Hi Hartley, FYI, there are new smatch warnings show up in tree: git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git staging-next head: 55dcbbb1bf7eef83bcd3e0ba8de0b359a45804ed commit: 7f2f7e050bea242735880b7876d9771efb580213 [72/105] staging: comedi: s626: remove devpriv macro Without the driver specific knowledge, I think these warnings represent potential problems that ask for further confirmation from the driver authors. drivers/staging/comedi/drivers/ni_mio_common.c:4236 ni_gpct_to_stc_register() info: ignoring unreachable code. + drivers/staging/comedi/drivers/ni_mio_common.c:4694 ni_E_init() error: potential null dereference 'devpriv->counter_dev'. (ni_gpct_device_construct returns null) drivers/staging/comedi/drivers/ni_atmio.c:466 ni_atmio_attach() warn: 'iobase' was not released on error drivers/staging/comedi/drivers/ni_atmio.c:478 ni_atmio_attach() warn: 'iobase' was not released on error drivers/staging/comedi/drivers/ni_atmio.c:486 ni_atmio_attach() warn: 'iobase' was not released on error drivers/staging/comedi/drivers/ni_atmio.c:495 ni_atmio_attach() warn: 'iobase' was not released on error drivers/staging/comedi/drivers/ni_atmio.c:495 ni_atmio_attach() warn: 'irq' was not released on error -- + drivers/staging/comedi/drivers/addi-data/hwdrv_apci3120.c:293 i_APCI3120_InsnReadAnalogInput() warn: assigning -4097 to unsigned variable 'devpriv->us_OutputRegister' drivers/staging/comedi/drivers/addi-data/addi_common.c:1591 i_ADDI_Attach() error: we previously assumed '(dev->board_ptr)->pc_EepromChip' could be null (see line 1523) drivers/staging/comedi/drivers/addi-data/addi_common.c:1670 i_ADDI_Attach() warn: 'devpriv->dw_AiBase' was not released on error drivers/staging/comedi/drivers/addi-data/addi_common.c:1670 i_ADDI_Attach() warn: 'irq' was not released on error -- drivers/staging/comedi/drivers/ni_pcimio.c:1390 m_series_stc_writew() info: ignoring unreachable code. drivers/staging/comedi/drivers/ni_pcimio.c:1427 m_series_stc_readw() info: ignoring unreachable code. drivers/staging/comedi/drivers/ni_pcimio.c:1471 m_series_stc_writel() info: ignoring unreachable code. drivers/staging/comedi/drivers/ni_pcimio.c:1499 m_series_stc_readl() info: ignoring unreachable code. drivers/staging/comedi/drivers/ni_mio_common.c:4236 ni_gpct_to_stc_register() info: ignoring unreachable code. + drivers/staging/comedi/drivers/ni_mio_common.c:4694 ni_E_init() error: potential null dereference 'devpriv->counter_dev'. (ni_gpct_device_construct returns null) drivers/staging/comedi/drivers/ni_pcimio.c:1698 pcimio_attach_pci() warn: 'dev->irq' was not released on error -- drivers/staging/comedi/drivers/ni_mio_common.c:4236 ni_gpct_to_stc_register() info: ignoring unreachable code. + drivers/staging/comedi/drivers/ni_mio_common.c:4694 ni_E_init() error: potential null dereference 'devpriv->counter_dev'. (ni_gpct_device_construct returns null) drivers/staging/comedi/drivers/ni_mio_cs.c:378 mio_cs_attach() warn: 'irq' was not released on error drivers/staging/comedi/drivers/ni_mio_cs.c:389 mio_cs_attach() warn: 'irq' was not released on error --- 0-DAY kernel build testing backend Open Source Technology Center Fengguang Wu, Yuanhan Liu Intel Corporation
/* comedi/drivers/s626.c Sensoray s626 Comedi driver COMEDI - Linux Control and Measurement Device Interface Copyright (C) 2000 David A. Schleef <ds@xxxxxxxxxxx> Based on Sensoray Model 626 Linux driver Version 0.2 Copyright (C) 2002-2004 Sensoray Co., Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Driver: s626 Description: Sensoray 626 driver Devices: [Sensoray] 626 (s626) Authors: Gianluca Palli <gpalli@xxxxxxxxxxxxx>, Updated: Fri, 15 Feb 2008 10:28:42 +0000 Status: experimental Configuration options: not applicable, uses PCI auto config INSN_CONFIG instructions: analog input: none analog output: none digital channel: s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels supported configuration options: INSN_CONFIG_DIO_QUERY COMEDI_INPUT COMEDI_OUTPUT encoder: Every channel must be configured before reading. Example code insn.insn=INSN_CONFIG; //configuration instruction insn.n=1; //number of operation (must be 1) insn.data=&initialvalue; //initial value loaded into encoder //during configuration insn.subdev=5; //encoder subdevice insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel //to configure comedi_do_insn(cf,&insn); //executing configuration */ #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/types.h> #include "../comedidev.h" #include "comedi_fc.h" #include "s626.h" #define PCI_VENDOR_ID_S626 0x1131 #define PCI_DEVICE_ID_S626 0x7146 #define PCI_SUBVENDOR_ID_S626 0x6000 #define PCI_SUBDEVICE_ID_S626 0x0272 struct s626_private { void __iomem *base_addr; uint8_t ai_cmd_running; /* ai_cmd is running */ uint8_t ai_continous; /* continous acquisition */ int ai_sample_count; /* number of samples to acquire */ unsigned int ai_sample_timer; /* time between samples in units of the timer */ int ai_convert_count; /* conversion counter */ unsigned int ai_convert_timer; /* time between conversion in units of the timer */ uint16_t CounterIntEnabs; /* Counter interrupt enable mask for MISC2 register. */ uint8_t AdcItems; /* Number of items in ADC poll list. */ struct bufferDMA RPSBuf; /* DMA buffer used to hold ADC (RPS1) program. */ struct bufferDMA ANABuf; /* DMA buffer used to receive ADC data and hold DAC data. */ uint32_t *pDacWBuf; /* Pointer to logical adrs of DMA buffer used to hold DAC data. */ uint16_t Dacpol; /* Image of DAC polarity register. */ uint8_t TrimSetpoint[12]; /* Images of TrimDAC setpoints */ /* Charge Enabled (0 or WRMISC2_CHARGE_ENABLE). */ uint32_t I2CAdrs; /* I2C device address for onboard EEPROM (board rev dependent). */ /* short I2Cards; */ unsigned int ao_readback[S626_DAC_CHANNELS]; }; struct dio_private { uint16_t RDDIn; uint16_t WRDOut; uint16_t RDEdgSel; uint16_t WREdgSel; uint16_t RDCapSel; uint16_t WRCapSel; uint16_t RDCapFlg; uint16_t RDIntSel; uint16_t WRIntSel; }; static struct dio_private dio_private_A = { .RDDIn = LP_RDDINA, .WRDOut = LP_WRDOUTA, .RDEdgSel = LP_RDEDGSELA, .WREdgSel = LP_WREDGSELA, .RDCapSel = LP_RDCAPSELA, .WRCapSel = LP_WRCAPSELA, .RDCapFlg = LP_RDCAPFLGA, .RDIntSel = LP_RDINTSELA, .WRIntSel = LP_WRINTSELA, }; static struct dio_private dio_private_B = { .RDDIn = LP_RDDINB, .WRDOut = LP_WRDOUTB, .RDEdgSel = LP_RDEDGSELB, .WREdgSel = LP_WREDGSELB, .RDCapSel = LP_RDCAPSELB, .WRCapSel = LP_WRCAPSELB, .RDCapFlg = LP_RDCAPFLGB, .RDIntSel = LP_RDINTSELB, .WRIntSel = LP_WRINTSELB, }; static struct dio_private dio_private_C = { .RDDIn = LP_RDDINC, .WRDOut = LP_WRDOUTC, .RDEdgSel = LP_RDEDGSELC, .WREdgSel = LP_WREDGSELC, .RDCapSel = LP_RDCAPSELC, .WRCapSel = LP_WRCAPSELC, .RDCapFlg = LP_RDCAPFLGC, .RDIntSel = LP_RDINTSELC, .WRIntSel = LP_WRINTSELC, }; /* to group dio devices (48 bits mask and data are not allowed ???) static struct dio_private *dio_private_word[]={ &dio_private_A, &dio_private_B, &dio_private_C, }; */ #define diopriv ((struct dio_private *)s->private) /* COUNTER OBJECT ------------------------------------------------ */ struct enc_private { /* Pointers to functions that differ for A and B counters: */ uint16_t(*GetEnable) (struct comedi_device *dev, struct enc_private *); /* Return clock enable. */ uint16_t(*GetIntSrc) (struct comedi_device *dev, struct enc_private *); /* Return interrupt source. */ uint16_t(*GetLoadTrig) (struct comedi_device *dev, struct enc_private *); /* Return preload trigger source. */ uint16_t(*GetMode) (struct comedi_device *dev, struct enc_private *); /* Return standardized operating mode. */ void (*PulseIndex) (struct comedi_device *dev, struct enc_private *); /* Generate soft index strobe. */ void (*SetEnable) (struct comedi_device *dev, struct enc_private *, uint16_t enab); /* Program clock enable. */ void (*SetIntSrc) (struct comedi_device *dev, struct enc_private *, uint16_t IntSource); /* Program interrupt source. */ void (*SetLoadTrig) (struct comedi_device *dev, struct enc_private *, uint16_t Trig); /* Program preload trigger source. */ void (*SetMode) (struct comedi_device *dev, struct enc_private *, uint16_t Setup, uint16_t DisableIntSrc); /* Program standardized operating mode. */ void (*ResetCapFlags) (struct comedi_device *dev, struct enc_private *); /* Reset event capture flags. */ uint16_t MyCRA; /* Address of CRA register. */ uint16_t MyCRB; /* Address of CRB register. */ uint16_t MyLatchLsw; /* Address of Latch least-significant-word */ /* register. */ uint16_t MyEventBits[4]; /* Bit translations for IntSrc -->RDMISC2. */ }; #define encpriv ((struct enc_private *)(dev->subdevices+5)->private) /* Counter overflow/index event flag masks for RDMISC2. */ #define INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 + 4))) #define OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10))) #define EVBITS(C) { 0, OVERMASK(C), INDXMASK(C), OVERMASK(C) | INDXMASK(C) } /* Translation table to map IntSrc into equivalent RDMISC2 event flag bits. */ /* static const uint16_t EventBits[][4] = { EVBITS(0), EVBITS(1), EVBITS(2), EVBITS(3), EVBITS(4), EVBITS(5) }; */ /* enab/disable a function or test status bit(s) that are accessed */ /* through Main Control Registers 1 or 2. */ #define MC_ENABLE(REGADRS, CTRLWORD) writel(((uint32_t)(CTRLWORD) << 16) | (uint32_t)(CTRLWORD), devpriv->base_addr+(REGADRS)) #define MC_DISABLE(REGADRS, CTRLWORD) writel((uint32_t)(CTRLWORD) << 16 , devpriv->base_addr+(REGADRS)) #define MC_TEST(REGADRS, CTRLWORD) ((readl(devpriv->base_addr+(REGADRS)) & CTRLWORD) != 0) /* #define WR7146(REGARDS,CTRLWORD) writel(CTRLWORD,(uint32_t)(devpriv->base_addr+(REGARDS))) */ #define WR7146(REGARDS, CTRLWORD) writel(CTRLWORD, devpriv->base_addr+(REGARDS)) /* #define