal_GetPowerTracking(struct adapter *padapter, u8 *enable)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(padapter);
+	struct odm_dm_struct *pDM_Odm = &(pHalData->odmpriv);
+
+	*enable = pDM_Odm->RFCalibrateInfo.TxPowerTrackControl;
+}
+
+/*-----------------------------------------------------------------------------
+ * Function:	mpt_SwitchRfSetting
+ *
+ * Overview:	Change RF Setting when we siwthc channel/rate/BW for MP.
+ *
+ * Input:	struct adapter *				pAdapter
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Revised History:
+ * When			Who		Remark
+ * 01/08/2009	MHC		Suggestion from SD3 Willis for 92S series.
+ * 01/09/2009	MHC		Add CCK modification for 40MHZ. Suggestion from SD3.
+ *
+ *---------------------------------------------------------------------------*/
+void Hal_mpt_SwitchRfSetting(struct adapter *pAdapter)
+{
+	struct mp_priv	*pmp = &pAdapter->mppriv;
+
+	/*  <20120525, Kordan> Dynamic mechanism for APK, asked by Dennis. */
+		pmp->MptCtx.backup0x52_RF_A = (u8)PHY_QueryRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0);
+		pmp->MptCtx.backup0x52_RF_B = (u8)PHY_QueryRFReg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0);
+		PHY_SetRFReg(pAdapter, RF_PATH_A, RF_0x52, 0x000F0, 0xD);
+		PHY_SetRFReg(pAdapter, RF_PATH_B, RF_0x52, 0x000F0, 0xD);
+
+	return;
+}
+/*---------------------------hal\rtl8192c\MPT_Phy.c---------------------------*/
+
+/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
+void Hal_MPT_CCKTxPowerAdjust(struct adapter *Adapter, bool bInCH14)
+{
+	u32		TempVal = 0, TempVal2 = 0, TempVal3 = 0;
+	u32		CurrCCKSwingVal = 0, CCKSwingIndex = 12;
+	u8		i;
+
+	/*  get current cck swing value and check 0xa22 & 0xa23 later to match the table. */
+	CurrCCKSwingVal = read_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord);
+
+	if (!bInCH14) {
+		/*  Readback the current bb cck swing value and compare with the table to */
+		/*  get the current swing index */
+		for (i = 0; i < CCK_TABLE_SIZE; i++) {
+			if (((CurrCCKSwingVal&0xff) == (u32)CCKSwingTable_Ch1_Ch13[i][0]) &&
+			    (((CurrCCKSwingVal&0xff00)>>8) == (u32)CCKSwingTable_Ch1_Ch13[i][1])) {
+				CCKSwingIndex = i;
+				break;
+			}
+		}
+
+		/* Write 0xa22 0xa23 */
+		TempVal = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][0] +
+				(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][1]<<8);
+
+
+		/* Write 0xa24 ~ 0xa27 */
+		TempVal2 = 0;
+		TempVal2 = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][2] +
+				(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][3]<<8) +
+				(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][4]<<16)+
+				(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][5]<<24);
+
+		/* Write 0xa28  0xa29 */
+		TempVal3 = 0;
+		TempVal3 = CCKSwingTable_Ch1_Ch13[CCKSwingIndex][6] +
+				(CCKSwingTable_Ch1_Ch13[CCKSwingIndex][7]<<8);
+	} else {
+		for (i = 0; i < CCK_TABLE_SIZE; i++) {
+			if (((CurrCCKSwingVal&0xff) == (u32)CCKSwingTable_Ch14[i][0]) &&
+			    (((CurrCCKSwingVal&0xff00)>>8) == (u32)CCKSwingTable_Ch14[i][1])) {
+				CCKSwingIndex = i;
+				break;
+			}
+		}
+
+		/* Write 0xa22 0xa23 */
+		TempVal = CCKSwingTable_Ch14[CCKSwingIndex][0] +
+				(CCKSwingTable_Ch14[CCKSwingIndex][1]<<8);
+
+		/* Write 0xa24 ~ 0xa27 */
+		TempVal2 = 0;
+		TempVal2 = CCKSwingTable_Ch14[CCKSwingIndex][2] +
+				(CCKSwingTable_Ch14[CCKSwingIndex][3]<<8) +
+				(CCKSwingTable_Ch14[CCKSwingIndex][4]<<16)+
+				(CCKSwingTable_Ch14[CCKSwingIndex][5]<<24);
+
+		/* Write 0xa28  0xa29 */
+		TempVal3 = 0;
+		TempVal3 = CCKSwingTable_Ch14[CCKSwingIndex][6] +
+				(CCKSwingTable_Ch14[CCKSwingIndex][7]<<8);
+	}
+
+	write_bbreg(Adapter, rCCK0_TxFilter1, bMaskHWord, TempVal);
+	write_bbreg(Adapter, rCCK0_TxFilter2, bMaskDWord, TempVal2);
+	write_bbreg(Adapter, rCCK0_DebugPort, bMaskLWord, TempVal3);
+}
+
+void Hal_MPT_CCKTxPowerAdjustbyIndex(struct adapter *pAdapter, bool beven)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
+	struct mpt_context *pMptCtx = &pAdapter->mppriv.MptCtx;
+	struct odm_dm_struct *pDM_Odm = &(pHalData->odmpriv);
+	s32		TempCCk;
+	u8		CCK_index, CCK_index_old = 0;
+	u8		Action = 0;	/* 0: no action, 1: even->odd, 2:odd->even */
+	s32		i = 0;
+
+
+	if (!IS_92C_SERIAL(pHalData->VersionID))
+		return;
+	if (beven && !pMptCtx->bMptIndexEven) {
+		/* odd->even */
+		Action = 2;
+		pMptCtx->bMptIndexEven = true;
+	} else if (!beven && pMptCtx->bMptIndexEven) {
+		/* even->odd */
+		Action = 1;
+		pMptCtx->bMptIndexEven = false;
+	}
+
+	if (Action != 0) {
+		/* Query CCK default setting From 0xa24 */
+		TempCCk = read_bbreg(pAdapter, rCCK0_TxFilter2, bMaskDWord) & bMaskCCK;
+		for (i = 0; i < CCK_TABLE_SIZE; i++) {
+			if (pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
+				if (_rtw_memcmp((void *)&TempCCk, (void *)&CCKSwingTable_Ch14[i][2], 4)) {
+					CCK_index_old = (u8)i;
+					break;
+				}
+			} else {
+				if (_rtw_memcmp((void *)&TempCCk, (void *)&CCKSwingTable_Ch1_Ch13[i][2], 4)) {
+					CCK_index_old = (u8)i;
+					break;
+				}
+			}
+		}
+
+		if (Action == 1)
+			CCK_index = CCK_index_old - 1;
+		else
+			CCK_index = CCK_index_old + 1;
+
+		/* Adjust CCK according to gain index */
+		if (!pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
+			rtw_write8(pAdapter, 0xa22, CCKSwingTable_Ch1_Ch13[CCK_index][0]);
+			rtw_write8(pAdapter, 0xa23, CCKSwingTable_Ch1_Ch13[CCK_index][1]);
+			rtw_write8(pAdapter, 0xa24, CCKSwingTable_Ch1_Ch13[CCK_index][2]);
+			rtw_write8(pAdapter, 0xa25, CCKSwingTable_Ch1_Ch13[CCK_index][3]);
+			rtw_write8(pAdapter, 0xa26, CCKSwingTable_Ch1_Ch13[CCK_index][4]);
+			rtw_write8(pAdapter, 0xa27, CCKSwingTable_Ch1_Ch13[CCK_index][5]);
+			rtw_write8(pAdapter, 0xa28, CCKSwingTable_Ch1_Ch13[CCK_index][6]);
+			rtw_write8(pAdapter, 0xa29, CCKSwingTable_Ch1_Ch13[CCK_index][7]);
+		} else {
+			rtw_write8(pAdapter, 0xa22, CCKSwingTable_Ch14[CCK_index][0]);
+			rtw_write8(pAdapter, 0xa23, CCKSwingTable_Ch14[CCK_index][1]);
+			rtw_write8(pAdapter, 0xa24, CCKSwingTable_Ch14[CCK_index][2]);
+			rtw_write8(pAdapter, 0xa25, CCKSwingTable_Ch14[CCK_index][3]);
+			rtw_write8(pAdapter, 0xa26, CCKSwingTable_Ch14[CCK_index][4]);
+			rtw_write8(pAdapter, 0xa27, CCKSwingTable_Ch14[CCK_index][5]);
+			rtw_write8(pAdapter, 0xa28, CCKSwingTable_Ch14[CCK_index][6]);
+			rtw_write8(pAdapter, 0xa29, CCKSwingTable_Ch14[CCK_index][7]);
+		}
+	}
+}
+/*---------------------------hal\rtl8192c\MPT_HelperFunc.c---------------------------*/
+
+/*
+ * SetChannel
+ * Description
+ *	Use H2C command to change channel,
+ *	not only modify rf register, but also other setting need to be done.
+ */
+void Hal_SetChannel(struct adapter *pAdapter)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
+	struct mp_priv	*pmp = &pAdapter->mppriv;
+	struct odm_dm_struct *pDM_Odm = &(pHalData->odmpriv);
+	u8		eRFPath;
+	u8		channel = pmp->channel;
+
+	/*  set RF channel register */
+	for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++)
+		_write_rfreg(pAdapter, eRFPath, ODM_CHANNEL, 0x3FF, channel);
+	Hal_mpt_SwitchRfSetting(pAdapter);
+
+	SelectChannel(pAdapter, channel);
+
+	if (pHalData->CurrentChannel == 14 && !pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
+		pDM_Odm->RFCalibrateInfo.bCCKinCH14 = true;
+		Hal_MPT_CCKTxPowerAdjust(pAdapter, pDM_Odm->RFCalibrateInfo.bCCKinCH14);
+	} else if (pHalData->CurrentChannel != 14 && pDM_Odm->RFCalibrateInfo.bCCKinCH14) {
+		pDM_Odm->RFCalibrateInfo.bCCKinCH14 = false;
+		Hal_MPT_CCKTxPowerAdjust(pAdapter, pDM_Odm->RFCalibrateInfo.bCCKinCH14);
+	}
+}
+
+/*
+ * Notice
+ *	Switch bandwitdth may change center frequency(channel)
+ */
+void Hal_SetBandwidth(struct adapter *pAdapter)
+{
+	struct mp_priv *pmp = &pAdapter->mppriv;
+
+
+	SetBWMode(pAdapter, pmp->bandwidth, pmp->prime_channel_offset);
+	Hal_mpt_SwitchRfSetting(pAdapter);
+}
+
+void Hal_SetCCKTxPower(struct adapter *pAdapter, u8 *TxPower)
+{
+	u32 tmpval = 0;
+
+
+	/*  rf-A cck tx power */
+	write_bbreg(pAdapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, TxPower[RF_PATH_A]);
+	tmpval = (TxPower[RF_PATH_A]<<16) | (TxPower[RF_PATH_A]<<8) | TxPower[RF_PATH_A];
+	write_bbreg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
+
+	/*  rf-B cck tx power */
+	write_bbreg(pAdapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, TxPower[RF_PATH_B]);
+	tmpval = (TxPower[RF_PATH_B]<<16) | (TxPower[RF_PATH_B]<<8) | TxPower[RF_PATH_B];
+	write_bbreg(pAdapter, rTxAGC_B_CCK1_55_Mcs32, 0xffffff00, tmpval);
+
+	RT_TRACE(_module_mp_, _drv_notice_,
+		 ("-SetCCKTxPower: A[0x%02x] B[0x%02x]\n",
+		  TxPower[RF_PATH_A], TxPower[RF_PATH_B]));
+}
+
+void Hal_SetOFDMTxPower(struct adapter *pAdapter, u8 *TxPower)
+{
+	u32 TxAGC = 0;
+	u8 tmpval = 0;
+
+	/*  HT Tx-rf(A) */
+	tmpval = TxPower[RF_PATH_A];
+	TxAGC = (tmpval<<24) | (tmpval<<16) | (tmpval<<8) | tmpval;
+
+	write_bbreg(pAdapter, rTxAGC_A_Rate18_06, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_A_Rate54_24, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_A_Mcs03_Mcs00, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_A_Mcs07_Mcs04, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_A_Mcs11_Mcs08, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_A_Mcs15_Mcs12, bMaskDWord, TxAGC);
+
+	/*  HT Tx-rf(B) */
+	tmpval = TxPower[RF_PATH_B];
+	TxAGC = (tmpval<<24) | (tmpval<<16) | (tmpval<<8) | tmpval;
+
+	write_bbreg(pAdapter, rTxAGC_B_Rate18_06, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_B_Rate54_24, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_B_Mcs03_Mcs00, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_B_Mcs07_Mcs04, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_B_Mcs11_Mcs08, bMaskDWord, TxAGC);
+	write_bbreg(pAdapter, rTxAGC_B_Mcs15_Mcs12, bMaskDWord, TxAGC);
+}
+
+void Hal_SetAntennaPathPower(struct adapter *pAdapter)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
+	u8 TxPowerLevel[MAX_RF_PATH_NUMS];
+	u8 rfPath;
+
+	TxPowerLevel[RF_PATH_A] = pAdapter->mppriv.txpoweridx;
+	TxPowerLevel[RF_PATH_B] = pAdapter->mppriv.txpoweridx_b;
+
+	switch (pAdapter->mppriv.antenna_tx) {
+	case ANTENNA_A:
+	default:
+		rfPath = RF_PATH_A;
+		break;
+	case ANTENNA_B:
+		rfPath = RF_PATH_B;
+		break;
+	case ANTENNA_C:
+		rfPath = RF_PATH_C;
+		break;
+	}
+
+	switch (pHalData->rf_chip) {
+	case RF_8225:
+	case RF_8256:
+	case RF_6052:
+		Hal_SetCCKTxPower(pAdapter, TxPowerLevel);
+		if (pAdapter->mppriv.rateidx < MPT_RATE_6M)	/*  CCK rate */
+			Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter, TxPowerLevel[rfPath]%2 == 0);
+		Hal_SetOFDMTxPower(pAdapter, TxPowerLevel);
+		break;
+	default:
+		break;
+	}
+}
+
+void Hal_SetTxPower(struct adapter *pAdapter)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
+	u8 TxPower = pAdapter->mppriv.txpoweridx;
+	u8 TxPowerLevel[MAX_RF_PATH_NUMS];
+	u8 rf, rfPath;
+
+	for (rf = 0; rf < MAX_RF_PATH_NUMS; rf++)
+		TxPowerLevel[rf] = TxPower;
+
+	switch (pAdapter->mppriv.antenna_tx) {
+	case ANTENNA_A:
+	default:
+		rfPath = RF_PATH_A;
+		break;
+	case ANTENNA_B:
+		rfPath = RF_PATH_B;
+		break;
+	case ANTENNA_C:
+		rfPath = RF_PATH_C;
+		break;
+	}
+
+	switch (pHalData->rf_chip) {
+	/*  2008/09/12 MH Test only !! We enable the TX power tracking for MP!!!!! */
+	/*  We should call normal driver API later!! */
+	case RF_8225:
+	case RF_8256:
+	case RF_6052:
+		Hal_SetCCKTxPower(pAdapter, TxPowerLevel);
+		if (pAdapter->mppriv.rateidx < MPT_RATE_6M)	/*  CCK rate */
+			Hal_MPT_CCKTxPowerAdjustbyIndex(pAdapter, TxPowerLevel[rfPath]%2 == 0);
+		Hal_SetOFDMTxPower(pAdapter, TxPowerLevel);
+		break;
+	default:
+		break;
+	}
+}
+
+void Hal_SetDataRate(struct adapter *pAdapter)
+{
+	Hal_mpt_SwitchRfSetting(pAdapter);
+}
+
+void Hal_SetAntenna(struct adapter *pAdapter)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
+
+	struct ant_sel_ofdm *p_ofdm_tx;	/* OFDM Tx register */
+	struct ant_sel_cck *p_cck_txrx;
+	u8	r_rx_antenna_ofdm = 0, r_ant_select_cck_val = 0;
+	u8	chgTx = 0, chgRx = 0;
+	u32	r_ant_select_ofdm_val = 0, r_ofdm_tx_en_val = 0;
+
+
+	p_ofdm_tx = (struct ant_sel_ofdm *)&r_ant_select_ofdm_val;
+	p_cck_txrx = (struct ant_sel_cck *)&r_ant_select_cck_val;
+
+	p_ofdm_tx->r_ant_ht1	= 0x1;
+	p_ofdm_tx->r_ant_ht2	= 0x2;	/*  Second TX RF path is A */
+	p_ofdm_tx->r_ant_non_ht = 0x3;	/*  0x1+0x2=0x3 */
+
+	switch (pAdapter->mppriv.antenna_tx) {
+	case ANTENNA_A:
+		p_ofdm_tx->r_tx_antenna		= 0x1;
+		r_ofdm_tx_en_val		= 0x1;
+		p_ofdm_tx->r_ant_l		= 0x1;
+		p_ofdm_tx->r_ant_ht_s1		= 0x1;
+		p_ofdm_tx->r_ant_non_ht_s1	= 0x1;
+		p_cck_txrx->r_ccktx_enable	= 0x8;
+		chgTx = 1;
+
+		/*  From SD3 Willis suggestion !!! Set RF A=TX and B as standby */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 1);
+		r_ofdm_tx_en_val		= 0x3;
+
+		/*  Power save */
+
+		/*  We need to close RFB by SW control */
+		if (pHalData->rf_type == RF_2T2R) {
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 1);
+			PHY_SetBBReg(pAdapter, rFPGA0_XB_RFInterfaceOE, BIT10, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 0);
+		}
+		break;
+	case ANTENNA_B:
+		p_ofdm_tx->r_tx_antenna		= 0x2;
+		r_ofdm_tx_en_val		= 0x2;
+		p_ofdm_tx->r_ant_l		= 0x2;
+		p_ofdm_tx->r_ant_ht_s1		= 0x2;
+		p_ofdm_tx->r_ant_non_ht_s1	= 0x2;
+		p_cck_txrx->r_ccktx_enable	= 0x4;
+		chgTx = 1;
+		/*  From SD3 Willis suggestion !!! Set RF A as standby */
+		PHY_SetBBReg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 1);
+		PHY_SetBBReg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2);
+
+		/*  Power save */
+		/* cosa r_ant_select_ofdm_val = 0x22222222; */
+
+		/*  2008/10/31 MH From SD3 Willi's suggestion. We must read RF 1T table. */
+		/*  2009/01/08 MH From Sd3 Willis. We need to close RFA by SW control */
+		if (pHalData->rf_type == RF_2T2R || pHalData->rf_type == RF_1T2R) {
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 1);
+			PHY_SetBBReg(pAdapter, rFPGA0_XA_RFInterfaceOE, BIT10, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1);
+		}
+		break;
+	case ANTENNA_AB:	/*  For 8192S */
+		p_ofdm_tx->r_tx_antenna		= 0x3;
+		r_ofdm_tx_en_val		= 0x3;
+		p_ofdm_tx->r_ant_l		= 0x3;
+		p_ofdm_tx->r_ant_ht_s1		= 0x3;
+		p_ofdm_tx->r_ant_non_ht_s1	= 0x3;
+		p_cck_txrx->r_ccktx_enable	= 0xC;
+		chgTx = 1;
+
+		/*  From SD3 Willis suggestion !!! Set RF B as standby */
+		PHY_SetBBReg(pAdapter, rFPGA0_XA_HSSIParameter2, 0xe, 2);
+		PHY_SetBBReg(pAdapter, rFPGA0_XB_HSSIParameter2, 0xe, 2);
+
+		/*  Disable Power save */
+		/* cosa r_ant_select_ofdm_val = 0x3321333; */
+		/*  2009/01/08 MH From Sd3 Willis. We need to enable RFA/B by SW control */
+		if (pHalData->rf_type == RF_2T2R) {
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT10, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFInterfaceSW, BIT26, 0);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT1, 1);
+			PHY_SetBBReg(pAdapter, rFPGA0_XAB_RFParameter, BIT17, 1);
+		}
+		break;
+	default:
+		break;
+	}
+
+	/*  r_rx_antenna_ofdm, bit0=A, bit1=B, bit2=C, bit3=D */
+	/*  r_cckrx_enable : CCK default, 0=A, 1=B, 2=C, 3=D */
+	/*  r_cckrx_enable_2 : CCK option, 0=A, 1=B, 2=C, 3=D */
+	switch (pAdapter->mppriv.antenna_rx) {
+	case ANTENNA_A:
+		r_rx_antenna_ofdm		= 0x1;	/*  A */
+		p_cck_txrx->r_cckrx_enable	= 0x0;	/*  default: A */
+		p_cck_txrx->r_cckrx_enable_2	= 0x0;	/*  option: A */
+		chgRx = 1;
+		break;
+	case ANTENNA_B:
+		r_rx_antenna_ofdm		= 0x2;	/*  B */
+		p_cck_txrx->r_cckrx_enable	= 0x1;	/*  default: B */
+		p_cck_txrx->r_cckrx_enable_2	= 0x1;	/*  option: B */
+		chgRx = 1;
+		break;
+	case ANTENNA_AB:
+		r_rx_antenna_ofdm		= 0x3;	/*  AB */
+		p_cck_txrx->r_cckrx_enable	= 0x0;	/*  default:A */
+		p_cck_txrx->r_cckrx_enable_2	= 0x1;	/*  option:B */
+		chgRx = 1;
+		break;
+	default:
+		break;
+	}
+
+	if (chgTx && chgRx) {
+		switch (pHalData->rf_chip) {
+		case RF_8225:
+		case RF_8256:
+		case RF_6052:
+			/* r_ant_sel_cck_val = r_ant_select_cck_val; */
+			PHY_SetBBReg(pAdapter, rFPGA1_TxInfo, 0x7fffffff, r_ant_select_ofdm_val);	/* OFDM Tx */
+			PHY_SetBBReg(pAdapter, rFPGA0_TxInfo, 0x0000000f, r_ofdm_tx_en_val);		/* OFDM Tx */
+			PHY_SetBBReg(pAdapter, rOFDM0_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm);	/* OFDM Rx */
+			PHY_SetBBReg(pAdapter, rOFDM1_TRxPathEnable, 0x0000000f, r_rx_antenna_ofdm);	/* OFDM Rx */
+			PHY_SetBBReg(pAdapter, rCCK0_AFESetting, bMaskByte3, r_ant_select_cck_val);	/* CCK TxRx */
+
+			break;
+		default:
+			break;
+		}
+	}
+
+	RT_TRACE(_module_mp_, _drv_notice_, ("-SwitchAntenna: finished\n"));
+}
+
+s32 Hal_SetThermalMeter(struct adapter *pAdapter, u8 target_ther)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(pAdapter);
+
+
+	if (!netif_running(pAdapter->pnetdev)) {
+		RT_TRACE(_module_mp_, _drv_warning_, ("SetThermalMeter! Fail: interface not opened!\n"));
+		return _FAIL;
+	}
+
+	if (check_fwstate(&pAdapter->mlmepriv, WIFI_MP_STATE) == false) {
+		RT_TRACE(_module_mp_, _drv_warning_, ("SetThermalMeter: Fail! not in MP mode!\n"));
+		return _FAIL;
+	}
+
+	target_ther &= 0xff;
+	if (target_ther < 0x07)
+		target_ther = 0x07;
+	else if (target_ther > 0x1d)
+		target_ther = 0x1d;
+
+	pHalData->EEPROMThermalMeter = target_ther;
+
+	return _SUCCESS;
+}
+
+void Hal_TriggerRFThermalMeter(struct adapter *pAdapter)
+{
+	_write_rfreg(pAdapter, RF_PATH_A , RF_T_METER_88E , BIT17 | BIT16 , 0x03);
+}
+
+u8 Hal_ReadRFThermalMeter(struct adapter *pAdapter)
+{
+	u32 ThermalValue = 0;
+
+	ThermalValue = _read_rfreg(pAdapter, RF_PATH_A, RF_T_METER_88E, 0xfc00);
+	return (u8)ThermalValue;
+}
+
+void Hal_GetThermalMeter(struct adapter *pAdapter, u8 *value)
+{
+	Hal_TriggerRFThermalMeter(pAdapter);
+	rtw_msleep_os(1000);
+	*value = Hal_ReadRFThermalMeter(pAdapter);
+}
+
+void Hal_SetSingleCarrierTx(struct adapter *pAdapter, u8 bStart)
+{
+	pAdapter->mppriv.MptCtx.bSingleCarrier = bStart;
+	if (bStart) {
+		/*  Start Single Carrier. */
+		RT_TRACE(_module_mp_, _drv_alert_, ("SetSingleCarrierTx: test start\n"));
+		/*  1. if OFDM block on? */
+		if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn))
+			write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);/* set OFDM block on */
+
+		/*  2. set CCK test mode off, set to CCK normal mode */
+		write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, bDisable);
+		/*  3. turn on scramble setting */
+		write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
+		/*  4. Turn On Single Carrier Tx and turn off the other test modes. */
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bEnable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
+		/* for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
+	} else {
+		/*  Stop Single Carrier. */
+		RT_TRACE(_module_mp_, _drv_alert_, ("SetSingleCarrierTx: test stop\n"));
+
+		/*  Turn off all test modes. */
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
+		rtw_msleep_os(10);
+
+		/* BB Reset */
+		write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
+		write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
+
+		/* Stop for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
+	}
+}
+
+
+void Hal_SetSingleToneTx(struct adapter *pAdapter, u8 bStart)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(pAdapter);
+	bool		is92C = IS_92C_SERIAL(pHalData->VersionID);
+
+	u8 rfPath;
+	u32              reg58 = 0x0;
+	switch (pAdapter->mppriv.antenna_tx) {
+	case ANTENNA_A:
+	default:
+		rfPath = RF_PATH_A;
+		break;
+	case ANTENNA_B:
+		rfPath = RF_PATH_B;
+		break;
+	case ANTENNA_C:
+		rfPath = RF_PATH_C;
+		break;
+	}
+
+	pAdapter->mppriv.MptCtx.bSingleTone = bStart;
+	if (bStart) {
+		/*  Start Single Tone. */
+		RT_TRACE(_module_mp_, _drv_alert_, ("SetSingleToneTx: test start\n"));
+		/*  <20120326, Kordan> To amplify the power of tone for Xtal calibration. (asked by Edlu) */
+		if (IS_HARDWARE_TYPE_8188E(pAdapter)) {
+			reg58 = PHY_QueryRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask);
+			reg58 &= 0xFFFFFFF0;
+			reg58 += 2;
+			PHY_SetRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask, reg58);
+		}
+		PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, bCCKEn, 0x0);
+		PHY_SetBBReg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 0x0);
+
+		if (is92C) {
+			_write_rfreg(pAdapter, RF_PATH_A, 0x21, BIT19, 0x01);
+			rtw_usleep_os(100);
+			if (rfPath == RF_PATH_A)
+				write_rfreg(pAdapter, RF_PATH_B, 0x00, 0x10000); /*  PAD all on. */
+			else if (rfPath == RF_PATH_B)
+				write_rfreg(pAdapter, RF_PATH_A, 0x00, 0x10000); /*  PAD all on. */
+			write_rfreg(pAdapter, rfPath, 0x00, 0x2001f); /*  PAD all on. */
+			rtw_usleep_os(100);
+		} else {
+			write_rfreg(pAdapter, rfPath, 0x21, 0xd4000);
+			rtw_usleep_os(100);
+			write_rfreg(pAdapter, rfPath, 0x00, 0x2001f); /*  PAD all on. */
+			rtw_usleep_os(100);
+		}
+
+		/* for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
+
+	} else {
+		/*  Stop Single Tone. */
+		RT_TRACE(_module_mp_, _drv_alert_, ("SetSingleToneTx: test stop\n"));
+