RR7146(REGARDS) readl((uint32_t)(devpriv->base_addr+(REGARDS))) */ #define RR7146(REGARDS) readl(devpriv->base_addr+(REGARDS)) #define BUGFIX_STREG(REGADRS) (REGADRS - 4) /* Write a time slot control record to TSL2. */ #define VECTPORT(VECTNUM) (P_TSL2 + ((VECTNUM) << 2)) #define SETVECT(VECTNUM, VECTVAL) WR7146(VECTPORT(VECTNUM), (VECTVAL)) /* Code macros used for constructing I2C command bytes. */ #define I2C_B2(ATTR, VAL) (((ATTR) << 6) | ((VAL) << 24)) #define I2C_B1(ATTR, VAL) (((ATTR) << 4) | ((VAL) << 16)) #define I2C_B0(ATTR, VAL) (((ATTR) << 2) | ((VAL) << 8)) static const struct comedi_lrange s626_range_table = { 2, { RANGE(-5, 5), RANGE(-10, 10), } }; /* Execute a DEBI transfer. This must be called from within a */ /* critical section. */ static void DEBItransfer(struct comedi_device *dev) { struct s626_private *devpriv = dev->private; /* Initiate upload of shadow RAM to DEBI control register. */ MC_ENABLE(P_MC2, MC2_UPLD_DEBI); /* Wait for completion of upload from shadow RAM to DEBI control */ /* register. */ while (!MC_TEST(P_MC2, MC2_UPLD_DEBI)) ; /* Wait until DEBI transfer is done. */ while (RR7146(P_PSR) & PSR_DEBI_S) ; } /* Initialize the DEBI interface for all transfers. */ static uint16_t DEBIread(struct comedi_device *dev, uint16_t addr) { struct s626_private *devpriv = dev->private; uint16_t retval; /* Set up DEBI control register value in shadow RAM. */ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); /* Execute the DEBI transfer. */ DEBItransfer(dev); /* Fetch target register value. */ retval = (uint16_t) RR7146(P_DEBIAD); /* Return register value. */ return retval; } /* Write a value to a gate array register. */ static void DEBIwrite(struct comedi_device *dev, uint16_t addr, uint16_t wdata) { struct s626_private *devpriv = dev->private; /* Set up DEBI control register value in shadow RAM. */ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); WR7146(P_DEBIAD, wdata); /* Execute the DEBI transfer. */ DEBItransfer(dev); } /* Replace the specified bits in a gate array register. Imports: mask * specifies bits that are to be preserved, wdata is new value to be * or'd with the masked original. */ static void DEBIreplace(struct comedi_device *dev, uint16_t addr, uint16_t mask, uint16_t wdata) { struct s626_private *devpriv = dev->private; /* Copy target gate array register into P_DEBIAD register. */ WR7146(P_DEBICMD, DEBI_CMD_RDWORD | addr); /* Set up DEBI control reg value in shadow RAM. */ DEBItransfer(dev); /* Execute the DEBI Read transfer. */ /* Write back the modified image. */ WR7146(P_DEBICMD, DEBI_CMD_WRWORD | addr); /* Set up DEBI control reg value in shadow RAM. */ WR7146(P_DEBIAD, wdata | ((uint16_t) RR7146(P_DEBIAD) & mask)); /* Modify the register image. */ DEBItransfer(dev); /* Execute the DEBI Write transfer. */ } /* ************** EEPROM ACCESS FUNCTIONS ************** */ static uint32_t I2Chandshake(struct comedi_device *dev, uint32_t val) { struct s626_private *devpriv = dev->private; /* Write I2C command to I2C Transfer Control shadow register. */ WR7146(P_I2CCTRL, val); /* Upload I2C shadow registers into working registers and wait for */ /* upload confirmation. */ MC_ENABLE(P_MC2, MC2_UPLD_IIC); while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; /* Wait until I2C bus transfer is finished or an error occurs. */ while ((RR7146(P_I2CCTRL) & (I2C_BUSY | I2C_ERR)) == I2C_BUSY) ; /* Return non-zero if I2C error occurred. */ return RR7146(P_I2CCTRL) & I2C_ERR; } /* Read uint8_t from EEPROM. */ static uint8_t I2Cread(struct comedi_device *dev, uint8_t addr) { struct s626_private *devpriv = dev->private; uint8_t rtnval; /* Send EEPROM target address. */ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CW) /* Byte2 = I2C command: write to I2C EEPROM device. */ | I2C_B1(I2C_ATTRSTOP, addr) /* Byte1 = EEPROM internal target address. */ | I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */ /* Abort function and declare error if handshake failed. */ return 0; } /* Execute EEPROM read. */ if (I2Chandshake(dev, I2C_B2(I2C_ATTRSTART, I2CR) /* Byte2 = I2C */ /* command: read */ /* from I2C EEPROM */ /* device. */ |I2C_B1(I2C_ATTRSTOP, 0) /* Byte1 receives */ /* uint8_t from */ /* EEPROM. */ |I2C_B0(I2C_ATTRNOP, 0))) { /* Byte0 = Not sent. */ /* Abort function and declare error if handshake failed. */ return 0; } /* Return copy of EEPROM value. */ rtnval = (uint8_t) (RR7146(P_I2CCTRL) >> 16); return rtnval; } /* *********** DAC FUNCTIONS *********** */ /* Slot 0 base settings. */ #define VECT0 (XSD2 | RSD3 | SIB_A2) /* Slot 0 always shifts in 0xFF and store it to FB_BUFFER2. */ /* TrimDac LogicalChan-to-PhysicalChan mapping table. */ static uint8_t trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 }; /* TrimDac LogicalChan-to-EepromAdrs mapping table. */ static uint8_t trimadrs[] = { 0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63 }; /* Private helper function: Transmit serial data to DAC via Audio * channel 2. Assumes: (1) TSL2 slot records initialized, and (2) * Dacpol contains valid target image. */ static void SendDAC(struct comedi_device *dev, uint32_t val) { struct s626_private *devpriv = dev->private; /* START THE SERIAL CLOCK RUNNING ------------- */ /* Assert DAC polarity control and enable gating of DAC serial clock * and audio bit stream signals. At this point in time we must be * assured of being in time slot 0. If we are not in slot 0, the * serial clock and audio stream signals will be disabled; this is * because the following DEBIwrite statement (which enables signals * to be passed through the gate array) would execute before the * trailing edge of WS1/WS3 (which turns off the signals), thus * causing the signals to be inactive during the DAC write. */ DEBIwrite(dev, LP_DACPOL, devpriv->Dacpol); /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */ /* Copy DAC setpoint value to DAC's output DMA buffer. */ /* WR7146( (uint32_t)devpriv->pDacWBuf, val ); */ *devpriv->pDacWBuf = val; /* enab the output DMA transfer. This will cause the DMAC to copy * the DAC's data value to A2's output FIFO. The DMA transfer will * then immediately terminate because the protection address is * reached upon transfer of the first DWORD value. */ MC_ENABLE(P_MC1, MC1_A2OUT); /* While the DMA transfer is executing ... */ /* Reset Audio2 output FIFO's underflow flag (along with any other * FIFO underflow/overflow flags). When set, this flag will * indicate that we have emerged from slot 0. */ WR7146(P_ISR, ISR_AFOU); /* Wait for the DMA transfer to finish so that there will be data * available in the FIFO when time slot 1 tries to transfer a DWORD * from the FIFO to the output buffer register. We test for DMA * Done by polling the DMAC enable flag; this flag is automatically * cleared when the transfer has finished. */ while ((RR7146(P_MC1) & MC1_A2OUT) != 0) ; /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */ /* FIFO data is now available, so we enable execution of time slots * 1 and higher by clearing the EOS flag in slot 0. Note that SD3 * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list * detection. */ SETVECT(0, XSD2 | RSD3 | SIB_A2); /* Wait for slot 1 to execute to ensure that the Packet will be * transmitted. This is detected by polling the Audio2 output FIFO * underflow flag, which will be set when slot 1 execution has * finished transferring the DAC's data DWORD from the output FIFO * to the output buffer register. */ while ((RR7146(P_SSR) & SSR_AF2_OUT) == 0) ; /* Set up to trap execution at slot 0 when the TSL sequencer cycles * back to slot 0 after executing the EOS in slot 5. Also, * simultaneously shift out and in the 0x00 that is ALWAYS the value * stored in the last byte to be shifted out of the FIFO's DWORD * buffer register. */ SETVECT(0, XSD2 | XFIFO_2 | RSD2 | SIB_A2 | EOS); /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */ /* Wait for the TSL to finish executing all time slots before * exiting this function. We must do this so that the next DAC * write doesn't start, thereby enabling clock/chip select signals: * * 1. Before the TSL sequence cycles back to slot 0, which disables * the clock/cs signal gating and traps slot // list execution. * we have not yet finished slot 5 then the clock/cs signals are * still gated and we have not finished transmitting the stream. * * 2. While slots 2-5 are executing due to a late slot 0 trap. In * this case, the slot sequence is currently repeating, but with * clock/cs signals disabled. We must wait for slot 0 to trap * execution before setting up the next DAC setpoint DMA transfer * and enabling the clock/cs signals. To detect the end of slot 5, * we test for the FB_BUFFER2 MSB contents to be equal to 0xFF. If * the TSL has not yet finished executing slot 5 ... */ if ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) { /* The trap was set on time and we are still executing somewhere * in slots 2-5, so we now wait for slot 0 to execute and trap * TSL execution. This is detected when FB_BUFFER2 MSB changes * from 0xFF to 0x00, which slot 0 causes to happen by shifting * out/in on SD2 the 0x00 that is always referenced by slot 5. */ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) != 0) ; } /* Either (1) we were too late setting the slot 0 trap; the TSL * sequencer restarted slot 0 before we could set the EOS trap flag, * or (2) we were not late and execution is now trapped at slot 0. * In either case, we must now change slot 0 so that it will store * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes. * In order to do this, we reprogram slot 0 so that it will shift in * SD3, which is driven only by a pull-up resistor. */ SETVECT(0, RSD3 | SIB_A2 | EOS); /* Wait for slot 0 to execute, at which time the TSL is setup for * the next DAC write. This is detected