+		/*  <20120326, Kordan> To amplify the power of tone for Xtal calibration. (asked by Edlu) */
+		/*  <20120326, Kordan> Only in single tone mode. (asked by Edlu) */
+		if (IS_HARDWARE_TYPE_8188E(pAdapter)) {
+			reg58 = PHY_QueryRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask);
+			reg58 &= 0xFFFFFFF0;
+			PHY_SetRFReg(pAdapter, RF_PATH_A, LNA_Low_Gain_3, bRFRegOffsetMask, reg58);
+		}
+		write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, 0x1);
+		write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, 0x1);
+		if (is92C) {
+			_write_rfreg(pAdapter, RF_PATH_A, 0x21, BIT19, 0x00);
+			rtw_usleep_os(100);
+			write_rfreg(pAdapter, RF_PATH_A, 0x00, 0x32d75); /*  PAD all on. */
+			write_rfreg(pAdapter, RF_PATH_B, 0x00, 0x32d75); /*  PAD all on. */
+			rtw_usleep_os(100);
+		} else {
+			write_rfreg(pAdapter, rfPath, 0x21, 0x54000);
+			rtw_usleep_os(100);
+			write_rfreg(pAdapter, rfPath, 0x00, 0x30000); /*  PAD all on. */
+			rtw_usleep_os(100);
+		}
+
+		/* Stop for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
+	}
+}
+
+
+
+void Hal_SetCarrierSuppressionTx(struct adapter *pAdapter, u8 bStart)
+{
+	pAdapter->mppriv.MptCtx.bCarrierSuppression = bStart;
+	if (bStart) {
+		/*  Start Carrier Suppression. */
+		RT_TRACE(_module_mp_, _drv_alert_, ("SetCarrierSuppressionTx: test start\n"));
+		if (pAdapter->mppriv.rateidx <= MPT_RATE_11M) {
+			/*  1. if CCK block on? */
+			if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn))
+				write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);/* set CCK block on */
+
+			/* Turn Off All Test Mode */
+			write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
+			write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
+			write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
+
+			write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2);    /* transmit mode */
+			write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x0);  /* turn off scramble setting */
+
+			/* Set CCK Tx Test Rate */
+			write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, 0x0);    /* Set FTxRate to 1Mbps */
+		}
+
+		/* for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
+	} else {
+		/*  Stop Carrier Suppression. */
+		RT_TRACE(_module_mp_, _drv_alert_, ("SetCarrierSuppressionTx: test stop\n"));
+		if (pAdapter->mppriv.rateidx <= MPT_RATE_11M) {
+			write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0);    /* normal mode */
+			write_bbreg(pAdapter, rCCK0_System, bCCKScramble, 0x1);  /* turn on scramble setting */
+
+			/* BB Reset */
+			write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
+			write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
+		}
+
+		/* Stop for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
+	}
+}
+
+void Hal_SetCCKContinuousTx(struct adapter *pAdapter, u8 bStart)
+{
+	u32 cckrate;
+
+	if (bStart) {
+		RT_TRACE(_module_mp_, _drv_alert_,
+			 ("SetCCKContinuousTx: test start\n"));
+
+		/*  1. if CCK block on? */
+		if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn))
+			write_bbreg(pAdapter, rFPGA0_RFMOD, bCCKEn, bEnable);/* set CCK block on */
+
+		/* Turn Off All Test Mode */
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
+		/* Set CCK Tx Test Rate */
+		cckrate  = pAdapter->mppriv.rateidx;
+		write_bbreg(pAdapter, rCCK0_System, bCCKTxRate, cckrate);
+		write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x2);	/* transmit mode */
+		write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable);	/* turn on scramble setting */
+
+		/* for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
+	} else {
+		RT_TRACE(_module_mp_, _drv_info_,
+			 ("SetCCKContinuousTx: test stop\n"));
+
+		write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, 0x0);	/* normal mode */
+		write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable);	/* turn on scramble setting */
+
+		/* BB Reset */
+		write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
+		write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
+
+		/* Stop for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
+	}
+
+	pAdapter->mppriv.MptCtx.bCckContTx = bStart;
+	pAdapter->mppriv.MptCtx.bOfdmContTx = false;
+} /* mpt_StartCckContTx */
+
+void Hal_SetOFDMContinuousTx(struct adapter *pAdapter, u8 bStart)
+{
+	if (bStart) {
+		RT_TRACE(_module_mp_, _drv_info_, ("SetOFDMContinuousTx: test start\n"));
+		/*  1. if OFDM block on? */
+		if (!read_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn))
+			write_bbreg(pAdapter, rFPGA0_RFMOD, bOFDMEn, bEnable);/* set OFDM block on */
+
+		/*  2. set CCK test mode off, set to CCK normal mode */
+		write_bbreg(pAdapter, rCCK0_System, bCCKBBMode, bDisable);
+
+		/*  3. turn on scramble setting */
+		write_bbreg(pAdapter, rCCK0_System, bCCKScramble, bEnable);
+		/*  4. Turn On Continue Tx and turn off the other test modes. */
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bEnable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
+
+		/* for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000500);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000500);
+
+	} else {
+		RT_TRACE(_module_mp_, _drv_info_, ("SetOFDMContinuousTx: test stop\n"));
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMContinueTx, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleCarrier, bDisable);
+		write_bbreg(pAdapter, rOFDM1_LSTF, bOFDMSingleTone, bDisable);
+		/* Delay 10 ms */
+		rtw_msleep_os(10);
+		/* BB Reset */
+		write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x0);
+		write_bbreg(pAdapter, rPMAC_Reset, bBBResetB, 0x1);
+
+		/* Stop for dynamic set Power index. */
+		write_bbreg(pAdapter, rFPGA0_XA_HSSIParameter1, bMaskDWord, 0x01000100);
+		write_bbreg(pAdapter, rFPGA0_XB_HSSIParameter1, bMaskDWord, 0x01000100);
+	}
+
+	pAdapter->mppriv.MptCtx.bCckContTx = false;
+	pAdapter->mppriv.MptCtx.bOfdmContTx = bStart;
+} /* mpt_StartOfdmContTx */
+
+void Hal_SetContinuousTx(struct adapter *pAdapter, u8 bStart)
+{
+	RT_TRACE(_module_mp_, _drv_info_,
+		 ("SetContinuousTx: rate:%d\n", pAdapter->mppriv.rateidx));
+
+	pAdapter->mppriv.MptCtx.bStartContTx = bStart;
+	if (pAdapter->mppriv.rateidx <= MPT_RATE_11M)
+		Hal_SetCCKContinuousTx(pAdapter, bStart);
+	else if ((pAdapter->mppriv.rateidx >= MPT_RATE_6M) &&
+		 (pAdapter->mppriv.rateidx <= MPT_RATE_MCS15))
+		Hal_SetOFDMContinuousTx(pAdapter, bStart);
+}
diff --git a/drivers/staging/rtl8188eu/hal/rtl8188e_phycfg.c b/drivers/staging/rtl8188eu/hal/rtl8188e_phycfg.c
new file mode 100644
index 0000000..ff468a6
--- /dev/null
+++ b/drivers/staging/rtl8188eu/hal/rtl8188e_phycfg.c
@@ -0,0 +1,1144 @@
+/******************************************************************************
+ *
+ * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
+ *
+ *
+ ******************************************************************************/
+#define _RTL8188E_PHYCFG_C_
+
+#include <osdep_service.h>
+#include <drv_types.h>
+#include <rtw_iol.h>
+#include <rtl8188e_hal.h>
+
+/*---------------------------Define Local Constant---------------------------*/
+/* Channel switch:The size of command tables for switch channel*/
+#define MAX_PRECMD_CNT 16
+#define MAX_RFDEPENDCMD_CNT 16
+#define MAX_POSTCMD_CNT 16
+
+#define MAX_DOZE_WAITING_TIMES_9x 64
+
+/*---------------------------Define Local Constant---------------------------*/
+
+
+/*------------------------Define global variable-----------------------------*/
+
+/*------------------------Define local variable------------------------------*/
+
+
+/*--------------------Define export function prototype-----------------------*/
+/*  Please refer to header file */
+/*--------------------Define export function prototype-----------------------*/
+
+/*----------------------------Function Body----------------------------------*/
+/*  */
+/*  1. BB register R/W API */
+/*  */
+
+/**
+* Function:	phy_CalculateBitShift
+*
+* OverView:	Get shifted position of the BitMask
+*
+* Input:
+*			u32		BitMask,
+*
+* Output:	none
+* Return:		u32		Return the shift bit bit position of the mask
+*/
+static	u32 phy_CalculateBitShift(u32 BitMask)
+{
+	u32 i;
+
+	for (i = 0; i <= 31; i++) {
+		if (((BitMask>>i) &  0x1) == 1)
+			break;
+	}
+	return i;
+}
+
+/**
+* Function:	PHY_QueryBBReg
+*
+* OverView:	Read "sepcific bits" from BB register
+*
+* Input:
+*			struct adapter *Adapter,
+*			u32			RegAddr,	The target address to be readback
+*			u32			BitMask		The target bit position in the target address
+*								to be readback
+* Output:	None
+* Return:		u32			Data		The readback register value
+* Note:		This function is equal to "GetRegSetting" in PHY programming guide
+*/
+u32
+rtl8188e_PHY_QueryBBReg(
+		struct adapter *Adapter,
+		u32 RegAddr,
+		u32 BitMask
+	)
+{
+	u32 ReturnValue = 0, OriginalValue, BitShift;
+
+	OriginalValue = rtw_read32(Adapter, RegAddr);
+	BitShift = phy_CalculateBitShift(BitMask);
+	ReturnValue = (OriginalValue & BitMask) >> BitShift;
+	return ReturnValue;
+}
+
+
+/**
+* Function:	PHY_SetBBReg
+*
+* OverView:	Write "Specific bits" to BB register (page 8~)
+*
+* Input:
+*			struct adapter *Adapter,
+*			u32			RegAddr,	The target address to be modified
+*			u32			BitMask		The target bit position in the target address
+*									to be modified
+*			u32			Data		The new register value in the target bit position
+*									of the target address
+*
+* Output:	None
+* Return:		None
+* Note:		This function is equal to "PutRegSetting" in PHY programming guide
+*/
+
+void rtl8188e_PHY_SetBBReg(struct adapter *Adapter, u32 RegAddr, u32 BitMask, u32 Data)
+{
+	u32 OriginalValue, BitShift;
+
+	if (BitMask != bMaskDWord) { /* if not "double word" write */
+		OriginalValue = rtw_read32(Adapter, RegAddr);
+		BitShift = phy_CalculateBitShift(BitMask);
+		Data = ((OriginalValue & (~BitMask)) | (Data << BitShift));
+	}
+
+	rtw_write32(Adapter, RegAddr, Data);
+}
+
+
+/*  */
+/*  2. RF register R/W API */
+/*  */
+/**
+* Function:	phy_RFSerialRead
+*
+* OverView:	Read regster from RF chips
+*
+* Input:
+*			struct adapter *Adapter,
+*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
+*			u32			Offset,		The target address to be read
+*
+* Output:	None
+* Return:		u32			reback value
+* Note:		Threre are three types of serial operations:
+*			1. Software serial write
+*			2. Hardware LSSI-Low Speed Serial Interface
+*			3. Hardware HSSI-High speed
+*			serial write. Driver need to implement (1) and (2).
+*			This function is equal to the combination of RF_ReadReg() and  RFLSSIRead()
+*/
+static	u32
+phy_RFSerialRead(
+		struct adapter *Adapter,
+		enum rf_radio_path eRFPath,
+		u32 Offset
+	)
+{
+	u32 retValue = 0;
+	struct hal_data_8188e				*pHalData = GET_HAL_DATA(Adapter);
+	struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath];
+	u32 NewOffset;
+	u32 tmplong, tmplong2;
+	u8 	RfPiEnable = 0;
+	/*  */
+	/*  Make sure RF register offset is correct */
+	/*  */
+	Offset &= 0xff;
+
+	/*  */
+	/*  Switch page for 8256 RF IC */
+	/*  */
+	NewOffset = Offset;
+
+	/*  For 92S LSSI Read RFLSSIRead */
+	/*  For RF A/B write 0x824/82c(does not work in the future) */
+	/*  We must use 0x824 for RF A and B to execute read trigger */
+	tmplong = PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord);
+	if (eRFPath == RF_PATH_A)
+		tmplong2 = tmplong;
+	else
+		tmplong2 = PHY_QueryBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord);
+
+	tmplong2 = (tmplong2 & (~bLSSIReadAddress)) | (NewOffset<<23) | bLSSIReadEdge;	/* T65 RF */
+
+	PHY_SetBBReg(Adapter, rFPGA0_XA_HSSIParameter2, bMaskDWord, tmplong&(~bLSSIReadEdge));
+	rtw_udelay_os(10);/*  PlatformStallExecution(10); */
+
+	PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, bMaskDWord, tmplong2);
+	rtw_udelay_os(100);/* PlatformStallExecution(100); */
+
+	rtw_udelay_os(10);/* PlatformStallExecution(10); */
+
+	if (eRFPath == RF_PATH_A)
+		RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XA_HSSIParameter1, BIT8);
+	else if (eRFPath == RF_PATH_B)
+		RfPiEnable = (u8)PHY_QueryBBReg(Adapter, rFPGA0_XB_HSSIParameter1, BIT8);
+
+	if (RfPiEnable) {	/*  Read from BBreg8b8, 12 bits for 8190, 20bits for T65 RF */
+		retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBackPi, bLSSIReadBackData);
+	} else {	/* Read from BBreg8a0, 12 bits for 8190, 20 bits for T65 RF */
+		retValue = PHY_QueryBBReg(Adapter, pPhyReg->rfLSSIReadBack, bLSSIReadBackData);
+	}
+	return retValue;
+}
+
+/**
+* Function:	phy_RFSerialWrite
+*
+* OverView:	Write data to RF register (page 8~)
+*
+* Input:
+*			struct adapter *Adapter,
+*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
+*			u32			Offset,		The target address to be read
+*			u32			Data		The new register Data in the target bit position
+*									of the target to be read
+*
+* Output:	None
+* Return:		None
+* Note:		Threre are three types of serial operations:
+*			1. Software serial write
+*			2. Hardware LSSI-Low Speed Serial Interface
+*			3. Hardware HSSI-High speed
+*			serial write. Driver need to implement (1) and (2).
+*			This function is equal to the combination of RF_ReadReg() and  RFLSSIRead()
+ *
+ * Note:		  For RF8256 only
+ *			 The total count of RTL8256(Zebra4) register is around 36 bit it only employs
+ *			 4-bit RF address. RTL8256 uses "register mode control bit" (Reg00[12], Reg00[10])
+ *			 to access register address bigger than 0xf. See "Appendix-4 in PHY Configuration
+ *			 programming guide" for more details.
+ *			 Thus, we define a sub-finction for RTL8526 register address conversion
+ *		       ===========================================================
+ *			 Register Mode		RegCTL[1]		RegCTL[0]		Note
+ *								(Reg00[12])		(Reg00[10])
+ *		       ===========================================================
+ *			 Reg_Mode0				0				x			Reg 0 ~15(0x0 ~ 0xf)
+ *		       ------------------------------------------------------------------
+ *			 Reg_Mode1				1				0			Reg 16 ~30(0x1 ~ 0xf)
+ *		       ------------------------------------------------------------------
+ *			 Reg_Mode2				1				1			Reg 31 ~ 45(0x1 ~ 0xf)
+ *		       ------------------------------------------------------------------
+ *
+ *	2008/09/02	MH	Add 92S RF definition
+ *
+ *
+ *
+*/
+static	void
+phy_RFSerialWrite(
+		struct adapter *Adapter,
+		enum rf_radio_path eRFPath,
+		u32 Offset,
+		u32 Data
+	)
+{
+	u32 DataAndAddr = 0;
+	struct hal_data_8188e				*pHalData = GET_HAL_DATA(Adapter);
+	struct bb_reg_def *pPhyReg = &pHalData->PHYRegDef[eRFPath];
+	u32 NewOffset;
+
+
+	/*  2009/06/17 MH We can not execute IO for power save or other accident mode. */
+
+	Offset &= 0xff;
+
+	/*  */
+	/*  Switch page for 8256 RF IC */
+	/*  */
+	NewOffset = Offset;
+
+	/*  */
+	/*  Put write addr in [5:0]  and write data in [31:16] */
+	/*  */
+	DataAndAddr = ((NewOffset<<20) | (Data&0x000fffff)) & 0x0fffffff;	/*  T65 RF */
+
+	/*  */
+	/*  Write Operation */
+	/*  */
+	PHY_SetBBReg(Adapter, pPhyReg->rf3wireOffset, bMaskDWord, DataAndAddr);
+}
+
+/**
+* Function:	PHY_QueryRFReg
+*
+* OverView:	Query "Specific bits" to RF register (page 8~)
+*
+* Input:
+*			struct adapter *Adapter,
+*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
+*			u32			RegAddr,	The target address to be read
+*			u32			BitMask		The target bit position in the target address
+*									to be read
+*
+* Output:	None
+* Return:		u32			Readback value
+* Note:		This function is equal to "GetRFRegSetting" in PHY programming guide
+*/
+u32 rtl8188e_PHY_QueryRFReg(struct adapter *Adapter, enum rf_radio_path eRFPath,
+			    u32 RegAddr, u32 BitMask)
+{
+	u32 Original_Value, Readback_Value, BitShift;
+
+	Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
+
+	BitShift =  phy_CalculateBitShift(BitMask);
+	Readback_Value = (Original_Value & BitMask) >> BitShift;
+	return Readback_Value;
+}
+
+/**
+* Function:	PHY_SetRFReg
+*
+* OverView:	Write "Specific bits" to RF register (page 8~)
+*
+* Input:
+*			struct adapter *Adapter,
+*			enum rf_radio_path eRFPath,	Radio path of A/B/C/D
+*			u32			RegAddr,	The target address to be modified
+*			u32			BitMask		The target bit position in the target address
+*									to be modified
+*			u32			Data		The new register Data in the target bit position
+*									of the target address
+*
+* Output:	None
+* Return:		None
+* Note:		This function is equal to "PutRFRegSetting" in PHY programming guide
+*/
+void
+rtl8188e_PHY_SetRFReg(
+		struct adapter *Adapter,
+		enum rf_radio_path eRFPath,
+		u32 RegAddr,
+		u32 BitMask,
+		u32 Data
+	)
+{
+	u32 Original_Value, BitShift;
+
+	/*  RF data is 12 bits only */
+	if (BitMask != bRFRegOffsetMask) {
+		Original_Value = phy_RFSerialRead(Adapter, eRFPath, RegAddr);
+		BitShift =  phy_CalculateBitShift(BitMask);
+		Data = ((Original_Value & (~BitMask)) | (Data << BitShift));
+	}
+
+	phy_RFSerialWrite(Adapter, eRFPath, RegAddr, Data);
+}
+
+/*  */
+/*  3. Initial MAC/BB/RF config by reading MAC/BB/RF txt. */
+/*  */
+
+/*-----------------------------------------------------------------------------
+ * Function:    PHY_MACConfig8192C
+ *
+ * Overview:	Condig MAC by header file or parameter file.
+ *
+ * Input:       NONE
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Revised History:
+ *  When		Who		Remark
+ *  08/12/2008	MHC		Create Version 0.
+ *
+ *---------------------------------------------------------------------------*/
+s32 PHY_MACConfig8188E(struct adapter *Adapter)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	int rtStatus = _SUCCESS;
+
+	/*  */
+	/*  Config MAC */
+	/*  */
+	if (HAL_STATUS_FAILURE == ODM_ConfigMACWithHeaderFile(&pHalData->odmpriv))
+		rtStatus = _FAIL;
+
+	/*  2010.07.13 AMPDU aggregation number B */
+	rtw_write16(Adapter, REG_MAX_AGGR_NUM, MAX_AGGR_NUM);
+
+	return rtStatus;
+}
+
+/**
+* Function:	phy_InitBBRFRegisterDefinition
+*
+* OverView:	Initialize Register definition offset for Radio Path A/B/C/D
+*
+* Input:
+*			struct adapter *Adapter,
+*
+* Output:	None
+* Return:		None
+* Note:		The initialization value is constant and it should never be changes
+*/
+static	void
+phy_InitBBRFRegisterDefinition(
+		struct adapter *Adapter
+)
+{
+	struct hal_data_8188e		*pHalData = GET_HAL_DATA(Adapter);
+
+	/*  RF Interface Sowrtware Control */
+	pHalData->PHYRegDef[RF_PATH_A].rfintfs = rFPGA0_XAB_RFInterfaceSW; /*  16 LSBs if read 32-bit from 0x870 */
+	pHalData->PHYRegDef[RF_PATH_B].rfintfs = rFPGA0_XAB_RFInterfaceSW; /*  16 MSBs if read 32-bit from 0x870 (16-bit for 0x872) */
+	pHalData->PHYRegDef[RF_PATH_C].rfintfs = rFPGA0_XCD_RFInterfaceSW;/*  16 LSBs if read 32-bit from 0x874 */
+	pHalData->PHYRegDef[RF_PATH_D].rfintfs = rFPGA0_XCD_RFInterfaceSW;/*  16 MSBs if read 32-bit from 0x874 (16-bit for 0x876) */
+
+	/*  RF Interface Readback Value */
+	pHalData->PHYRegDef[RF_PATH_A].rfintfi = rFPGA0_XAB_RFInterfaceRB; /*  16 LSBs if read 32-bit from 0x8E0 */
+	pHalData->PHYRegDef[RF_PATH_B].rfintfi = rFPGA0_XAB_RFInterfaceRB;/*  16 MSBs if read 32-bit from 0x8E0 (16-bit for 0x8E2) */
+	pHalData->PHYRegDef[RF_PATH_C].rfintfi = rFPGA0_XCD_RFInterfaceRB;/*  16 LSBs if read 32-bit from 0x8E4 */
+	pHalData->PHYRegDef[RF_PATH_D].rfintfi = rFPGA0_XCD_RFInterfaceRB;/*  16 MSBs if read 32-bit from 0x8E4 (16-bit for 0x8E6) */
+
+	/*  RF Interface Output (and Enable) */
+	pHalData->PHYRegDef[RF_PATH_A].rfintfo = rFPGA0_XA_RFInterfaceOE; /*  16 LSBs if read 32-bit from 0x860 */
+	pHalData->PHYRegDef[RF_PATH_B].rfintfo = rFPGA0_XB_RFInterfaceOE; /*  16 LSBs if read 32-bit from 0x864 */
+
+	/*  RF Interface (Output and)  Enable */
+	pHalData->PHYRegDef[RF_PATH_A].rfintfe = rFPGA0_XA_RFInterfaceOE; /*  16 MSBs if read 32-bit from 0x860 (16-bit for 0x862) */
+	pHalData->PHYRegDef[RF_PATH_B].rfintfe = rFPGA0_XB_RFInterfaceOE; /*  16 MSBs if read 32-bit from 0x864 (16-bit for 0x866) */
+
+	/* Addr of LSSI. Wirte RF register by driver */
+	pHalData->PHYRegDef[RF_PATH_A].rf3wireOffset = rFPGA0_XA_LSSIParameter; /* LSSI Parameter */
+	pHalData->PHYRegDef[RF_PATH_B].rf3wireOffset = rFPGA0_XB_LSSIParameter;
+
+	/*  RF parameter */
+	pHalData->PHYRegDef[RF_PATH_A].rfLSSI_Select = rFPGA0_XAB_RFParameter;  /* BB Band Select */
+	pHalData->PHYRegDef[RF_PATH_B].rfLSSI_Select = rFPGA0_XAB_RFParameter;
+	pHalData->PHYRegDef[RF_PATH_C].rfLSSI_Select = rFPGA0_XCD_RFParameter;
+	pHalData->PHYRegDef[RF_PATH_D].rfLSSI_Select = rFPGA0_XCD_RFParameter;
+
+	/*  Tx AGC Gain Stage (same for all path. Should we remove this?) */
+	pHalData->PHYRegDef[RF_PATH_A].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
+	pHalData->PHYRegDef[RF_PATH_B].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
+	pHalData->PHYRegDef[RF_PATH_C].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
+	pHalData->PHYRegDef[RF_PATH_D].rfTxGainStage = rFPGA0_TxGainStage; /* Tx gain stage */
+
+	/*  Tranceiver A~D HSSI Parameter-1 */
+	pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara1 = rFPGA0_XA_HSSIParameter1;  /* wire control parameter1 */
+	pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara1 = rFPGA0_XB_HSSIParameter1;  /* wire control parameter1 */
+
+	/*  Tranceiver A~D HSSI Parameter-2 */
+	pHalData->PHYRegDef[RF_PATH_A].rfHSSIPara2 = rFPGA0_XA_HSSIParameter2;  /* wire control parameter2 */
+	pHalData->PHYRegDef[RF_PATH_B].rfHSSIPara2 = rFPGA0_XB_HSSIParameter2;  /* wire control parameter2 */
+
+	/*  RF switch Control */
+	pHalData->PHYRegDef[RF_PATH_A].rfSwitchControl = rFPGA0_XAB_SwitchControl; /* TR/Ant switch control */
+	pHalData->PHYRegDef[RF_PATH_B].rfSwitchControl = rFPGA0_XAB_SwitchControl;
+	pHalData->PHYRegDef[RF_PATH_C].rfSwitchControl = rFPGA0_XCD_SwitchControl;
+	pHalData->PHYRegDef[RF_PATH_D].rfSwitchControl = rFPGA0_XCD_SwitchControl;
+
+	/*  AGC control 1 */
+	pHalData->PHYRegDef[RF_PATH_A].rfAGCControl1 = rOFDM0_XAAGCCore1;
+	pHalData->PHYRegDef[RF_PATH_B].rfAGCControl1 = rOFDM0_XBAGCCore1;