when FB_BUFFER2 MSB changes * from 0x00 to 0xFF. */ while ((RR7146(P_FB_BUFFER2) & 0xFF000000) == 0) ; } /* Private helper function: Write setpoint to an application DAC channel. */ static void SetDAC(struct comedi_device *dev, uint16_t chan, short dacdata) { struct s626_private *devpriv = dev->private; register uint16_t signmask; register uint32_t WSImage; /* Adjust DAC data polarity and set up Polarity Control Register */ /* image. */ signmask = 1 << chan; if (dacdata < 0) { dacdata = -dacdata; devpriv->Dacpol |= signmask; } else devpriv->Dacpol &= ~signmask; /* Limit DAC setpoint value to valid range. */ if ((uint16_t) dacdata > 0x1FFF) dacdata = 0x1FFF; /* Set up TSL2 records (aka "vectors") for DAC update. Vectors V2 * and V3 transmit the setpoint to the target DAC. V4 and V5 send * data to a non-existent TrimDac channel just to keep the clock * running after sending data to the target DAC. This is necessary * to eliminate the clock glitch that would otherwise occur at the * end of the target DAC's serial data stream. When the sequence * restarts at V0 (after executing V5), the gate array automatically * disables gating for the DAC clock and all DAC chip selects. */ WSImage = (chan & 2) ? WS1 : WS2; /* Choose DAC chip select to be asserted. */ SETVECT(2, XSD2 | XFIFO_1 | WSImage); /* Slot 2: Transmit high data byte to target DAC. */ SETVECT(3, XSD2 | XFIFO_0 | WSImage); /* Slot 3: Transmit low data byte to target DAC. */ SETVECT(4, XSD2 | XFIFO_3 | WS3); /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */ SETVECT(5, XSD2 | XFIFO_2 | WS3 | EOS); /* Slot 5: running after writing target DAC's low data byte. */ /* Construct and transmit target DAC's serial packet: * ( A10D DDDD ),( DDDD DDDD ),( 0x0F ),( 0x00 ) where A is chan<0>, * and D<12:0> is the DAC setpoint. Append a WORD value (that writes * to a non-existent TrimDac channel) that serves to keep the clock * running after the packet has been sent to the target DAC. */ SendDAC(dev, 0x0F000000 /* Continue clock after target DAC data (write to non-existent trimdac). */ | 0x00004000 /* Address the two main dual-DAC devices (TSL's chip select enables * target device). */ | ((uint32_t) (chan & 1) << 15) /* Address the DAC channel within the device. */ | (uint32_t) dacdata); /* Include DAC setpoint data. */ } static void WriteTrimDAC(struct comedi_device *dev, uint8_t LogicalChan, uint8_t DacData) { struct s626_private *devpriv = dev->private; uint32_t chan; /* Save the new setpoint in case the application needs to read it back later. */ devpriv->TrimSetpoint[LogicalChan] = (uint8_t) DacData; /* Map logical channel number to physical channel number. */ chan = (uint32_t) trimchan[LogicalChan]; /* Set up TSL2 records for TrimDac write operation. All slots shift * 0xFF in from pulled-up SD3 so that the end of the slot sequence * can be detected. */ SETVECT(2, XSD2 | XFIFO_1 | WS3); /* Slot 2: Send high uint8_t to target TrimDac. */ SETVECT(3, XSD2 | XFIFO_0 | WS3); /* Slot 3: Send low uint8_t to target TrimDac. */ SETVECT(4, XSD2 | XFIFO_3 | WS1); /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running. */ SETVECT(5, XSD2 | XFIFO_2 | WS1 | EOS); /* Slot 5: Send NOP low uint8_t to DAC0. */ /* Construct and transmit target DAC's serial packet: * ( 0000 AAAA ), ( DDDD DDDD ),( 0x00 ),( 0x00 ) where A<3:0> is the * DAC channel's address, and D<7:0> is the DAC setpoint. Append a * WORD value (that writes a channel 0 NOP command to a non-existent * main DAC channel) that serves to keep the clock running after the * packet has been sent to the target DAC. */ /* Address the DAC channel within the trimdac device. */ SendDAC(dev, ((uint32_t) chan << 8) | (uint32_t) DacData); /* Include DAC setpoint data. */ } static void LoadTrimDACs(struct comedi_device *dev) { register uint8_t i; /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */ for (i = 0; i < ARRAY_SIZE(trimchan); i++) WriteTrimDAC(dev, i, I2Cread(dev, trimadrs[i])); } /* ****** COUNTER FUNCTIONS ******* */ /* All counter functions address a specific counter by means of the * "Counter" argument, which is a logical counter number. The Counter * argument may have any of the following legal values: 0=0A, 1=1A, * 2=2A, 3=0B, 4=1B, 5=2B. */ /* Read a counter's output latch. */ static uint32_t ReadLatch(struct comedi_device *dev, struct enc_private *k) { register uint32_t value; /* Latch counts and fetch LSW of latched counts value. */ value = (uint32_t) DEBIread(dev, k->MyLatchLsw); /* Fetch MSW of latched counts and combine with LSW. */ value |= ((uint32_t) DEBIread(dev, k->MyLatchLsw + 2) << 16); /* Return latched counts. */ return value; } /* Return/set a counter pair's latch trigger source. 0: On read * access, 1: A index latches A, 2: B index latches B, 3: A overflow * latches B. */ static void SetLatchSource(struct comedi_device *dev, struct enc_private *k, uint16_t value) { DEBIreplace(dev, k->MyCRB, (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_LATCHSRC)), (uint16_t) (value << CRBBIT_LATCHSRC)); } /* Write value into counter preload register. */ static void Preload(struct comedi_device *dev, struct enc_private *k, uint32_t value) { DEBIwrite(dev, (uint16_t) (k->MyLatchLsw), (uint16_t) value); DEBIwrite(dev, (uint16_t) (k->MyLatchLsw + 2), (uint16_t) (value >> 16)); } static unsigned int s626_ai_reg_to_uint(int data) { unsigned int tempdata; tempdata = (data >> 18); if (tempdata & 0x2000) tempdata &= 0x1fff; else tempdata += (1 << 13); return tempdata; } /* static unsigned int s626_uint_to_reg(struct comedi_subdevice *s, int data){ */ /* return 0; */ /* } */ static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan) { unsigned int group; unsigned int bitmask; unsigned int status; /* select dio bank */ group = chan / 16; bitmask = 1 << (chan - (16 * group)); /* set channel to capture positive edge */ status = DEBIread(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->RDEdgSel); DEBIwrite(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->WREdgSel, bitmask | status); /* enable interrupt on selected channel */ status = DEBIread(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->RDIntSel); DEBIwrite(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->WRIntSel, bitmask | status); /* enable edge capture write command */ DEBIwrite(dev, LP_MISC1, MISC1_EDCAP); /* enable edge capture on selected channel */ status = DEBIread(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->RDCapSel); DEBIwrite(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->WRCapSel, bitmask | status); return 0; } static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group, unsigned int mask) { /* disable edge capture write command */ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); /* enable edge capture on selected channel */ DEBIwrite(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->WRCapSel, mask); return 0; } static int s626_dio_clear_irq(struct comedi_device *dev) { unsigned int group; /* disable edge capture write command */ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); for (group = 0; group < S626_DIO_BANKS; group++) { /* clear pending events and interrupt */ DEBIwrite(dev, ((struct dio_private *)(dev->subdevices + 2 + group)->private)->WRCapSel, 0xffff); } return 0; } static irqreturn_t s626_irq_handler(int irq, void *d) { struct comedi_device *dev = d; struct s626_private *devpriv = dev->private; struct comedi_subdevice *s; struct comedi_cmd *cmd; struct enc_private *k; unsigned long flags; int32_t *readaddr; uint32_t irqtype, irqstatus; int i = 0; short tempdata; uint8_t group; uint16_t irqbit; if (dev->attached == 0) return IRQ_NONE; /* lock to avoid race with comedi_poll */ spin_lock_irqsave(&dev->spinlock, flags); /* save interrupt enable register state */ irqstatus = readl(devpriv->base_addr + P_IER); /* read interrupt type */ irqtype = readl(devpriv->base_addr + P_ISR); /* disable master interrupt */ writel(0, devpriv->base_addr + P_IER); /* clear interrupt */ writel(irqtype, devpriv->base_addr + P_ISR); switch (irqtype) { case IRQ_RPS1: /* end_of_scan occurs */ /* manage ai subdevice */ s = dev->subdevices; cmd = &(s->async->cmd); /* Init ptr to DMA buffer that holds new ADC data. We skip the * first uint16_t in the buffer because it contains junk data from * the final ADC of the previous poll list scan. */ readaddr = (int32_t *) devpriv->ANABuf.LogicalBase + 1; /* get the data and hand it over to comedi */ for (i = 0; i < (s->async->cmd.chanlist_len); i++) { /* Convert ADC data to 16-bit integer values and copy to application */ /* buffer. */ tempdata = s626_ai_reg_to_uint((int)*readaddr); readaddr++; /* put data into read buffer */ /* comedi_buf_put(s->async, tempdata); */ if (cfc_write_to_buffer(s, tempdata) == 0) printk ("s626_irq_handler: cfc_write_to_buffer error!\n"); } /* end of scan occurs */ s->async->events |= COMEDI_CB_EOS; if (!