+	pHalData->PHYRegDef[RF_PATH_C].rfAGCControl1 = rOFDM0_XCAGCCore1;
+	pHalData->PHYRegDef[RF_PATH_D].rfAGCControl1 = rOFDM0_XDAGCCore1;
+
+	/*  AGC control 2 */
+	pHalData->PHYRegDef[RF_PATH_A].rfAGCControl2 = rOFDM0_XAAGCCore2;
+	pHalData->PHYRegDef[RF_PATH_B].rfAGCControl2 = rOFDM0_XBAGCCore2;
+	pHalData->PHYRegDef[RF_PATH_C].rfAGCControl2 = rOFDM0_XCAGCCore2;
+	pHalData->PHYRegDef[RF_PATH_D].rfAGCControl2 = rOFDM0_XDAGCCore2;
+
+	/*  RX AFE control 1 */
+	pHalData->PHYRegDef[RF_PATH_A].rfRxIQImbalance = rOFDM0_XARxIQImbalance;
+	pHalData->PHYRegDef[RF_PATH_B].rfRxIQImbalance = rOFDM0_XBRxIQImbalance;
+	pHalData->PHYRegDef[RF_PATH_C].rfRxIQImbalance = rOFDM0_XCRxIQImbalance;
+	pHalData->PHYRegDef[RF_PATH_D].rfRxIQImbalance = rOFDM0_XDRxIQImbalance;
+
+	/*  RX AFE control 1 */
+	pHalData->PHYRegDef[RF_PATH_A].rfRxAFE = rOFDM0_XARxAFE;
+	pHalData->PHYRegDef[RF_PATH_B].rfRxAFE = rOFDM0_XBRxAFE;
+	pHalData->PHYRegDef[RF_PATH_C].rfRxAFE = rOFDM0_XCRxAFE;
+	pHalData->PHYRegDef[RF_PATH_D].rfRxAFE = rOFDM0_XDRxAFE;
+
+	/*  Tx AFE control 1 */
+	pHalData->PHYRegDef[RF_PATH_A].rfTxIQImbalance = rOFDM0_XATxIQImbalance;
+	pHalData->PHYRegDef[RF_PATH_B].rfTxIQImbalance = rOFDM0_XBTxIQImbalance;
+	pHalData->PHYRegDef[RF_PATH_C].rfTxIQImbalance = rOFDM0_XCTxIQImbalance;
+	pHalData->PHYRegDef[RF_PATH_D].rfTxIQImbalance = rOFDM0_XDTxIQImbalance;
+
+	/*  Tx AFE control 2 */
+	pHalData->PHYRegDef[RF_PATH_A].rfTxAFE = rOFDM0_XATxAFE;
+	pHalData->PHYRegDef[RF_PATH_B].rfTxAFE = rOFDM0_XBTxAFE;
+	pHalData->PHYRegDef[RF_PATH_C].rfTxAFE = rOFDM0_XCTxAFE;
+	pHalData->PHYRegDef[RF_PATH_D].rfTxAFE = rOFDM0_XDTxAFE;
+
+	/*  Tranceiver LSSI Readback SI mode */
+	pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBack = rFPGA0_XA_LSSIReadBack;
+	pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBack = rFPGA0_XB_LSSIReadBack;
+	pHalData->PHYRegDef[RF_PATH_C].rfLSSIReadBack = rFPGA0_XC_LSSIReadBack;
+	pHalData->PHYRegDef[RF_PATH_D].rfLSSIReadBack = rFPGA0_XD_LSSIReadBack;
+
+	/*  Tranceiver LSSI Readback PI mode */
+	pHalData->PHYRegDef[RF_PATH_A].rfLSSIReadBackPi = TransceiverA_HSPI_Readback;
+	pHalData->PHYRegDef[RF_PATH_B].rfLSSIReadBackPi = TransceiverB_HSPI_Readback;
+}
+
+void storePwrIndexDiffRateOffset(struct adapter *Adapter, u32 RegAddr, u32 BitMask, u32 Data)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+
+	if (RegAddr == rTxAGC_A_Rate18_06)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][0] = Data;
+	if (RegAddr == rTxAGC_A_Rate54_24)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][1] = Data;
+	if (RegAddr == rTxAGC_A_CCK1_Mcs32)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][6] = Data;
+	if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0xffffff00)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][7] = Data;
+	if (RegAddr == rTxAGC_A_Mcs03_Mcs00)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][2] = Data;
+	if (RegAddr == rTxAGC_A_Mcs07_Mcs04)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][3] = Data;
+	if (RegAddr == rTxAGC_A_Mcs11_Mcs08)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][4] = Data;
+	if (RegAddr == rTxAGC_A_Mcs15_Mcs12) {
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][5] = Data;
+		if (pHalData->rf_type == RF_1T1R)
+			pHalData->pwrGroupCnt++;
+	}
+	if (RegAddr == rTxAGC_B_Rate18_06)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][8] = Data;
+	if (RegAddr == rTxAGC_B_Rate54_24)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][9] = Data;
+	if (RegAddr == rTxAGC_B_CCK1_55_Mcs32)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][14] = Data;
+	if (RegAddr == rTxAGC_B_CCK11_A_CCK2_11 && BitMask == 0x000000ff)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][15] = Data;
+	if (RegAddr == rTxAGC_B_Mcs03_Mcs00)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][10] = Data;
+	if (RegAddr == rTxAGC_B_Mcs07_Mcs04)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][11] = Data;
+	if (RegAddr == rTxAGC_B_Mcs11_Mcs08)
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][12] = Data;
+	if (RegAddr == rTxAGC_B_Mcs15_Mcs12) {
+		pHalData->MCSTxPowerLevelOriginalOffset[pHalData->pwrGroupCnt][13] = Data;
+		if (pHalData->rf_type != RF_1T1R)
+			pHalData->pwrGroupCnt++;
+	}
+}
+
+static	int phy_BB8188E_Config_ParaFile(struct adapter *Adapter)
+{
+	struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(Adapter);
+	struct hal_data_8188e		*pHalData = GET_HAL_DATA(Adapter);
+	int			rtStatus = _SUCCESS;
+
+	/*  */
+	/*  1. Read PHY_REG.TXT BB INIT!! */
+	/*  We will seperate as 88C / 92C according to chip version */
+	/*  */
+	if (HAL_STATUS_FAILURE == ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG))
+		rtStatus = _FAIL;
+	if (rtStatus != _SUCCESS)
+		goto phy_BB8190_Config_ParaFile_Fail;
+
+	/*  2. If EEPROM or EFUSE autoload OK, We must config by PHY_REG_PG.txt */
+	if (!pEEPROM->bautoload_fail_flag) {
+		pHalData->pwrGroupCnt = 0;
+
+		if (HAL_STATUS_FAILURE == ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv, CONFIG_BB_PHY_REG_PG))
+			rtStatus = _FAIL;
+	}
+
+	if (rtStatus != _SUCCESS)
+		goto phy_BB8190_Config_ParaFile_Fail;
+
+	/*  3. BB AGC table Initialization */
+	if (HAL_STATUS_FAILURE == ODM_ConfigBBWithHeaderFile(&pHalData->odmpriv,  CONFIG_BB_AGC_TAB))
+		rtStatus = _FAIL;
+
+	if (rtStatus != _SUCCESS)
+		goto phy_BB8190_Config_ParaFile_Fail;
+
+phy_BB8190_Config_ParaFile_Fail:
+
+	return rtStatus;
+}
+
+int
+PHY_BBConfig8188E(
+		struct adapter *Adapter
+	)
+{
+	int	rtStatus = _SUCCESS;
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	u32 RegVal;
+	u8 CrystalCap;
+
+	phy_InitBBRFRegisterDefinition(Adapter);
+
+
+	/*  Enable BB and RF */
+	RegVal = rtw_read16(Adapter, REG_SYS_FUNC_EN);
+	rtw_write16(Adapter, REG_SYS_FUNC_EN, (u16)(RegVal|BIT13|BIT0|BIT1));
+
+	/*  20090923 Joseph: Advised by Steven and Jenyu. Power sequence before init RF. */
+
+	rtw_write8(Adapter, REG_RF_CTRL, RF_EN|RF_RSTB|RF_SDMRSTB);
+
+	rtw_write8(Adapter, REG_SYS_FUNC_EN, FEN_USBA | FEN_USBD | FEN_BB_GLB_RSTn | FEN_BBRSTB);
+
+	/*  Config BB and AGC */
+	rtStatus = phy_BB8188E_Config_ParaFile(Adapter);
+
+	/*  write 0x24[16:11] = 0x24[22:17] = CrystalCap */
+	CrystalCap = pHalData->CrystalCap & 0x3F;
+	PHY_SetBBReg(Adapter, REG_AFE_XTAL_CTRL, 0x7ff800, (CrystalCap | (CrystalCap << 6)));
+
+	return rtStatus;
+}
+
+int PHY_RFConfig8188E(struct adapter *Adapter)
+{
+	int		rtStatus = _SUCCESS;
+
+	/*  RF config */
+	rtStatus = PHY_RF6052_Config8188E(Adapter);
+	return rtStatus;
+}
+
+
+/*-----------------------------------------------------------------------------
+ * Function:    PHY_ConfigRFWithParaFile()
+ *
+ * Overview:    This function read RF parameters from general file format, and do RF 3-wire
+ *
+ * Input:	struct adapter *Adapter
+ *			ps8					pFileName
+ *			enum rf_radio_path eRFPath
+ *
+ * Output:      NONE
+ *
+ * Return:      RT_STATUS_SUCCESS: configuration file exist
+ *
+ * Note:		Delay may be required for RF configuration
+ *---------------------------------------------------------------------------*/
+int rtl8188e_PHY_ConfigRFWithParaFile(struct adapter *Adapter, u8 *pFileName, enum rf_radio_path eRFPath)
+{
+	return _SUCCESS;
+}
+
+void
+rtl8192c_PHY_GetHWRegOriginalValue(
+		struct adapter *Adapter
+	)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+
+	/*  read rx initial gain */
+	pHalData->DefaultInitialGain[0] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XAAGCCore1, bMaskByte0);
+	pHalData->DefaultInitialGain[1] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XBAGCCore1, bMaskByte0);
+	pHalData->DefaultInitialGain[2] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XCAGCCore1, bMaskByte0);
+	pHalData->DefaultInitialGain[3] = (u8)PHY_QueryBBReg(Adapter, rOFDM0_XDAGCCore1, bMaskByte0);
+
+	/*  read framesync */
+	pHalData->framesync = (u8)PHY_QueryBBReg(Adapter, rOFDM0_RxDetector3, bMaskByte0);
+	pHalData->framesyncC34 = PHY_QueryBBReg(Adapter, rOFDM0_RxDetector2, bMaskDWord);
+}
+
+/*  */
+/*	Description: */
+/*		Map dBm into Tx power index according to */
+/*		current HW model, for example, RF and PA, and */
+/*		current wireless mode. */
+/*	By Bruce, 2008-01-29. */
+/*  */
+static	u8 phy_DbmToTxPwrIdx(struct adapter *Adapter, enum wireless_mode WirelessMode, int PowerInDbm)
+{
+	u8 TxPwrIdx = 0;
+	int				Offset = 0;
+
+
+	/*  */
+	/*  Tested by MP, we found that CCK Index 0 equals to 8dbm, OFDM legacy equals to */
+	/*  3dbm, and OFDM HT equals to 0dbm repectively. */
+	/*  Note: */
+	/*	The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */
+	/*  By Bruce, 2008-01-29. */
+	/*  */
+	switch (WirelessMode) {
+	case WIRELESS_MODE_B:
+		Offset = -7;
+		break;
+
+	case WIRELESS_MODE_G:
+	case WIRELESS_MODE_N_24G:
+	default:
+		Offset = -8;
+		break;
+	}
+
+	if ((PowerInDbm - Offset) > 0)
+		TxPwrIdx = (u8)((PowerInDbm - Offset) * 2);
+	else
+		TxPwrIdx = 0;
+
+	/*  Tx Power Index is too large. */
+	if (TxPwrIdx > MAX_TXPWR_IDX_NMODE_92S)
+		TxPwrIdx = MAX_TXPWR_IDX_NMODE_92S;
+
+	return TxPwrIdx;
+}
+
+/*  */
+/*	Description: */
+/*		Map Tx power index into dBm according to */
+/*		current HW model, for example, RF and PA, and */
+/*		current wireless mode. */
+/*	By Bruce, 2008-01-29. */
+/*  */
+static int phy_TxPwrIdxToDbm(struct adapter *Adapter, enum wireless_mode WirelessMode, u8 TxPwrIdx)
+{
+	int				Offset = 0;
+	int				PwrOutDbm = 0;
+
+	/*  */
+	/*  Tested by MP, we found that CCK Index 0 equals to -7dbm, OFDM legacy equals to -8dbm. */
+	/*  Note: */
+	/*	The mapping may be different by different NICs. Do not use this formula for what needs accurate result. */
+	/*  By Bruce, 2008-01-29. */
+	/*  */
+	switch (WirelessMode) {
+	case WIRELESS_MODE_B:
+		Offset = -7;
+		break;
+	case WIRELESS_MODE_G:
+	case WIRELESS_MODE_N_24G:
+	default:
+		Offset = -8;
+		break;
+	}
+
+	PwrOutDbm = TxPwrIdx / 2 + Offset; /*  Discard the decimal part. */
+
+	return PwrOutDbm;
+}
+
+
+/*-----------------------------------------------------------------------------
+ * Function:    GetTxPowerLevel8190()
+ *
+ * Overview:    This function is export to "common" moudule
+ *
+ * Input:       struct adapter *Adapter
+ *			psByte			Power Level
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ *---------------------------------------------------------------------------*/
+void PHY_GetTxPowerLevel8188E(struct adapter *Adapter, u32 *powerlevel)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	u8 TxPwrLevel = 0;
+	int			TxPwrDbm;
+
+	/*  */
+	/*  Because the Tx power indexes are different, we report the maximum of them to */
+	/*  meet the CCX TPC request. By Bruce, 2008-01-31. */
+	/*  */
+
+	/*  CCK */
+	TxPwrLevel = pHalData->CurrentCckTxPwrIdx;
+	TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_B, TxPwrLevel);
+
+	/*  Legacy OFDM */
+	TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx + pHalData->LegacyHTTxPowerDiff;
+
+	/*  Compare with Legacy OFDM Tx power. */
+	if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel) > TxPwrDbm)
+		TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_G, TxPwrLevel);
+
+	/*  HT OFDM */
+	TxPwrLevel = pHalData->CurrentOfdm24GTxPwrIdx;
+
+	/*  Compare with HT OFDM Tx power. */
+	if (phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel) > TxPwrDbm)
+		TxPwrDbm = phy_TxPwrIdxToDbm(Adapter, WIRELESS_MODE_N_24G, TxPwrLevel);
+
+	*powerlevel = TxPwrDbm;
+}
+
+static void getTxPowerIndex88E(struct adapter *Adapter, u8 channel, u8 *cckPowerLevel,
+			       u8 *ofdmPowerLevel, u8 *BW20PowerLevel,
+			       u8 *BW40PowerLevel)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	u8 index = (channel - 1);
+	u8 TxCount = 0, path_nums;
+
+	if ((RF_1T2R == pHalData->rf_type) || (RF_1T1R == pHalData->rf_type))
+		path_nums = 1;
+	else
+		path_nums = 2;
+
+	for (TxCount = 0; TxCount < path_nums; TxCount++) {
+		if (TxCount == RF_PATH_A) {
+			/*  1. CCK */
+			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
+			/* 2. OFDM */
+			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+				pHalData->OFDM_24G_Diff[TxCount][RF_PATH_A];
+			/*  1. BW20 */
+			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+				pHalData->BW20_24G_Diff[TxCount][RF_PATH_A];
+			/* 2. BW40 */
+			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
+		} else if (TxCount == RF_PATH_B) {
+			/*  1. CCK */
+			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
+			/* 2. OFDM */
+			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[TxCount][index];
+			/*  1. BW20 */
+			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[TxCount][RF_PATH_A]+
+			pHalData->BW20_24G_Diff[TxCount][index];
+			/* 2. BW40 */
+			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
+		} else if (TxCount == RF_PATH_C) {
+			/*  1. CCK */
+			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
+			/* 2. OFDM */
+			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_B][index]+
+			pHalData->BW20_24G_Diff[TxCount][index];
+			/*  1. BW20 */
+			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_B][index]+
+			pHalData->BW20_24G_Diff[TxCount][index];
+			/* 2. BW40 */
+			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
+		} else if (TxCount == RF_PATH_D) {
+			/*  1. CCK */
+			cckPowerLevel[TxCount]	= pHalData->Index24G_CCK_Base[TxCount][index];
+			/* 2. OFDM */
+			ofdmPowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_B][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_C][index]+
+			pHalData->BW20_24G_Diff[TxCount][index];
+
+			/*  1. BW20 */
+			BW20PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_A][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_B][index]+
+			pHalData->BW20_24G_Diff[RF_PATH_C][index]+
+			pHalData->BW20_24G_Diff[TxCount][index];
+
+			/* 2. BW40 */
+			BW40PowerLevel[TxCount]	= pHalData->Index24G_BW40_Base[TxCount][index];
+		}
+	}
+}
+
+static void phy_PowerIndexCheck88E(struct adapter *Adapter, u8 channel, u8 *cckPowerLevel,
+				   u8 *ofdmPowerLevel, u8 *BW20PowerLevel, u8 *BW40PowerLevel)
+{
+	struct hal_data_8188e		*pHalData = GET_HAL_DATA(Adapter);
+
+	pHalData->CurrentCckTxPwrIdx = cckPowerLevel[0];
+	pHalData->CurrentOfdm24GTxPwrIdx = ofdmPowerLevel[0];
+	pHalData->CurrentBW2024GTxPwrIdx = BW20PowerLevel[0];
+	pHalData->CurrentBW4024GTxPwrIdx = BW40PowerLevel[0];
+}
+
+/*-----------------------------------------------------------------------------
+ * Function:    SetTxPowerLevel8190()
+ *
+ * Overview:    This function is export to "HalCommon" moudule
+ *			We must consider RF path later!!!!!!!
+ *
+ * Input:       struct adapter *Adapter
+ *			u8		channel
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *	2008/11/04	MHC		We remove EEPROM_93C56.
+ *						We need to move CCX relative code to independet file.
+ *	2009/01/21	MHC		Support new EEPROM format from SD3 requirement.
+ *
+ *---------------------------------------------------------------------------*/
+void
+PHY_SetTxPowerLevel8188E(
+		struct adapter *Adapter,
+		u8 channel
+	)
+{
+	u8 cckPowerLevel[MAX_TX_COUNT] = {0};
+	u8 ofdmPowerLevel[MAX_TX_COUNT] = {0};/*  [0]:RF-A, [1]:RF-B */
+	u8 BW20PowerLevel[MAX_TX_COUNT] = {0};
+	u8 BW40PowerLevel[MAX_TX_COUNT] = {0};
+
+	getTxPowerIndex88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0], &BW20PowerLevel[0], &BW40PowerLevel[0]);
+
+	phy_PowerIndexCheck88E(Adapter, channel, &cckPowerLevel[0], &ofdmPowerLevel[0], &BW20PowerLevel[0], &BW40PowerLevel[0]);
+
+	rtl8188e_PHY_RF6052SetCckTxPower(Adapter, &cckPowerLevel[0]);
+	rtl8188e_PHY_RF6052SetOFDMTxPower(Adapter, &ofdmPowerLevel[0], &BW20PowerLevel[0], &BW40PowerLevel[0], channel);
+}
+
+/*  */
+/*	Description: */
+/*		Update transmit power level of all channel supported. */
+/*  */
+/*	TODO: */
+/*		A mode. */
+/*	By Bruce, 2008-02-04. */
+/*  */
+bool
+PHY_UpdateTxPowerDbm8188E(
+		struct adapter *Adapter,
+		int		powerInDbm
+	)
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	u8 idx;
+	u8 rf_path;
+
+	/*  TODO: A mode Tx power. */
+	u8 CckTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_B, powerInDbm);
+	u8 OfdmTxPwrIdx = phy_DbmToTxPwrIdx(Adapter, WIRELESS_MODE_N_24G, powerInDbm);
+
+	if (OfdmTxPwrIdx - pHalData->LegacyHTTxPowerDiff > 0)
+		OfdmTxPwrIdx -= pHalData->LegacyHTTxPowerDiff;
+	else
+		OfdmTxPwrIdx = 0;
+
+	for (idx = 0; idx < 14; idx++) {
+		for (rf_path = 0; rf_path < 2; rf_path++) {
+			pHalData->TxPwrLevelCck[rf_path][idx] = CckTxPwrIdx;
+			pHalData->TxPwrLevelHT40_1S[rf_path][idx] =
+			pHalData->TxPwrLevelHT40_2S[rf_path][idx] = OfdmTxPwrIdx;
+		}
+	}
+	return true;
+}
+
+void
+PHY_ScanOperationBackup8188E(
+		struct adapter *Adapter,
+		u8 Operation
+	)
+{
+}
+
+/*-----------------------------------------------------------------------------
+ * Function:    PHY_SetBWModeCallback8192C()
+ *
+ * Overview:    Timer callback function for SetSetBWMode
+ *
+ * Input:		PRT_TIMER		pTimer
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Note:		(1) We do not take j mode into consideration now
+ *			(2) Will two workitem of "switch channel" and "switch channel bandwidth" run
+ *			     concurrently?
+ *---------------------------------------------------------------------------*/
+static void
+_PHY_SetBWMode92C(
+		struct adapter *Adapter
+)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	u8 regBwOpMode;
+	u8 regRRSR_RSC;
+
+	if (pHalData->rf_chip == RF_PSEUDO_11N)
+		return;
+
+	/*  There is no 40MHz mode in RF_8225. */
+	if (pHalData->rf_chip == RF_8225)
+		return;
+
+	if (Adapter->bDriverStopped)
+		return;
+
+	/* 3 */
+	/* 3<1>Set MAC register */
+	/* 3 */
+
+	regBwOpMode = rtw_read8(Adapter, REG_BWOPMODE);
+	regRRSR_RSC = rtw_read8(Adapter, REG_RRSR+2);
+
+	switch (pHalData->CurrentChannelBW) {
+	case HT_CHANNEL_WIDTH_20:
+		regBwOpMode |= BW_OPMODE_20MHZ;
+		/*  2007/02/07 Mark by Emily becasue we have not verify whether this register works */
+		rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
+		break;
+	case HT_CHANNEL_WIDTH_40:
+		regBwOpMode &= ~BW_OPMODE_20MHZ;
+		/*  2007/02/07 Mark by Emily becasue we have not verify whether this register works */
+		rtw_write8(Adapter, REG_BWOPMODE, regBwOpMode);
+		regRRSR_RSC = (regRRSR_RSC&0x90) | (pHalData->nCur40MhzPrimeSC<<5);
+		rtw_write8(Adapter, REG_RRSR+2, regRRSR_RSC);
+		break;
+	default:
+		break;
+	}
+
+	/* 3  */
+	/* 3 <2>Set PHY related register */
+	/* 3 */
+	switch (pHalData->CurrentChannelBW) {
+	/* 20 MHz channel*/
+	case HT_CHANNEL_WIDTH_20:
+		PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x0);
+		PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x0);
+		break;
+	/* 40 MHz channel*/
+	case HT_CHANNEL_WIDTH_40:
+		PHY_SetBBReg(Adapter, rFPGA0_RFMOD, bRFMOD, 0x1);
+		PHY_SetBBReg(Adapter, rFPGA1_RFMOD, bRFMOD, 0x1);
+		/*  Set Control channel to upper or lower. These settings are required only for 40MHz */
+		PHY_SetBBReg(Adapter, rCCK0_System, bCCKSideBand, (pHalData->nCur40MhzPrimeSC>>1));
+		PHY_SetBBReg(Adapter, rOFDM1_LSTF, 0xC00, pHalData->nCur40MhzPrimeSC);
+		PHY_SetBBReg(Adapter, 0x818, (BIT26 | BIT27),
+			     (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
+		break;
+	default:
+		break;
+	}
+	/* Skip over setting of J-mode in BB register here. Default value is "None J mode". Emily 20070315 */
+
+	/* 3<3>Set RF related register */
+	switch (pHalData->rf_chip) {
+	case RF_8225:
+		break;
+	case RF_8256:
+		/*  Please implement this function in Hal8190PciPhy8256.c */
+		break;
+	case RF_8258:
+		/*  Please implement this function in Hal8190PciPhy8258.c */
+		break;
+	case RF_PSEUDO_11N:
+		break;
+	case RF_6052:
+		rtl8188e_PHY_RF6052SetBandwidth(Adapter, pHalData->CurrentChannelBW);
+		break;
+	default:
+		break;
+	}
+}
+
+ /*-----------------------------------------------------------------------------
+ * Function:   SetBWMode8190Pci()
+ *
+ * Overview:  This function is export to "HalCommon" moudule
+ *
+ * Input:		struct adapter *Adapter
+ *			enum ht_channel_width Bandwidth	20M or 40M
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Note:		We do not take j mode into consideration now
+ *---------------------------------------------------------------------------*/
+void PHY_SetBWMode8188E(struct adapter *Adapter, enum ht_channel_width Bandwidth,	/*  20M or 40M */
+			unsigned char	Offset)		/*  Upper, Lower, or Don't care */
+{
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	enum ht_channel_width tmpBW = pHalData->CurrentChannelBW;
+
+	pHalData->CurrentChannelBW = Bandwidth;
+
+	pHalData->nCur40MhzPrimeSC = Offset;
+
+	if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved))
+		_PHY_SetBWMode92C(Adapter);
+	else
+		pHalData->CurrentChannelBW = tmpBW;
+}
+
+static void _PHY_SwChnl8192C(struct adapter *Adapter, u8 channel)
+{
+	u8 eRFPath;
+	u32 param1, param2;
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+
+	if (Adapter->bNotifyChannelChange)
+		DBG_88E("[%s] ch = %d\n", __func__, channel);
+
+	/* s1. pre common command - CmdID_SetTxPowerLevel */
+	PHY_SetTxPowerLevel8188E(Adapter, channel);
+
+	/* s2. RF dependent command - CmdID_RF_WriteReg, param1=RF_CHNLBW, param2=channel */
+	param1 = RF_CHNLBW;
+	param2 = channel;
+	for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++) {
+		pHalData->RfRegChnlVal[eRFPath] = ((pHalData->RfRegChnlVal[eRFPath] & 0xfffffc00) | param2);
+		PHY_SetRFReg(Adapter, (enum rf_radio_path)eRFPath, param1, bRFRegOffsetMask, pHalData->RfRegChnlVal[eRFPath]);
+	}
+}
+
+void PHY_SwChnl8188E(struct adapter *Adapter, u8 channel)
+{
+	/*  Call after initialization */
+	struct hal_data_8188e	*pHalData = GET_HAL_DATA(Adapter);
+	u8 tmpchannel = pHalData->CurrentChannel;
+	bool  bResult = true;
+
+	if (pHalData->rf_chip == RF_PSEUDO_11N)
+		return;		/* return immediately if it is peudo-phy */
+
+	if (channel == 0)
+		channel = 1;
+
+	pHalData->CurrentChannel = channel;
+
+	if ((!Adapter->bDriverStopped) && (!Adapter->bSurpriseRemoved)) {
+		_PHY_SwChnl8192C(Adapter, channel);
+
+		if (bResult)
+			;
+		else
+			pHalData->CurrentChannel = tmpchannel;
+
+	} else {
+		pHalData->CurrentChannel = tmpchannel;
+	}
+}
diff --git a/drivers/staging/rtl8188eu/hal/rtl8188e_rf6052.c b/drivers/staging/rtl8188eu/hal/rtl8188e_rf6052.c
new file mode 100644
index 0000000..bfdf9b3
--- /dev/null
+++ b/drivers/staging/rtl8188eu/hal/rtl8188e_rf6052.c
@@ -0,0 +1,572 @@
+/******************************************************************************
+ *
+ * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
+ *
+ *
+ ******************************************************************************/
+/******************************************************************************
+ *
+ *
+ * Module:	rtl8192c_rf6052.c	( Source C File)
+ *
+ * Note:	Provide RF 6052 series relative API.