(devpriv->ai_continous)) devpriv->ai_sample_count--; if (devpriv->ai_sample_count <= 0) { devpriv->ai_cmd_running = 0; /* Stop RPS program. */ MC_DISABLE(P_MC1, MC1_ERPS1); /* send end of acquisition */ s->async->events |= COMEDI_CB_EOA; /* disable master interrupt */ irqstatus = 0; } if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT) s626_dio_set_irq(dev, cmd->scan_begin_arg); /* tell comedi that data is there */ comedi_event(dev, s); break; case IRQ_GPIO3: /* check dio and conter interrupt */ /* manage ai subdevice */ s = dev->subdevices; cmd = &(s->async->cmd); /* s626_dio_clear_irq(dev); */ for (group = 0; group < S626_DIO_BANKS; group++) { irqbit = 0; /* read interrupt type */ irqbit = DEBIread(dev, ((struct dio_private *)(dev-> subdevices + 2 + group)-> private)->RDCapFlg); /* check if interrupt is generated from dio channels */ if (irqbit) { s626_dio_reset_irq(dev, group, irqbit); if (devpriv->ai_cmd_running) { /* check if interrupt is an ai acquisition start trigger */ if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 && cmd->start_src == TRIG_EXT) { /* Start executing the RPS program. */ MC_ENABLE(P_MC1, MC1_ERPS1); if (cmd->scan_begin_src == TRIG_EXT) { s626_dio_set_irq(dev, cmd->scan_begin_arg); } } if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 && cmd->scan_begin_src == TRIG_EXT) { /* Trigger ADC scan loop start by setting RPS Signal 0. */ MC_ENABLE(P_MC2, MC2_ADC_RPS); if (cmd->convert_src == TRIG_EXT) { devpriv->ai_convert_count = cmd->chanlist_len; s626_dio_set_irq(dev, cmd->convert_arg); } if (cmd->convert_src == TRIG_TIMER) { k = &encpriv[5]; devpriv->ai_convert_count = cmd->chanlist_len; k->SetEnable(dev, k, CLKENAB_ALWAYS); } } if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 && cmd->convert_src == TRIG_EXT) { /* Trigger ADC scan loop start by setting RPS Signal 0. */ MC_ENABLE(P_MC2, MC2_ADC_RPS); devpriv->ai_convert_count--; if (devpriv->ai_convert_count > 0) { s626_dio_set_irq(dev, cmd->convert_arg); } } } break; } } /* read interrupt type */ irqbit = DEBIread(dev, LP_RDMISC2); /* check interrupt on counters */ if (irqbit & IRQ_COINT1A) { k = &encpriv[0]; /* clear interrupt capture flag */ k->ResetCapFlags(dev, k); } if (irqbit & IRQ_COINT2A) { k = &encpriv[1]; /* clear interrupt capture flag */ k->ResetCapFlags(dev, k); } if (irqbit & IRQ_COINT3A) { k = &encpriv[2]; /* clear interrupt capture flag */ k->ResetCapFlags(dev, k); } if (irqbit & IRQ_COINT1B) { k = &encpriv[3]; /* clear interrupt capture flag */ k->ResetCapFlags(dev, k); } if (irqbit & IRQ_COINT2B) { k = &encpriv[4]; /* clear interrupt capture flag */ k->ResetCapFlags(dev, k); if (devpriv->ai_convert_count > 0) { devpriv->ai_convert_count--; if (devpriv->ai_convert_count == 0) k->SetEnable(dev, k, CLKENAB_INDEX); if (cmd->convert_src == TRIG_TIMER) { /* Trigger ADC scan loop start by setting RPS Signal 0. */ MC_ENABLE(P_MC2, MC2_ADC_RPS); } } } if (irqbit & IRQ_COINT3B) { k = &encpriv[5]; /* clear interrupt capture flag */ k->ResetCapFlags(dev, k); if (cmd->scan_begin_src == TRIG_TIMER) { /* Trigger ADC scan loop start by setting RPS Signal 0. */ MC_ENABLE(P_MC2, MC2_ADC_RPS); } if (cmd->convert_src == TRIG_TIMER) { k = &encpriv[4]; devpriv->ai_convert_count = cmd->chanlist_len; k->SetEnable(dev, k, CLKENAB_ALWAYS); } } } /* enable interrupt */ writel(irqstatus, devpriv->base_addr + P_IER); spin_unlock_irqrestore(&dev->spinlock, flags); return IRQ_HANDLED; } /* * this functions build the RPS program for hardware driven acquistion */ static void ResetADC(struct comedi_device *dev, uint8_t *ppl) { struct s626_private *devpriv = dev->private; register uint32_t *pRPS; uint32_t JmpAdrs; uint16_t i; uint16_t n; uint32_t LocalPPL; struct comedi_cmd *cmd = &(dev->subdevices->async->cmd); /* Stop RPS program in case it is currently running. */ MC_DISABLE(P_MC1, MC1_ERPS1); /* Set starting logical address to write RPS commands. */ pRPS = (uint32_t *) devpriv->RPSBuf.LogicalBase; /* Initialize RPS instruction pointer. */ WR7146(P_RPSADDR1, (uint32_t) devpriv->RPSBuf.PhysicalBase); /* Construct RPS program in RPSBuf DMA buffer */ if (cmd != NULL && cmd->scan_begin_src != TRIG_FOLLOW) { /* Wait for Start trigger. */ *pRPS++ = RPS_PAUSE | RPS_SIGADC; *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC; } /* SAA7146 BUG WORKAROUND Do a dummy DEBI Write. This is necessary * because the first RPS DEBI Write following a non-RPS DEBI write * seems to always fail. If we don't do this dummy write, the ADC * gain might not be set to the value required for the first slot in * the poll list; the ADC gain would instead remain unchanged from * the previously programmed value. */ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI Write command and address to shadow RAM. */ *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL; *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI immediate data to shadow RAM: */ *pRPS++ = GSEL_BIPOLAR5V; /* arbitrary immediate data value. */ *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" flag. */ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */ /* Digitize all slots in the poll list. This is implemented as a * for loop to limit the slot count to 16 in case the application * forgot to set the EOPL flag in the final slot. */ for (devpriv->AdcItems = 0; devpriv->AdcItems < 16; devpriv->AdcItems++) { /* Convert application's poll list item to private board class * format. Each app poll list item is an uint8_t with form * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 = * +-10V, 1 = +-5V, and EOPL = End of Poll List marker. */ LocalPPL = (*ppl << 8) | (*ppl & 0x10 ? GSEL_BIPOLAR5V : GSEL_BIPOLAR10V); /* Switch ADC analog gain. */ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command */ /* and address to */ /* shadow RAM. */ *pRPS++ = DEBI_CMD_WRWORD | LP_GSEL; *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI */ /* immediate data to */ /* shadow RAM. */ *pRPS++ = LocalPPL; *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" */ /* flag. */ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to */ /* finish. */ /* Select ADC analog input channel. */ *pRPS++ = RPS_LDREG | (P_DEBICMD >> 2); /* Write DEBI command and address to shadow RAM. */ *pRPS++ = DEBI_CMD_WRWORD | LP_ISEL; *pRPS++ = RPS_LDREG | (P_DEBIAD >> 2); /* Write DEBI immediate data to shadow RAM. */ *pRPS++ = LocalPPL; *pRPS++ = RPS_CLRSIGNAL | RPS_DEBI; /* Reset "shadow RAM uploaded" flag. */ *pRPS++ = RPS_UPLOAD | RPS_DEBI; /* Invoke shadow RAM upload. */ *pRPS++ = RPS_PAUSE | RPS_DEBI; /* Wait for shadow upload to finish. */ /* Delay at least 10 microseconds for analog input settling. * Instead of padding with NOPs, we use RPS_JUMP instructions * here; this allows us to produce a longer delay than is * possible with NOPs because each RPS_JUMP flushes the RPS' * instruction prefetch pipeline. */ JmpAdrs = (uint32_t) devpriv->RPSBuf.PhysicalBase + (uint32_t) ((unsigned long)pRPS - (unsigned long)devpriv->RPSBuf.LogicalBase); for (i = 0; i < (10 * RPSCLK_PER_US / 2); i++) { JmpAdrs += 8; /* Repeat to implement time delay: */ *pRPS++ = RPS_JUMP; /* Jump to next RPS instruction. */ *pRPS++ = JmpAdrs; } if (cmd != NULL && cmd->convert_src != TRIG_NOW) { /* Wait for Start trigger. */ *pRPS++ = RPS_PAUSE | RPS_SIGADC; *pRPS++ = RPS_CLRSIGNAL | RPS_SIGADC; } /* Start ADC by pulsing GPIO1. */ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */ *pRPS++ = GPIO_BASE | GPIO1_LO; *pRPS++ = RPS_NOP; /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */ *pRPS++ = GPIO_BASE | GPIO1_HI; /* Wait for ADC to complete (GPIO2 is asserted high when ADC not * busy) and for data from previous conversion to shift into FB * BUFFER 1 register. */ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */ /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); *pRPS++ = (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2); /* If this slot's EndOfPollList flag is set, all channels have */ /* now been processed. */ if (*ppl++ & EOPL) { devpriv->AdcItems++; /* Adjust poll list item count. */ break; /* Exit poll list processing loop. */ } } /* VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US. Allow the * ADC to stabilize for 2 microseconds before starting the final * (dummy) conversion. This delay is necessary to allow sufficient * time between last conversion finished and the start of the dummy * conversion. Without this delay, the last conversion's data value * is sometimes set to the previous conversion's data value. */ for (n = 0; n < (2 * RPSCLK_PER_US); n++) *pRPS++ = RPS_NOP; /* Start a dummy conversion to cause the data from the last * conversion of interest to be shifted in. */ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* Begin ADC Start pulse. */ *pRPS++ = GPIO_BASE | GPIO1_LO; *pRPS++ = RPS_NOP; /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */ *pRPS++ = RPS_LDREG | (P_GPIO >> 2); /* End ADC Start pulse. */ *pRPS++ = GPIO_BASE | GPIO1_HI; /* Wait for the data from the last conversion of interest to arrive * in FB BUFFER 1 register. */ *pRPS++ = RPS_PAUSE | RPS_GPIO2; /* Wait for ADC done. */ /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */ *pRPS++ = RPS_STREG | (BUGFIX_STREG(P_FB_BUFFER1) >> 2); /* */ *pRPS++ = (uint32_t) devpriv->ANABuf.PhysicalBase + (devpriv->AdcItems << 2); /* Indicate ADC scan loop is finished. */ /* *pRPS++= RPS_CLRSIGNAL | RPS_SIGADC ; // Signal ReadADC() that scan is done. */ /* invoke interrupt */ if (devpriv->ai_cmd_running == 1) { *pRPS++ = RPS_IRQ; } /* Restart RPS program at its beginning. */ *pRPS++ = RPS_JUMP; /* Branch to start of RPS program. */ *pRPS++ = (uint32_t) devpriv->RPSBuf.PhysicalBase; /* End of RPS program build */ } /* TO COMPLETE, IF NECESSARY */ static int s626_ai_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { return -EINVAL; } /* static int s626_ai_rinsn(struct comedi_device *dev,struct comedi_subdevice *s,struct comedi_insn *insn,unsigned int *data) */ /* { */ /* struct s626_private *devpriv = dev->private; */ /* register uint8_t i; */ /* register int32_t *readaddr; */ /* Trigger ADC scan loop start by setting RPS Signal 0. */ /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */ /* Wait until ADC scan loop is finished (RPS Signal 0 reset). */ /* while ( MC_TEST( P_MC2, MC2_ADC_RPS ) ); */ /* Init ptr to DMA buffer that holds new ADC data. We skip the * first uint16_t in the buffer because it contains junk data from * the final ADC of the previous poll list scan. */ /* readaddr = (uint32_t *)devpriv->ANABuf.LogicalBase + 1; */ /* Convert ADC data to 16-bit integer values and copy to application buffer. */ /* for ( i = 0; i < devpriv->AdcItems; i++ ) { */ /* *data = s626_ai_reg_to_uint( *readaddr++ ); */ /* data++; */ /* } */ /* return i; */ /* } */ static int s626_ai_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct s626_private *devpriv = dev->private; uint16_t chan = CR_CHAN(insn->chanspec); uint16_t range = CR_RANGE(insn->chanspec); uint16_t AdcSpec = 0; uint32_t GpioImage; int n; /* interrupt call test */ /* writel(IRQ_GPIO3,devpriv->base_addr+P_PSR); */ /* Writing a logical 1 into any of the RPS_PSR bits causes the * corresponding interrupt to be generated if enabled */ /* Convert application's ADC specification into form * appropriate for register programming. */ if (range == 0) AdcSpec = (chan << 8) | (GSEL_BIPOLAR5V); else AdcSpec = (chan << 8) | (GSEL_BIPOLAR10V); /* Switch ADC analog gain. */ DEBIwrite(dev, LP_GSEL, AdcSpec); /* Set gain. */ /* Select ADC analog input channel. */ DEBIwrite(dev, LP_ISEL, AdcSpec); /* Select channel. */ for (n = 0; n < insn->n; n++) { /* Delay 10 microseconds for analog input settling. */ udelay(10); /* Start ADC by pulsing GPIO1 low. */ GpioImage = RR7146(P_GPIO); /* Assert ADC Start command */ WR7146(P_GPIO, GpioImage & ~GPIO1_HI); /* and stretch it out. */ WR7146(P_GPIO, GpioImage & ~GPIO1_HI); WR7146(P_GPIO, GpioImage & ~GPIO1_HI); /* Negate ADC Start command. */ WR7146(P_GPIO, GpioImage | GPIO1_HI); /* Wait for ADC to complete (GPIO2 is asserted high when */ /* ADC not busy) and for data from previous conversion to */ /* shift into FB BUFFER 1 register. */ /* Wait for ADC done. */ while (!(RR7146(P_PSR) & PSR_GPIO2)) ; /* Fetch ADC data. */ if (n != 0) data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1)); /* Allow the ADC to stabilize for 4 microseconds before * starting the next (final) conversion. This delay is * necessary to allow sufficient time between last * conversion finished and the start of the next * conversion. Without this delay, the last conversion's * data value is sometimes set to the previous * conversion's data value. */ udelay(4); } /* Start a dummy conversion to cause the data from the * previous conversion to be shifted in. */ GpioImage = RR7146(P_GPIO); /* Assert ADC Start command */ WR7146(P_GPIO, GpioImage & ~GPIO1_HI); /* and stretch it out. */ WR7146(P_GPIO, GpioImage & ~GPIO1_HI); WR7146(P_GPIO, GpioImage & ~GPIO1_HI); /* Negate ADC Start command. */ WR7146(P_GPIO, GpioImage | GPIO1_HI); /* Wait for the data to arrive in FB BUFFER 1 register. */ /* Wait for ADC done. */ while (!(RR7146(P_PSR) & PSR_GPIO2)) ; /* Fetch ADC data from audio interface's input shift register. */ /* Fetch ADC data. */ if (n != 0) data[n - 1] = s626_ai_reg_to_uint(RR7146(P_FB_BUFFER1)); return n; } static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd) { int n; for (n = 0; n < cmd->chanlist_len; n++) { if (CR_RANGE((cmd->chanlist)[n]) == 0) ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_5V); else ppl[n] = (CR_CHAN((cmd->chanlist)[n])) | (RANGE_10V); } if (n != 0) ppl[n - 1] |= EOPL; return n; } static int s626_ai_inttrig(struct comedi_device *dev, struct comedi_subdevice *s, unsigned int trignum) { struct s626_private *devpriv = dev->private; if (trignum != 0) return -EINVAL; /* Start executing the RPS program. */ MC_ENABLE(P_MC1, MC1_ERPS1); s->async->inttrig = NULL; return 1; } /* This function doesn't require a particular form, this is just what * happens to be used in some of the drivers. It should convert ns * nanoseconds to a counter value suitable for programming the device. * Also, it should adjust ns so that it cooresponds to the actual time * that the device will use. */ static int s626_ns_to_timer(int *nanosec, int round_mode) { int divider, base; base = 500; /* 2MHz internal clock */ switch (round_mode) { case TRIG_ROUND_NEAREST: default: divider = (*nanosec + base / 2) / base; break; case TRIG_ROUND_DOWN: divider = (*nanosec) / base; break; case TRIG_ROUND_UP: divider = (*nanosec + base - 1) / base; break; } *nanosec = base * divider; return divider - 1; } static void s626_timer_load(struct comedi_device *dev, struct enc_private *k, int tick) { uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */ /* index. */ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */ (CLKSRC_TIMER << BF_CLKSRC) | /* Operating mode is Timer. */ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */ (CNTDIR_DOWN << BF_CLKPOL) | /* Count direction is Down. */ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */ (CLKENAB_INDEX << BF_CLKENAB); uint16_t valueSrclatch = LATCHSRC_A_INDXA; /* uint16_t enab=CLKENAB_ALWAYS; */ k->SetMode(dev, k, Setup, FALSE); /* Set the preload register */ Preload(dev, k, tick); /* Software index pulse forces the preload register to load */ /* into the counter */ k->SetLoadTrig(dev, k, 0); k->PulseIndex(dev, k); /* set reload on counter overflow */ k->SetLoadTrig(dev, k, 1); /* set interrupt on overflow */ k->SetIntSrc(dev, k, INTSRC_OVER); SetLatchSource(dev, k, valueSrclatch); /* k->SetEnable(dev,k,(uint16_t)(enab != 0)); */ } /* TO COMPLETE */ static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s) { struct s626_private *devpriv = dev->private; uint8_t ppl[16]; struct comedi_cmd *cmd = &s->async->cmd; struct enc_private *k; int tick; if (devpriv->ai_cmd_running) { printk(KERN_ERR "s626_ai_cmd: Another ai_cmd is running %d\n", dev->minor); return -EBUSY; } /* disable interrupt */ writel(0, devpriv->base_addr + P_IER); /* clear interrupt request */ writel(IRQ_RPS1 | IRQ_GPIO3, devpriv->base_addr + P_ISR); /* clear any pending interrupt */ s626_dio_clear_irq(dev); /* s626_enc_clear_irq(dev); */ /* reset ai_cmd_running flag */ devpriv->ai_cmd_running = 0; /* test if cmd is valid */ if (cmd == NULL) return -EINVAL; if (dev->irq == 0) { comedi_error(dev, "s626_ai_cmd: cannot run command without an irq"); return -EIO; } s626_ai_load_polllist(ppl, cmd); devpriv->ai_cmd_running = 1; devpriv->ai_convert_count = 0; switch (cmd->scan_begin_src) { case TRIG_FOLLOW: break; case TRIG_TIMER: /* set a conter to generate adc trigger at scan_begin_arg interval */ k = &encpriv[5]; tick = s626_ns_to_timer((int *)&cmd->scan_begin_arg, cmd->flags & TRIG_ROUND_MASK); /* load timer value and enable interrupt */ s626_timer_load(dev, k, tick); k->SetEnable(dev, k, CLKENAB_ALWAYS); break; case TRIG_EXT: /* set the digital line and interrupt for scan trigger */ if (cmd->start_src != TRIG_EXT) s626_dio_set_irq(dev, cmd->scan_begin_arg); break; } switch (cmd->convert_src) { case TRIG_NOW: break; case TRIG_TIMER: /* set a conter to generate adc trigger at convert_arg interval */ k = &encpriv[4]; tick = s626_ns_to_timer((int *)&cmd->convert_arg, cmd->flags & TRIG_ROUND_MASK); /* load timer value and enable interrupt */ s626_timer_load(dev, k, tick); k->SetEnable(dev, k, CLKENAB_INDEX); break; case TRIG_EXT: /* set the digital line and interrupt for convert trigger */ if (cmd->scan_begin_src != TRIG_EXT && cmd->start_src == TRIG_EXT) s626_dio_set_irq(dev, cmd->convert_arg); break; } switch (cmd->stop_src) { case TRIG_COUNT: /* data arrives as one packet */ devpriv->ai_sample_count = cmd->stop_arg; devpriv->ai_continous = 0; break; case TRIG_NONE: /* continous acquisition */ devpriv->ai_continous = 1; devpriv->ai_sample_count = 0; break; } ResetADC(dev, ppl); switch (cmd->start_src) { case TRIG_NOW: /* Trigger ADC scan loop start by setting RPS Signal 0. */ /* MC_ENABLE( P_MC2, MC2_ADC_RPS ); */ /* Start executing the RPS program. */ MC_ENABLE(P_MC1, MC1_ERPS1); s->async->inttrig = NULL; break; case TRIG_EXT: /* configure DIO channel for acquisition trigger */ s626_dio_set_irq(dev, cmd->start_arg); s->async->inttrig = NULL; break; case TRIG_INT: s->async->inttrig = s626_ai_inttrig; break; } /* enable interrupt */ writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); return 0; } static int s626_ai_cmdtest(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_cmd *cmd) { int err = 0; int tmp; /* Step 1 : check if triggers are trivially valid */ err |= cfc_check_trigger_src(&cmd->start_src, TRIG_NOW | TRIG_INT | TRIG_EXT); err |= cfc_check_trigger_src(&cmd->scan_begin_src, TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW); err |= cfc_check_trigger_src(&cmd->convert_src, TRIG_TIMER | TRIG_EXT | TRIG_NOW); err |= cfc_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT); err |= cfc_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE); if (err) return 1; /* Step 2a : make sure trigger sources are unique */ err |= cfc_check_trigger_is_unique(cmd->start_src); err |= cfc_check_trigger_is_unique(cmd->scan_begin_src); err |= cfc_check_trigger_is_unique(cmd->convert_src); err |= cfc_check_trigger_is_unique(cmd->stop_src); /* Step 2b : and mutually compatible */ if (err) return 2; /* step 3: make sure arguments are trivially compatible */ if (cmd->start_src != TRIG_EXT && cmd->start_arg != 0) { cmd->start_arg = 0; err++; } if (cmd->start_src == TRIG_EXT && cmd->start_arg > 39) { cmd->start_arg = 39; err++; } if (cmd->scan_begin_src == TRIG_EXT && cmd->scan_begin_arg > 39) { cmd->scan_begin_arg = 39; err++; } if (cmd->convert_src == TRIG_EXT && cmd->convert_arg > 39) { cmd->convert_arg = 39; err++; } #define MAX_SPEED 200000 /* in nanoseconds */ #define MIN_SPEED 2000000000 /* in nanoseconds */ if (cmd->scan_begin_src == TRIG_TIMER) { if (cmd->scan_begin_arg < MAX_SPEED) { cmd->scan_begin_arg = MAX_SPEED; err++; } if (cmd->scan_begin_arg > MIN_SPEED) { cmd->scan_begin_arg = MIN_SPEED; err++; } } else { /* external trigger */ /* should be level/edge, hi/lo specification here */ /* should specify multiple external triggers */ /* if(cmd->scan_begin_arg>9){ */ /* cmd->scan_begin_arg=9; */ /* err++; */ /* } */ } if (cmd->convert_src == TRIG_TIMER) { if (cmd->convert_arg < MAX_SPEED) { cmd->convert_arg = MAX_SPEED; err++; } if (cmd->convert_arg > MIN_SPEED) { cmd->convert_arg = MIN_SPEED; err++; } } else { /* external trigger */ /* see above */ /* if(cmd->convert_arg>9){ */ /* cmd->convert_arg=9; */ /* err++; */ /* } */ } if (cmd->scan_end_arg != cmd->chanlist_len) { cmd->scan_end_arg = cmd->chanlist_len; err++; } if (cmd->stop_src == TRIG_COUNT) { if (cmd->stop_arg > 0x00ffffff) { cmd->stop_arg = 0x00ffffff; err++; } } else { /* TRIG_NONE */ if (cmd->stop_arg != 0) { cmd->stop_arg = 0; err++; } } if (err) return 3; /* step 4: fix up any arguments */ if (cmd->scan_begin_src == TRIG_TIMER) { tmp = cmd->scan_begin_arg; s626_ns_to_timer((int *)&cmd->scan_begin_arg, cmd->flags & TRIG_ROUND_MASK); if (tmp != cmd->scan_begin_arg) err++; } if (cmd->convert_src == TRIG_TIMER) { tmp = cmd->convert_arg; s626_ns_to_timer((int *)&cmd->convert_arg, cmd->flags & TRIG_ROUND_MASK); if (tmp != cmd->convert_arg) err++; if (cmd->scan_begin_src == TRIG_TIMER && cmd->scan_begin_arg < cmd->convert_arg * cmd->scan_end_arg) { cmd->scan_begin_arg = cmd->convert_arg * cmd->scan_end_arg; err++; } } if (err) return 4; return 0; } static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s) { struct s626_private *devpriv = dev->private; /* Stop RPS program in case it is currently running. */ MC_DISABLE(P_MC1, MC1_ERPS1); /* disable master interrupt */ writel(0, devpriv->base_addr + P_IER); devpriv->ai_cmd_running = 0; return 0; } static int s626_ao_winsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct s626_private *devpriv = dev->private; int i; uint16_t chan = CR_CHAN(insn->chanspec); int16_t dacdata; for (i = 0; i < insn->n; i++) { dacdata = (int16_t) data[i]; devpriv->ao_readback[CR_CHAN(insn->chanspec)] = data[i]; dacdata -= (0x1fff); SetDAC(dev, chan, dacdata); } return i; } static int s626_ao_rinsn(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct s626_private *devpriv = dev->private; int i; for (i = 0; i < insn->n; i++) data[i] = devpriv->ao_readback[CR_CHAN(insn->chanspec)]; return i; } /* *************** DIGITAL I/O FUNCTIONS *************** * All DIO functions address a group of DIO channels by means of * "group" argument. group may be 0, 1 or 2, which correspond to DIO * ports A, B and C, respectively. */ static void s626_dio_init(struct comedi_device *dev) { uint16_t group; struct comedi_subdevice *s; /* Prepare to treat writes to WRCapSel as capture disables. */ DEBIwrite(dev, LP_MISC1, MISC1_NOEDCAP); /* For each group of sixteen channels ... */ for (group = 0; group < S626_DIO_BANKS; group++) { s = dev->subdevices + 2 + group; DEBIwrite(dev, diopriv->WRIntSel, 0); /* Disable all interrupts. */ DEBIwrite(dev, diopriv->WRCapSel, 0xFFFF); /* Disable all event */ /* captures. */ DEBIwrite(dev, diopriv->WREdgSel, 0); /* Init all DIOs to */ /* default edge */ /* polarity. */ DEBIwrite(dev, diopriv->WRDOut, 0); /* Program all outputs */ /* to inactive state. */ } } /* DIO devices are slightly special. Although it is possible to * implement the insn_read/insn_write interface, it is much more * useful to applications if you implement the insn_bits interface. * This allows packed reading/writing of the DIO channels. The comedi * core can convert between insn_bits and insn_read/write */ static int s626_dio_insn_bits(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { /* * The insn data consists of a mask in data[0] and the new data in * data[1]. The mask defines which bits we are concerning about. * The new data must be anded with the mask. Each channel * corresponds to a bit. */ if (data[0]) { /* Check if requested ports are configured for output */ if ((s->io_bits & data[0]) != data[0]) return -EIO; s->state &= ~data[0]; s->state |= data[0] & data[1]; /* Write out the new digital output lines */ DEBIwrite(dev, diopriv->WRDOut, s->state); } data[1] = DEBIread(dev, diopriv->RDDIn); return insn->n; } static int s626_dio_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { switch (data[0]) { case INSN_CONFIG_DIO_QUERY: data[1] = (s-> io_bits & (1 << CR_CHAN(insn->chanspec))) ? COMEDI_OUTPUT : COMEDI_INPUT; return insn->n; break; case COMEDI_INPUT: s->io_bits &= ~(1 << CR_CHAN(insn->chanspec)); break; case COMEDI_OUTPUT: s->io_bits |= 1 << CR_CHAN(insn->chanspec); break; default: return -EINVAL; break; } DEBIwrite(dev, diopriv->WRDOut, s->io_bits); return 1; } /* Now this function initializes the value of the counter (data[0]) and set the subdevice. To complete with trigger and interrupt configuration */ /* FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating * what is being configured, but this function appears to be using data[0] * as a variable. */ static int s626_enc_insn_config(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */ /* index. */ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is Counter. */ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */ /* ( CNTDIR_UP << BF_CLKPOL ) | // Count direction is Down. */ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */ (CLKENAB_INDEX << BF_CLKENAB); /* uint16_t DisableIntSrc=TRUE; */ /* uint32_t Preloadvalue; //Counter initial value */ uint16_t valueSrclatch = LATCHSRC_AB_READ; uint16_t enab = CLKENAB_ALWAYS; struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */ k->SetMode(dev, k, Setup, TRUE); Preload(dev, k, data[0]); k->PulseIndex(dev, k); SetLatchSource(dev, k, valueSrclatch); k->SetEnable(dev, k, (uint16_t) (enab != 0)); return insn->n; } static int s626_enc_insn_read(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { int n; struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; for (n = 0; n < insn->n; n++) data[n] = ReadLatch(dev, k); return n; } static int s626_enc_insn_write(struct comedi_device *dev, struct comedi_subdevice *s, struct comedi_insn *insn, unsigned int *data) { struct enc_private *k = &encpriv[CR_CHAN(insn->chanspec)]; /* Set the preload register */ Preload(dev, k, data[0]); /* Software index pulse forces the preload register to load */ /* into the counter */ k->SetLoadTrig(dev, k, 0); k->PulseIndex(dev, k); k->SetLoadTrig(dev, k, 2); return 1; } static void WriteMISC2(struct comedi_device *dev, uint16_t NewImage) { DEBIwrite(dev, LP_MISC1, MISC1_WENABLE); /* enab writes to */ /* MISC2 register. */ DEBIwrite(dev, LP_WRMISC2, NewImage); /* Write new image to MISC2. */ DEBIwrite(dev, LP_MISC1, MISC1_WDISABLE); /* Disable writes to MISC2. */ } static void CloseDMAB(struct comedi_device *dev, struct bufferDMA *pdma, size_t bsize) { struct pci_dev *pcidev = comedi_to_pci_dev(dev); void *vbptr; dma_addr_t vpptr; if (pdma == NULL) return; /* find the matching allocation from the board struct */ vbptr = pdma->LogicalBase; vpptr = pdma->PhysicalBase; if (vbptr) { pci_free_consistent(pcidev, bsize, vbptr, vpptr); pdma->LogicalBase = NULL; pdma->PhysicalBase = 0; } } /* ****** PRIVATE COUNTER FUNCTIONS ****** */ /* Reset a counter's index and overflow event capture flags. */ static void ResetCapFlags_A(struct comedi_device *dev, struct enc_private *k) { DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A); } static void ResetCapFlags_B(struct comedi_device *dev, struct enc_private *k) { DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B); } /* Return counter setup in a format (COUNTER_SETUP) that is consistent */ /* for both A and B counters. */ static uint16_t GetMode_A(struct comedi_device *dev, struct enc_private *k) { register uint16_t cra; register uint16_t crb; register uint16_t setup; /* Fetch CRA and CRB register images. */ cra = DEBIread(dev, k->MyCRA); crb = DEBIread(dev, k->MyCRB); /* Populate the standardized counter setup bit fields. Note: */ /* IndexSrc is restricted to ENC_X or IndxPol. */ setup = ((cra & STDMSK_LOADSRC) /* LoadSrc = LoadSrcA. */ |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcA. */ |((cra << (STDBIT_INTSRC - CRABIT_INTSRC_A)) & STDMSK_INTSRC) /* IntSrc = IntSrcA. */ |((cra << (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1))) & STDMSK_INDXSRC) /* IndxSrc = IndxSrcA<1>. */ |((cra >> (CRABIT_INDXPOL_A - STDBIT_INDXPOL)) & STDMSK_INDXPOL) /* IndxPol = IndxPolA. */ |((crb >> (CRBBIT_CLKENAB_A - STDBIT_CLKENAB)) & STDMSK_CLKENAB)); /* ClkEnab = ClkEnabA. */ /* Adjust mode-dependent parameters. */ if (cra & (2 << CRABIT_CLKSRC_A)) /* If Timer mode (ClkSrcA<1> == 1): */ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */ |((cra << (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) & STDMSK_CLKPOL) /* Set ClkPol to indicate count direction (ClkSrcA<0>). */ |(MULT_X1 << STDBIT_CLKMULT)); /* ClkMult must be 1x in Timer mode. */ else /* If Counter mode (ClkSrcA<1> == 0): */ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Counter mode. */ |((cra >> (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) & STDMSK_CLKPOL) /* Pass through ClkPol. */ |(((cra & CRAMSK_CLKMULT_A) == (MULT_X0 << CRABIT_CLKMULT_A)) ? /* Force ClkMult to 1x if not legal, else pass through. */ (MULT_X1 << STDBIT_CLKMULT) : ((cra >> (CRABIT_CLKMULT_A - STDBIT_CLKMULT)) & STDMSK_CLKMULT))); /* Return adjusted counter setup. */ return setup; } static uint16_t GetMode_B(struct comedi_device *dev, struct enc_private *k) { register uint16_t cra; register uint16_t crb; register uint16_t setup; /* Fetch CRA and CRB register images. */ cra = DEBIread(dev, k->MyCRA); crb = DEBIread(dev, k->MyCRB); /* Populate the standardized counter setup bit fields. Note: */ /* IndexSrc is restricted to ENC_X or IndxPol. */ setup = (((crb << (STDBIT_INTSRC - CRBBIT_INTSRC_B)) & STDMSK_INTSRC) /* IntSrc = IntSrcB. */ |((crb << (STDBIT_LATCHSRC - CRBBIT_LATCHSRC)) & STDMSK_LATCHSRC) /* LatchSrc = LatchSrcB. */ |((crb << (STDBIT_LOADSRC - CRBBIT_LOADSRC_B)) & STDMSK_LOADSRC) /* LoadSrc = LoadSrcB. */ |((crb << (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)) & STDMSK_INDXPOL) /* IndxPol = IndxPolB. */ |((crb >> (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) & STDMSK_CLKENAB) /* ClkEnab = ClkEnabB. */ |((cra >> ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)) & STDMSK_INDXSRC)); /* IndxSrc = IndxSrcB<1>. */ /* Adjust mode-dependent parameters. */ if ((crb & CRBMSK_CLKMULT_B) == (MULT_X0 << CRBBIT_CLKMULT_B)) /* If Extender mode (ClkMultB == MULT_X0): */ setup |= ((CLKSRC_EXTENDER << STDBIT_CLKSRC) /* Indicate Extender mode. */ |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */ |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */ else if (cra & (2 << CRABIT_CLKSRC_B)) /* If Timer mode (ClkSrcB<1> == 1): */ setup |= ((CLKSRC_TIMER << STDBIT_CLKSRC) /* Indicate Timer mode. */ |(MULT_X1 << STDBIT_CLKMULT) /* Indicate multiplier is 1x. */ |((cra >> (CRABIT_CLKSRC_B - STDBIT_CLKPOL)) & STDMSK_CLKPOL)); /* Set ClkPol equal to Timer count direction (ClkSrcB<0>). */ else /* If Counter mode (ClkSrcB<1> == 0): */ setup |= ((CLKSRC_COUNTER << STDBIT_CLKSRC) /* Indicate Timer mode. */ |((crb >> (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)) & STDMSK_CLKMULT) /* Clock multiplier is passed through. */ |((crb << (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) & STDMSK_CLKPOL)); /* Clock polarity is passed through. */ /* Return adjusted counter setup. */ return setup; } /* * Set the operating mode for the specified counter. The setup * parameter is treated as a COUNTER_SETUP data type. The following * parameters are programmable (all other parms are ignored): ClkMult, * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc. */ static void SetMode_A(struct comedi_device *dev, struct enc_private *k, uint16_t Setup, uint16_t DisableIntSrc) { struct s626_private *devpriv = dev->private; register uint16_t cra; register uint16_t crb; register uint16_t setup = Setup; /* Cache the Standard Setup. */ /* Initialize CRA and CRB images. */ cra = ((setup & CRAMSK_LOADSRC_A) /* Preload trigger is passed through. */ |((setup & STDMSK_INDXSRC) >> (STDBIT_INDXSRC - (CRABIT_INDXSRC_A + 1)))); /* IndexSrc is restricted to ENC_X or IndxPol. */ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A /* Reset any pending CounterA event captures. */ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_A - STDBIT_CLKENAB))); /* Clock enable is passed through. */ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */ if (!DisableIntSrc) cra |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC - CRABIT_INTSRC_A)); /* Populate all mode-dependent attributes of CRA & CRB images. */ switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) { case CLKSRC_EXTENDER: /* Extender Mode: Force to Timer mode */ /* (Extender valid only for B counters). */ case CLKSRC_TIMER: /* Timer Mode: */ cra |= ((2 << CRABIT_CLKSRC_A) /* ClkSrcA<1> selects system clock */ |((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRABIT_CLKSRC_A)) /* with count direction (ClkSrcA<0>) obtained from ClkPol. */ |(1 << CRABIT_CLKPOL_A) /* ClkPolA behaves as always-on clock enable. */ |(MULT_X1 << CRABIT_CLKMULT_A)); /* ClkMult must be 1x. */ break; default: /* Counter Mode: */ cra |= (CLKSRC_COUNTER /* Select ENC_C and ENC_D as clock/direction inputs. */ | ((setup & STDMSK_CLKPOL) << (CRABIT_CLKPOL_A - STDBIT_CLKPOL)) /* Clock polarity is passed through. */ |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force multiplier to x1 if not legal, otherwise pass through. */ (MULT_X1 << CRABIT_CLKMULT_A) : ((setup & STDMSK_CLKMULT) << (CRABIT_CLKMULT_A - STDBIT_CLKMULT)))); } /* Force positive index polarity if IndxSrc is software-driven only, */ /* otherwise pass it through. */ if (~setup & STDMSK_INDXSRC) cra |= ((setup & STDMSK_INDXPOL) << (CRABIT_INDXPOL_A - STDBIT_INDXPOL)); /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */ /* enable mask to indicate the counter interrupt is disabled. */ if (DisableIntSrc) devpriv->CounterIntEnabs &= ~k->MyEventBits[3]; /* While retaining CounterB and LatchSrc configurations, program the */ /* new counter operating mode. */ DEBIreplace(dev, k->MyCRA, CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B, cra); DEBIreplace(dev, k->MyCRB, (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), crb); } static void SetMode_B(struct comedi_device *dev, struct enc_private *k, uint16_t Setup, uint16_t DisableIntSrc) { struct s626_private *devpriv = dev->private; register uint16_t cra; register uint16_t crb; register uint16_t setup = Setup; /* Cache the Standard Setup. */ /* Initialize CRA and CRB images. */ cra = ((setup & STDMSK_INDXSRC) << ((CRABIT_INDXSRC_B + 1) - STDBIT_INDXSRC)); /* IndexSrc field is restricted to ENC_X or IndxPol. */ crb = (CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B /* Reset event captures and disable interrupts. */ | ((setup & STDMSK_CLKENAB) << (CRBBIT_CLKENAB_B - STDBIT_CLKENAB)) /* Clock enable is passed through. */ |((setup & STDMSK_LOADSRC) >> (STDBIT_LOADSRC - CRBBIT_LOADSRC_B))); /* Preload trigger source is passed through. */ /* Force IntSrc to Disabled if DisableIntSrc is asserted. */ if (!DisableIntSrc) crb |= ((setup & STDMSK_INTSRC) >> (STDBIT_INTSRC - CRBBIT_INTSRC_B)); /* Populate all mode-dependent attributes of CRA & CRB images. */ switch ((setup & STDMSK_CLKSRC) >> STDBIT_CLKSRC) { case CLKSRC_TIMER: /* Timer Mode: */ cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB<1> selects system clock */ |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction (ClkSrcB<0>) obtained from ClkPol. */ crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB behaves as always-on clock enable. */ |(MULT_X1 << CRBBIT_CLKMULT_B)); /* ClkMultB must be 1x. */ break; case CLKSRC_EXTENDER: /* Extender Mode: */ cra |= ((2 << CRABIT_CLKSRC_B) /* ClkSrcB source is OverflowA (same as "timer") */ |((setup & STDMSK_CLKPOL) << (CRABIT_CLKSRC_B - STDBIT_CLKPOL))); /* with direction obtained from ClkPol. */ crb |= ((1 << CRBBIT_CLKPOL_B) /* ClkPolB controls IndexB -- always set to active. */ |(MULT_X0 << CRBBIT_CLKMULT_B)); /* ClkMultB selects OverflowA as the clock source. */ break; default: /* Counter Mode: */ cra |= (CLKSRC_COUNTER << CRABIT_CLKSRC_B); /* Select ENC_C and ENC_D as clock/direction inputs. */ crb |= (((setup & STDMSK_CLKPOL) >> (STDBIT_CLKPOL - CRBBIT_CLKPOL_B)) /* ClkPol is passed through. */ |(((setup & STDMSK_CLKMULT) == (MULT_X0 << STDBIT_CLKMULT)) ? /* Force ClkMult to x1 if not legal, otherwise pass through. */ (MULT_X1 << CRBBIT_CLKMULT_B) : ((setup & STDMSK_CLKMULT) << (CRBBIT_CLKMULT_B - STDBIT_CLKMULT)))); } /* Force positive index polarity if IndxSrc is software-driven only, */ /* otherwise pass it through. */ if (~setup & STDMSK_INDXSRC) crb |= ((setup & STDMSK_INDXPOL) >> (STDBIT_INDXPOL - CRBBIT_INDXPOL_B)); /* If IntSrc has been forced to Disabled, update the MISC2 interrupt */ /* enable mask to indicate the counter interrupt is disabled. */ if (DisableIntSrc) devpriv->CounterIntEnabs &= ~k->MyEventBits[3]; /* While retaining CounterA and LatchSrc configurations, program the */ /* new counter operating mode. */ DEBIreplace(dev, k->MyCRA, (uint16_t) (~(CRAMSK_INDXSRC_B | CRAMSK_CLKSRC_B)), cra); DEBIreplace(dev, k->MyCRB, CRBMSK_CLKENAB_A | CRBMSK_LATCHSRC, crb); } /* Return/set a counter's enable. enab: 0=always enabled, 1=enabled by index. */ static void SetEnable_A(struct comedi_device *dev, struct enc_private *k, uint16_t enab) { DEBIreplace(dev, k->MyCRB, (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_A)), (uint16_t) (enab << CRBBIT_CLKENAB_A)); } static void SetEnable_B(struct comedi_device *dev, struct enc_private *k, uint16_t enab) { DEBIreplace(dev, k->MyCRB, (uint16_t) (~(CRBMSK_INTCTRL | CRBMSK_CLKENAB_B)), (uint16_t) (enab << CRBBIT_CLKENAB_B)); } static uint16_t GetEnable_A(struct comedi_device *dev, struct enc_private *k) { return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_A) & 1; } static uint16_t GetEnable_B(struct comedi_device *dev, struct enc_private *k) { return (DEBIread(dev, k->MyCRB) >> CRBBIT_CLKENAB_B) & 1; } /* * static uint16_t GetLatchSource(struct comedi_device *dev, struct enc_private *k ) * { * return ( DEBIread( dev, k->MyCRB) >> CRBBIT_LATCHSRC ) & 3; * } */ /* * Return/set the event that will trigger transfer of the preload * register into the counter. 0=ThisCntr_Index, 1=ThisCntr_Overflow, * 2=OverflowA (B counters only), 3=disabled. */ static void SetLoadTrig_A(struct comedi_device *dev, struct enc_private *k, uint16_t Trig) { DEBIreplace(dev, k->MyCRA, (uint16_t) (~CRAMSK_LOADSRC_A), (uint16_t) (Trig << CRABIT_LOADSRC_A)); } static void SetLoadTrig_B(struct comedi_device *dev, struct enc_private *k, uint16_t Trig) { DEBIreplace(dev, k->MyCRB, (uint16_t) (~(CRBMSK_LOADSRC_B | CRBMSK_INTCTRL)), (uint16_t) (Trig << CRBBIT_LOADSRC_B)); } static uint16_t GetLoadTrig_A(struct comedi_device *dev, struct enc_private *k) { return (DEBIread(dev, k->MyCRA) >> CRABIT_LOADSRC_A) & 3; } static uint16_t GetLoadTrig_B(struct comedi_device *dev, struct enc_private *k) { return (DEBIread(dev, k->MyCRB) >> CRBBIT_LOADSRC_B) & 3; } /* Return/set counter interrupt source and clear any captured * index/overflow events. IntSource: 0=Disabled, 1=OverflowOnly, * 2=IndexOnly, 3=IndexAndOverflow. */ static void SetIntSrc_A(struct comedi_device *dev, struct enc_private *k, uint16_t IntSource) { struct s626_private *devpriv = dev->private; /* Reset any pending counter overflow or index captures. */ DEBIreplace(dev, k->MyCRB, (uint16_t) (~CRBMSK_INTCTRL), CRBMSK_INTRESETCMD | CRBMSK_INTRESET_A); /* Program counter interrupt source. */ DEBIreplace(dev, k->MyCRA, ~CRAMSK_INTSRC_A, (uint16_t) (IntSource << CRABIT_INTSRC_A)); /* Update MISC2 interrupt enable mask. */ devpriv->CounterIntEnabs = (devpriv->CounterIntEnabs & ~k-> MyEventBits[3]) | k->MyEventBits[IntSource]; } static