+ *
+ * Function:
+ *
+ * Export:
+ *
+ * Abbrev:
+ *
+ * History:
+ * Data			Who		Remark
+ *
+ * 09/25/2008	MHC		Create initial version.
+ * 11/05/2008	MHC		Add API for tw power setting.
+ *
+ *
+******************************************************************************/
+
+#define _RTL8188E_RF6052_C_
+
+#include <osdep_service.h>
+#include <drv_types.h>
+
+#include <rtl8188e_hal.h>
+
+/*---------------------------Define Local Constant---------------------------*/
+/*  Define local structure for debug!!!!! */
+struct rf_shadow {
+	/*  Shadow register value */
+	u32 Value;
+	/*  Compare or not flag */
+	u8 Compare;
+	/*  Record If it had ever modified unpredicted */
+	u8 ErrorOrNot;
+	/*  Recorver Flag */
+	u8 Recorver;
+	/*  */
+	u8 Driver_Write;
+};
+
+/*---------------------------Define Local Constant---------------------------*/
+
+
+/*------------------------Define global variable-----------------------------*/
+
+/*------------------------Define local variable------------------------------*/
+
+/*-----------------------------------------------------------------------------
+ * Function:	RF_ChangeTxPath
+ *
+ * Overview:	For RL6052, we must change some RF settign for 1T or 2T.
+ *
+ * Input:		u16 DataRate		0x80-8f, 0x90-9f
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Revised History:
+ * When			Who		Remark
+ * 09/25/2008	MHC		Create Version 0.
+ *						Firmwaer support the utility later.
+ *
+ *---------------------------------------------------------------------------*/
+void rtl8188e_RF_ChangeTxPath(struct adapter *Adapter, u16 DataRate)
+{
+/*  We do not support gain table change inACUT now !!!! Delete later !!! */
+}	/* RF_ChangeTxPath */
+
+
+/*-----------------------------------------------------------------------------
+ * Function:    PHY_RF6052SetBandwidth()
+ *
+ * Overview:    This function is called by SetBWModeCallback8190Pci() only
+ *
+ * Input:       struct adapter *Adapter
+ *			WIRELESS_BANDWIDTH_E	Bandwidth	20M or 40M
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Note:		For RF type 0222D
+ *---------------------------------------------------------------------------*/
+void rtl8188e_PHY_RF6052SetBandwidth(struct adapter *Adapter,
+				     enum ht_channel_width Bandwidth)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+
+	switch (Bandwidth) {
+	case HT_CHANNEL_WIDTH_20:
+		pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff3ff) | BIT(10) | BIT(11));
+		PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, pHalData->RfRegChnlVal[0]);
+		break;
+	case HT_CHANNEL_WIDTH_40:
+		pHalData->RfRegChnlVal[0] = ((pHalData->RfRegChnlVal[0] & 0xfffff3ff) | BIT(10));
+		PHY_SetRFReg(Adapter, RF_PATH_A, RF_CHNLBW, bRFRegOffsetMask, pHalData->RfRegChnlVal[0]);
+		break;
+	default:
+		break;
+	}
+}
+
+/*-----------------------------------------------------------------------------
+ * Function:	PHY_RF6052SetCckTxPower
+ *
+ * Overview:
+ *
+ * Input:       NONE
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Revised History:
+ * When			Who		Remark
+ * 11/05/2008	MHC		Simulate 8192series..
+ *
+ *---------------------------------------------------------------------------*/
+
+void
+rtl8188e_PHY_RF6052SetCckTxPower(
+		struct adapter *Adapter,
+		u8 *pPowerlevel)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	struct dm_priv *pdmpriv = &pHalData->dmpriv;
+	struct mlme_ext_priv *pmlmeext = &Adapter->mlmeextpriv;
+	u32 TxAGC[2] = {0, 0}, tmpval = 0, pwrtrac_value;
+	bool TurboScanOff = false;
+	u8 idx1, idx2;
+	u8 *ptr;
+	u8 direction;
+	/* FOR CE ,must disable turbo scan */
+	TurboScanOff = true;
+
+
+	if (pmlmeext->sitesurvey_res.state == SCAN_PROCESS) {
+		TxAGC[RF_PATH_A] = 0x3f3f3f3f;
+		TxAGC[RF_PATH_B] = 0x3f3f3f3f;
+
+		TurboScanOff = true;/* disable turbo scan */
+
+		if (TurboScanOff) {
+			for (idx1 = RF_PATH_A; idx1 <= RF_PATH_B; idx1++) {
+				TxAGC[idx1] =
+					pPowerlevel[idx1] | (pPowerlevel[idx1]<<8) |
+					(pPowerlevel[idx1]<<16) | (pPowerlevel[idx1]<<24);
+				/*  2010/10/18 MH For external PA module. We need to limit power index to be less than 0x20. */
+				if (TxAGC[idx1] > 0x20 && pHalData->ExternalPA)
+					TxAGC[idx1] = 0x20;
+			}
+		}
+	} else {
+		/* Driver dynamic Tx power shall not affect Tx power.
+		 * It shall be determined by power training mechanism.
+i		 *  Currently, we cannot fully disable driver dynamic
+		 * tx power mechanism because it is referenced by BT
+		 * coexist mechanism.
+		 * In the future, two mechanism shall be separated from
+		 * each other and maintained independantly. */
+		if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1) {
+			TxAGC[RF_PATH_A] = 0x10101010;
+			TxAGC[RF_PATH_B] = 0x10101010;
+		} else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2) {
+			TxAGC[RF_PATH_A] = 0x00000000;
+			TxAGC[RF_PATH_B] = 0x00000000;
+		} else {
+			for (idx1 = RF_PATH_A; idx1 <= RF_PATH_B; idx1++) {
+				TxAGC[idx1] =
+					pPowerlevel[idx1] | (pPowerlevel[idx1]<<8) |
+					(pPowerlevel[idx1]<<16) | (pPowerlevel[idx1]<<24);
+			}
+			if (pHalData->EEPROMRegulatory == 0) {
+				tmpval = (pHalData->MCSTxPowerLevelOriginalOffset[0][6]) +
+						(pHalData->MCSTxPowerLevelOriginalOffset[0][7]<<8);
+				TxAGC[RF_PATH_A] += tmpval;
+
+				tmpval = (pHalData->MCSTxPowerLevelOriginalOffset[0][14]) +
+						(pHalData->MCSTxPowerLevelOriginalOffset[0][15]<<24);
+				TxAGC[RF_PATH_B] += tmpval;
+			}
+		}
+	}
+	for (idx1 = RF_PATH_A; idx1 <= RF_PATH_B; idx1++) {
+		ptr = (u8 *)(&(TxAGC[idx1]));
+		for (idx2 = 0; idx2 < 4; idx2++) {
+			if (*ptr > RF6052_MAX_TX_PWR)
+				*ptr = RF6052_MAX_TX_PWR;
+			ptr++;
+		}
+	}
+	ODM_TxPwrTrackAdjust88E(&pHalData->odmpriv, 1, &direction, &pwrtrac_value);
+
+	if (direction == 1) {
+		/*  Increase TX pwoer */
+		TxAGC[0] += pwrtrac_value;
+		TxAGC[1] += pwrtrac_value;
+	} else if (direction == 2) {
+		/*  Decrease TX pwoer */
+		TxAGC[0] -=  pwrtrac_value;
+		TxAGC[1] -=  pwrtrac_value;
+	}
+
+	/*  rf-A cck tx power */
+	tmpval = TxAGC[RF_PATH_A]&0xff;
+	PHY_SetBBReg(Adapter, rTxAGC_A_CCK1_Mcs32, bMaskByte1, tmpval);
+	tmpval = TxAGC[RF_PATH_A]>>8;
+	PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, 0xffffff00, tmpval);
+
+	/*  rf-B cck tx power */
+	tmpval = TxAGC[RF_PATH_B]>>24;
+	PHY_SetBBReg(Adapter, rTxAGC_B_CCK11_A_CCK2_11, bMaskByte0, tmpval);
+	tmpval = TxAGC[RF_PATH_B]&0x00ffffff;
+	PHY_SetBBReg(Adapter, rTxAGC_B_CCK1_55_Mcs32, 0xffffff00, tmpval);
+}	/* PHY_RF6052SetCckTxPower */
+
+/*  */
+/*  powerbase0 for OFDM rates */
+/*  powerbase1 for HT MCS rates */
+/*  */
+static void getpowerbase88e(struct adapter *Adapter, u8 *pPowerLevelOFDM,
+			    u8 *pPowerLevelBW20, u8 *pPowerLevelBW40, u8 Channel, u32 *OfdmBase, u32 *MCSBase)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	u32 powerBase0, powerBase1;
+	u8 i, powerlevel[2];
+
+	for (i = 0; i < 2; i++) {
+		powerBase0 = pPowerLevelOFDM[i];
+
+		powerBase0 = (powerBase0<<24) | (powerBase0<<16) | (powerBase0<<8) | powerBase0;
+		*(OfdmBase+i) = powerBase0;
+	}
+	for (i = 0; i < pHalData->NumTotalRFPath; i++) {
+		/* Check HT20 to HT40 diff */
+		if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
+			powerlevel[i] = pPowerLevelBW20[i];
+		else
+			powerlevel[i] = pPowerLevelBW40[i];
+		powerBase1 = powerlevel[i];
+		powerBase1 = (powerBase1<<24) | (powerBase1<<16) | (powerBase1<<8) | powerBase1;
+		*(MCSBase+i) = powerBase1;
+	}
+}
+static void get_rx_power_val_by_reg(struct adapter *Adapter, u8 Channel,
+				    u8 index, u32 *powerBase0, u32 *powerBase1,
+				    u32 *pOutWriteVal)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	struct dm_priv	*pdmpriv = &pHalData->dmpriv;
+	u8	i, chnlGroup = 0, pwr_diff_limit[4], customer_pwr_limit;
+	s8	pwr_diff = 0;
+	u32	writeVal, customer_limit, rf;
+	u8	Regulatory = pHalData->EEPROMRegulatory;
+
+	/*  Index 0 & 1= legacy OFDM, 2-5=HT_MCS rate */
+
+	for (rf = 0; rf < 2; rf++) {
+		switch (Regulatory) {
+		case 0:	/*  Realtek better performance */
+				/*  increase power diff defined by Realtek for large power */
+			chnlGroup = 0;
+			writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf ? 8 : 0)] +
+				((index < 2) ? powerBase0[rf] : powerBase1[rf]);
+			break;
+		case 1:	/*  Realtek regulatory */
+			/*  increase power diff defined by Realtek for regulatory */
+			if (pHalData->pwrGroupCnt == 1)
+				chnlGroup = 0;
+			if (pHalData->pwrGroupCnt >= pHalData->PGMaxGroup) {
+				if (Channel < 3)			/*  Chanel 1-2 */
+					chnlGroup = 0;
+				else if (Channel < 6)		/*  Channel 3-5 */
+					chnlGroup = 1;
+				else	 if (Channel < 9)		/*  Channel 6-8 */
+					chnlGroup = 2;
+				else if (Channel < 12)		/*  Channel 9-11 */
+					chnlGroup = 3;
+				else if (Channel < 14)		/*  Channel 12-13 */
+					chnlGroup = 4;
+				else if (Channel == 14)		/*  Channel 14 */
+					chnlGroup = 5;
+			}
+			writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf ? 8 : 0)] +
+					((index < 2) ? powerBase0[rf] : powerBase1[rf]);
+			break;
+		case 2:	/*  Better regulatory */
+				/*  don't increase any power diff */
+			writeVal = ((index < 2) ? powerBase0[rf] : powerBase1[rf]);
+			break;
+		case 3:	/*  Customer defined power diff. */
+				/*  increase power diff defined by customer. */
+			chnlGroup = 0;
+
+			if (index < 2)
+				pwr_diff = pHalData->TxPwrLegacyHtDiff[rf][Channel-1];
+			else if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_20)
+				pwr_diff = pHalData->TxPwrHt20Diff[rf][Channel-1];
+
+			if (pHalData->CurrentChannelBW == HT_CHANNEL_WIDTH_40)
+				customer_pwr_limit = pHalData->PwrGroupHT40[rf][Channel-1];
+			else
+				customer_pwr_limit = pHalData->PwrGroupHT20[rf][Channel-1];
+
+			if (pwr_diff >= customer_pwr_limit)
+				pwr_diff = 0;
+			else
+				pwr_diff = customer_pwr_limit - pwr_diff;
+
+			for (i = 0; i < 4; i++) {
+				pwr_diff_limit[i] = (u8)((pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf ? 8 : 0)]&(0x7f<<(i*8)))>>(i*8));
+
+				if (pwr_diff_limit[i] > pwr_diff)
+					pwr_diff_limit[i] = pwr_diff;
+			}
+			customer_limit = (pwr_diff_limit[3]<<24) | (pwr_diff_limit[2]<<16) |
+					 (pwr_diff_limit[1]<<8) | (pwr_diff_limit[0]);
+			writeVal = customer_limit + ((index < 2) ? powerBase0[rf] : powerBase1[rf]);
+			break;
+		default:
+			chnlGroup = 0;
+			writeVal = pHalData->MCSTxPowerLevelOriginalOffset[chnlGroup][index+(rf ? 8 : 0)] +
+					((index < 2) ? powerBase0[rf] : powerBase1[rf]);
+			break;
+		}
+/*  20100427 Joseph: Driver dynamic Tx power shall not affect Tx power. It shall be determined by power training mechanism. */
+/*  Currently, we cannot fully disable driver dynamic tx power mechanism because it is referenced by BT coexist mechanism. */
+/*  In the future, two mechanism shall be separated from each other and maintained independantly. Thanks for Lanhsin's reminder. */
+		/* 92d do not need this */
+		if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level1)
+			writeVal = 0x14141414;
+		else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_Level2)
+			writeVal = 0x00000000;
+
+		/*  20100628 Joseph: High power mode for BT-Coexist mechanism. */
+		/*  This mechanism is only applied when Driver-Highpower-Mechanism is OFF. */
+		if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT1)
+			writeVal = writeVal - 0x06060606;
+		else if (pdmpriv->DynamicTxHighPowerLvl == TxHighPwrLevel_BT2)
+			writeVal = writeVal;
+		*(pOutWriteVal+rf) = writeVal;
+	}
+}
+static void writeOFDMPowerReg88E(struct adapter *Adapter, u8 index, u32 *pValue)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	u16 regoffset_a[6] = {
+		rTxAGC_A_Rate18_06, rTxAGC_A_Rate54_24,
+		rTxAGC_A_Mcs03_Mcs00, rTxAGC_A_Mcs07_Mcs04,
+		rTxAGC_A_Mcs11_Mcs08, rTxAGC_A_Mcs15_Mcs12};
+	u16 regoffset_b[6] = {
+		rTxAGC_B_Rate18_06, rTxAGC_B_Rate54_24,
+		rTxAGC_B_Mcs03_Mcs00, rTxAGC_B_Mcs07_Mcs04,
+		rTxAGC_B_Mcs11_Mcs08, rTxAGC_B_Mcs15_Mcs12};
+	u8 i, rf, pwr_val[4];
+	u32 writeVal;
+	u16 regoffset;
+
+	for (rf = 0; rf < 2; rf++) {
+		writeVal = pValue[rf];
+		for (i = 0; i < 4; i++) {
+			pwr_val[i] = (u8)((writeVal & (0x7f<<(i*8)))>>(i*8));
+			if (pwr_val[i]  > RF6052_MAX_TX_PWR)
+				pwr_val[i]  = RF6052_MAX_TX_PWR;
+		}
+		writeVal = (pwr_val[3]<<24) | (pwr_val[2]<<16) | (pwr_val[1]<<8) | pwr_val[0];
+
+		if (rf == 0)
+			regoffset = regoffset_a[index];
+		else
+			regoffset = regoffset_b[index];
+
+		PHY_SetBBReg(Adapter, regoffset, bMaskDWord, writeVal);
+
+		/*  201005115 Joseph: Set Tx Power diff for Tx power training mechanism. */
+		if (((pHalData->rf_type == RF_2T2R) &&
+		     (regoffset == rTxAGC_A_Mcs15_Mcs12 || regoffset == rTxAGC_B_Mcs15_Mcs12)) ||
+		    ((pHalData->rf_type != RF_2T2R) &&
+		     (regoffset == rTxAGC_A_Mcs07_Mcs04 || regoffset == rTxAGC_B_Mcs07_Mcs04))) {
+			writeVal = pwr_val[3];
+			if (regoffset == rTxAGC_A_Mcs15_Mcs12 || regoffset == rTxAGC_A_Mcs07_Mcs04)
+				regoffset = 0xc90;
+			if (regoffset == rTxAGC_B_Mcs15_Mcs12 || regoffset == rTxAGC_B_Mcs07_Mcs04)
+				regoffset = 0xc98;
+			for (i = 0; i < 3; i++) {
+				if (i != 2)
+					writeVal = (writeVal > 8) ? (writeVal-8) : 0;
+				else
+					writeVal = (writeVal > 6) ? (writeVal-6) : 0;
+				rtw_write8(Adapter, (u32)(regoffset+i), (u8)writeVal);
+			}
+		}
+	}
+}
+
+/*-----------------------------------------------------------------------------
+ * Function:	PHY_RF6052SetOFDMTxPower
+ *
+ * Overview:	For legacy and HY OFDM, we must read EEPROM TX power index for
+ *			different channel and read original value in TX power register area from
+ *			0xe00. We increase offset and original value to be correct tx pwr.
+ *
+ * Input:       NONE
+ *
+ * Output:      NONE
+ *
+ * Return:      NONE
+ *
+ * Revised History:
+ * When			Who		Remark
+ * 11/05/2008	MHC		Simulate 8192 series method.
+ * 01/06/2009	MHC		1. Prevent Path B tx power overflow or underflow dure to
+ *						A/B pwr difference or legacy/HT pwr diff.
+ *						2. We concern with path B legacy/HT OFDM difference.
+ * 01/22/2009	MHC		Support new EPRO format from SD3.
+ *
+ *---------------------------------------------------------------------------*/
+
+void
+rtl8188e_PHY_RF6052SetOFDMTxPower(
+		struct adapter *Adapter,
+		u8 *pPowerLevelOFDM,
+		u8 *pPowerLevelBW20,
+		u8 *pPowerLevelBW40,
+		u8 Channel)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	u32 writeVal[2], powerBase0[2], powerBase1[2], pwrtrac_value;
+	u8 direction;
+	u8 index = 0;
+
+	getpowerbase88e(Adapter, pPowerLevelOFDM, pPowerLevelBW20, pPowerLevelBW40, Channel, &powerBase0[0], &powerBase1[0]);
+
+	/*  2012/04/23 MH According to power tracking value, we need to revise OFDM tx power. */
+	/*  This is ued to fix unstable power tracking mode. */
+	ODM_TxPwrTrackAdjust88E(&pHalData->odmpriv, 0, &direction, &pwrtrac_value);
+
+	for (index = 0; index < 6; index++) {
+		get_rx_power_val_by_reg(Adapter, Channel, index,
+					&powerBase0[0], &powerBase1[0],
+					&writeVal[0]);
+
+		if (direction == 1) {
+			writeVal[0] += pwrtrac_value;
+			writeVal[1] += pwrtrac_value;
+		} else if (direction == 2) {
+			writeVal[0] -= pwrtrac_value;
+			writeVal[1] -= pwrtrac_value;
+		}
+		writeOFDMPowerReg88E(Adapter, index, &writeVal[0]);
+	}
+}
+
+static int phy_RF6052_Config_ParaFile(struct adapter *Adapter)
+{
+	struct bb_reg_def *pPhyReg;
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	u32 u4RegValue = 0;
+	u8 eRFPath;
+	int rtStatus = _SUCCESS;
+
+	/* 3----------------------------------------------------------------- */
+	/* 3 <2> Initialize RF */
+	/* 3----------------------------------------------------------------- */
+	for (eRFPath = 0; eRFPath < pHalData->NumTotalRFPath; eRFPath++) {
+		pPhyReg = &pHalData->PHYRegDef[eRFPath];
+
+		/*----Store original RFENV control type----*/
+		switch (eRFPath) {
+		case RF_PATH_A:
+		case RF_PATH_C:
+			u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV);
+			break;
+		case RF_PATH_B:
+		case RF_PATH_D:
+			u4RegValue = PHY_QueryBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16);
+			break;
+		}
+		/*----Set RF_ENV enable----*/
+		PHY_SetBBReg(Adapter, pPhyReg->rfintfe, bRFSI_RFENV<<16, 0x1);
+		rtw_udelay_os(1);/* PlatformStallExecution(1); */
+
+		/*----Set RF_ENV output high----*/
+		PHY_SetBBReg(Adapter, pPhyReg->rfintfo, bRFSI_RFENV, 0x1);
+		rtw_udelay_os(1);/* PlatformStallExecution(1); */
+
+		/* Set bit number of Address and Data for RF register */
+		PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireAddressLength, 0x0);	/*  Set 1 to 4 bits for 8255 */
+		rtw_udelay_os(1);/* PlatformStallExecution(1); */
+
+		PHY_SetBBReg(Adapter, pPhyReg->rfHSSIPara2, b3WireDataLength, 0x0);	/*  Set 0 to 12  bits for 8255 */
+		rtw_udelay_os(1);/* PlatformStallExecution(1); */
+
+		/*----Initialize RF fom connfiguration file----*/
+		switch (eRFPath) {
+		case RF_PATH_A:
+			if (HAL_STATUS_FAILURE == ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv, (enum ODM_RF_RADIO_PATH)eRFPath, (enum ODM_RF_RADIO_PATH)eRFPath))
+				rtStatus = _FAIL;
+			break;
+		case RF_PATH_B:
+		if (HAL_STATUS_FAILURE == ODM_ConfigRFWithHeaderFile(&pHalData->odmpriv, (enum ODM_RF_RADIO_PATH)eRFPath, (enum ODM_RF_RADIO_PATH)eRFPath))
+				rtStatus = _FAIL;
+			break;
+		case RF_PATH_C:
+			break;
+		case RF_PATH_D:
+			break;
+		}
+		/*----Restore RFENV control type----*/;
+		switch (eRFPath) {
+		case RF_PATH_A:
+		case RF_PATH_C:
+			PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV, u4RegValue);
+			break;
+		case RF_PATH_B:
+		case RF_PATH_D:
+			PHY_SetBBReg(Adapter, pPhyReg->rfintfs, bRFSI_RFENV<<16, u4RegValue);
+			break;
+		}
+		if (rtStatus != _SUCCESS)
+			goto phy_RF6052_Config_ParaFile_Fail;
+	}
+	return rtStatus;
+
+phy_RF6052_Config_ParaFile_Fail:
+	return rtStatus;
+}
+
+int PHY_RF6052_Config8188E(struct adapter *Adapter)
+{
+	struct hal_data_8188e *pHalData = GET_HAL_DATA(Adapter);
+	int rtStatus = _SUCCESS;
+
+	/*  */
+	/*  Initialize general global value */
+	/*  */
+	/*  TODO: Extend RF_PATH_C and RF_PATH_D in the future */
+	if (pHalData->rf_type == RF_1T1R)
+		pHalData->NumTotalRFPath = 1;
+	else
+		pHalData->NumTotalRFPath = 2;
+
+	/*  */
+	/*  Config BB and RF */
+	/*  */
+	rtStatus = phy_RF6052_Config_ParaFile(Adapter);
+	return rtStatus;
+}
-- 
1.8.1.4

_______________________________________________
devel mailing list
devel@xxxxxxxxxxxxxxxxxxxxxx
http://driverdev.linuxdriverproject.org/mailman/listinfo/driverdev-devel




[Index of Archives]     [Linux Driver Backports]     [DMA Engine]     [Linux GPIO]     [Linux SPI]     [Video for Linux]     [Linux USB Devel]     [Linux Coverity]     [Linux Audio Users]     [Linux Kernel]     [Linux SCSI]     [Yosemite Backpacking]
  Powered by Linux