void SetIntSrc_B(struct comedi_device *dev, struct enc_private *k, uint16_t IntSource) { struct s626_private *devpriv = dev->private; uint16_t crb; /* Cache writeable CRB register image. */ crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Reset any pending counter overflow or index captures. */ DEBIwrite(dev, k->MyCRB, (uint16_t) (crb | CRBMSK_INTRESETCMD | CRBMSK_INTRESET_B)); /* Program counter interrupt source. */ DEBIwrite(dev, k->MyCRB, (uint16_t) ((crb & ~CRBMSK_INTSRC_B) | (IntSource << CRBBIT_INTSRC_B))); /* Update MISC2 interrupt enable mask. */ devpriv->CounterIntEnabs = (devpriv->CounterIntEnabs & ~k-> MyEventBits[3]) | k->MyEventBits[IntSource]; } static uint16_t GetIntSrc_A(struct comedi_device *dev, struct enc_private *k) { return (DEBIread(dev, k->MyCRA) >> CRABIT_INTSRC_A) & 3; } static uint16_t GetIntSrc_B(struct comedi_device *dev, struct enc_private *k) { return (DEBIread(dev, k->MyCRB) >> CRBBIT_INTSRC_B) & 3; } /* Return/set the clock multiplier. */ /* static void SetClkMult(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */ /* { */ /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKMULT ) | ( value << STDBIT_CLKMULT ) ), FALSE ); */ /* } */ /* static uint16_t GetClkMult(struct comedi_device *dev, struct enc_private *k ) */ /* { */ /* return ( k->GetMode(dev, k ) >> STDBIT_CLKMULT ) & 3; */ /* } */ /* Return/set the clock polarity. */ /* static void SetClkPol( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */ /* { */ /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKPOL ) | ( value << STDBIT_CLKPOL ) ), FALSE ); */ /* } */ /* static uint16_t GetClkPol(struct comedi_device *dev, struct enc_private *k ) */ /* { */ /* return ( k->GetMode(dev, k ) >> STDBIT_CLKPOL ) & 1; */ /* } */ /* Return/set the clock source. */ /* static void SetClkSrc( struct comedi_device *dev,struct enc_private *k, uint16_t value ) */ /* { */ /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_CLKSRC ) | ( value << STDBIT_CLKSRC ) ), FALSE ); */ /* } */ /* static uint16_t GetClkSrc( struct comedi_device *dev,struct enc_private *k ) */ /* { */ /* return ( k->GetMode(dev, k ) >> STDBIT_CLKSRC ) & 3; */ /* } */ /* Return/set the index polarity. */ /* static void SetIndexPol(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */ /* { */ /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXPOL ) | ( (value != 0) << STDBIT_INDXPOL ) ), FALSE ); */ /* } */ /* static uint16_t GetIndexPol(struct comedi_device *dev, struct enc_private *k ) */ /* { */ /* return ( k->GetMode(dev, k ) >> STDBIT_INDXPOL ) & 1; */ /* } */ /* Return/set the index source. */ /* static void SetIndexSrc(struct comedi_device *dev, struct enc_private *k, uint16_t value ) */ /* { */ /* k->SetMode(dev, k, (uint16_t)( ( k->GetMode(dev, k ) & ~STDMSK_INDXSRC ) | ( (value != 0) << STDBIT_INDXSRC ) ), FALSE ); */ /* } */ /* static uint16_t GetIndexSrc(struct comedi_device *dev, struct enc_private *k ) */ /* { */ /* return ( k->GetMode(dev, k ) >> STDBIT_INDXSRC ) & 1; */ /* } */ /* Generate an index pulse. */ static void PulseIndex_A(struct comedi_device *dev, struct enc_private *k) { register uint16_t cra; cra = DEBIread(dev, k->MyCRA); /* Pulse index. */ DEBIwrite(dev, k->MyCRA, (uint16_t) (cra ^ CRAMSK_INDXPOL_A)); DEBIwrite(dev, k->MyCRA, cra); } static void PulseIndex_B(struct comedi_device *dev, struct enc_private *k) { register uint16_t crb; crb = DEBIread(dev, k->MyCRB) & ~CRBMSK_INTCTRL; /* Pulse index. */ DEBIwrite(dev, k->MyCRB, (uint16_t) (crb ^ CRBMSK_INDXPOL_B)); DEBIwrite(dev, k->MyCRB, crb); } static struct enc_private enc_private_data[] = { { .GetEnable = GetEnable_A, .GetIntSrc = GetIntSrc_A, .GetLoadTrig = GetLoadTrig_A, .GetMode = GetMode_A, .PulseIndex = PulseIndex_A, .SetEnable = SetEnable_A, .SetIntSrc = SetIntSrc_A, .SetLoadTrig = SetLoadTrig_A, .SetMode = SetMode_A, .ResetCapFlags = ResetCapFlags_A, .MyCRA = LP_CR0A, .MyCRB = LP_CR0B, .MyLatchLsw = LP_CNTR0ALSW, .MyEventBits = EVBITS(0), }, { .GetEnable = GetEnable_A, .GetIntSrc = GetIntSrc_A, .GetLoadTrig = GetLoadTrig_A, .GetMode = GetMode_A, .PulseIndex = PulseIndex_A, .SetEnable = SetEnable_A, .SetIntSrc = SetIntSrc_A, .SetLoadTrig = SetLoadTrig_A, .SetMode = SetMode_A, .ResetCapFlags = ResetCapFlags_A, .MyCRA = LP_CR1A, .MyCRB = LP_CR1B, .MyLatchLsw = LP_CNTR1ALSW, .MyEventBits = EVBITS(1), }, { .GetEnable = GetEnable_A, .GetIntSrc = GetIntSrc_A, .GetLoadTrig = GetLoadTrig_A, .GetMode = GetMode_A, .PulseIndex = PulseIndex_A, .SetEnable = SetEnable_A, .SetIntSrc = SetIntSrc_A, .SetLoadTrig = SetLoadTrig_A, .SetMode = SetMode_A, .ResetCapFlags = ResetCapFlags_A, .MyCRA = LP_CR2A, .MyCRB = LP_CR2B, .MyLatchLsw = LP_CNTR2ALSW, .MyEventBits = EVBITS(2), }, { .GetEnable = GetEnable_B, .GetIntSrc = GetIntSrc_B, .GetLoadTrig = GetLoadTrig_B, .GetMode = GetMode_B, .PulseIndex = PulseIndex_B, .SetEnable = SetEnable_B, .SetIntSrc = SetIntSrc_B, .SetLoadTrig = SetLoadTrig_B, .SetMode = SetMode_B, .ResetCapFlags = ResetCapFlags_B, .MyCRA = LP_CR0A, .MyCRB = LP_CR0B, .MyLatchLsw = LP_CNTR0BLSW, .MyEventBits = EVBITS(3), }, { .GetEnable = GetEnable_B, .GetIntSrc = GetIntSrc_B, .GetLoadTrig = GetLoadTrig_B, .GetMode = GetMode_B, .PulseIndex = PulseIndex_B, .SetEnable = SetEnable_B, .SetIntSrc = SetIntSrc_B, .SetLoadTrig = SetLoadTrig_B, .SetMode = SetMode_B, .ResetCapFlags = ResetCapFlags_B, .MyCRA = LP_CR1A, .MyCRB = LP_CR1B, .MyLatchLsw = LP_CNTR1BLSW, .MyEventBits = EVBITS(4), }, { .GetEnable = GetEnable_B, .GetIntSrc = GetIntSrc_B, .GetLoadTrig = GetLoadTrig_B, .GetMode = GetMode_B, .PulseIndex = PulseIndex_B, .SetEnable = SetEnable_B, .SetIntSrc = SetIntSrc_B, .SetLoadTrig = SetLoadTrig_B, .SetMode = SetMode_B, .ResetCapFlags = ResetCapFlags_B, .MyCRA = LP_CR2A, .MyCRB = LP_CR2B, .MyLatchLsw = LP_CNTR2BLSW, .MyEventBits = EVBITS(5), }, }; static void CountersInit(struct comedi_device *dev) { int chan; struct enc_private *k; uint16_t Setup = (LOADSRC_INDX << BF_LOADSRC) | /* Preload upon */ /* index. */ (INDXSRC_SOFT << BF_INDXSRC) | /* Disable hardware index. */ (CLKSRC_COUNTER << BF_CLKSRC) | /* Operating mode is counter. */ (CLKPOL_POS << BF_CLKPOL) | /* Active high clock. */ (CNTDIR_UP << BF_CLKPOL) | /* Count direction is up. */ (CLKMULT_1X << BF_CLKMULT) | /* Clock multiplier is 1x. */ (CLKENAB_INDEX << BF_CLKENAB); /* Enabled by index */ /* Disable all counter interrupts and clear any captured counter events. */ for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) { k = &encpriv[chan]; k->SetMode(dev, k, Setup, TRUE); k->SetIntSrc(dev, k, 0); k->ResetCapFlags(dev, k); k->SetEnable(dev, k, CLKENAB_ALWAYS); } } static int s626_allocate_dma_buffers(struct comedi_device *dev) { struct pci_dev *pcidev = comedi_to_pci_dev(dev); struct s626_private *devpriv = dev->private; void *addr; dma_addr_t appdma; addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma); if (!addr) return -ENOMEM; devpriv->ANABuf.LogicalBase = addr; devpriv->ANABuf.PhysicalBase = appdma; addr = pci_alloc_consistent(pcidev, DMABUF_SIZE, &appdma); if (!addr) return -ENOMEM; devpriv->RPSBuf.LogicalBase = addr; devpriv->RPSBuf.PhysicalBase = appdma; return 0; } static void s626_initialize(struct comedi_device *dev) { struct s626_private *devpriv = dev->private; dma_addr_t pPhysBuf; uint16_t chan; int i; /* Enable DEBI and audio pins, enable I2C interface */ MC_ENABLE(P_MC1, MC1_DEBI | MC1_AUDIO | MC1_I2C); /* * Configure DEBI operating mode * * Local bus is 16 bits wide * Declare DEBI transfer timeout interval * Set up byte lane steering * Intel-compatible local bus (DEBI never times out) */ WR7146(P_DEBICFG, DEBI_CFG_SLAVE16 | (DEBI_TOUT << DEBI_CFG_TOUT_BIT) | DEBI_SWAP | DEBI_CFG_INTEL); /* Disable MMU paging */ WR7146(P_DEBIPAGE, DEBI_PAGE_DISABLE); /* Init GPIO so that ADC Start* is negated */ WR7146(P_GPIO, GPIO_BASE | GPIO1_HI); /* I2C device address for onboard eeprom (revb) */ devpriv->I2CAdrs = 0xA0; /* * Issue an I2C ABORT command to halt any I2C * operation in progress and reset BUSY flag. */ WR7146(P_I2CSTAT, I2C_CLKSEL | I2C_ABORT); MC_ENABLE(P_MC2, MC2_UPLD_IIC); while ((RR7146(P_MC2) & MC2_UPLD_IIC) == 0) ; /* * Per SAA7146 data sheet, write to STATUS * reg twice to reset all I2C error flags. */ for (i = 0; i < 2; i++) { WR7146(P_I2CSTAT, I2C_CLKSEL); MC_ENABLE(P_MC2, MC2_UPLD_IIC); while (!MC_TEST(P_MC2, MC2_UPLD_IIC)) ; } /* * Init audio interface functional attributes: set DAC/ADC * serial clock rates, invert DAC serial clock so that * DAC data setup times are satisfied, enable DAC serial * clock out. */ WR7146(P_ACON2, ACON2_INIT); /* * Set up TSL1 slot list, which is used to control the * accumulation of ADC data: RSD1 = shift data in on SD1. * SIB_A1 = store data uint8_t at next available location * in FB BUFFER1 register. */ WR7146(P_TSL1, RSD1 | SIB_A1); WR7146(P_TSL1 + 4, RSD1 | SIB_A1 | EOS); /* Enable TSL1 slot list so that it executes all the time */ WR7146(P_ACON1, ACON1_ADCSTART); /* * Initialize RPS registers used for ADC */ /* Physical start of RPS program */ WR7146(P_RPSADDR1, (uint32_t)devpriv->RPSBuf.PhysicalBase); /* RPS program performs no explicit mem writes */ WR7146(P_RPSPAGE1, 0); /* Disable RPS timeouts */ WR7146(P_RPS1_TOUT, 0); #if 0 /* * SAA7146 BUG WORKAROUND * * Initialize SAA7146 ADC interface to a known state by * invoking ADCs until FB BUFFER 1 register shows that it * is correctly receiving ADC data. This is necessary * because the SAA7146 ADC interface does not start up in * a defined state after a PCI reset. */ { uint8_t PollList; uint16_t AdcData; uint16_t StartVal; uint16_t index; unsigned int data[16]; /* Create a simple polling list for analog input channel 0 */ PollList = EOPL; ResetADC(dev, &PollList); /* Get initial ADC value */ s626_ai_rinsn(dev, dev->subdevices, NULL, data); StartVal = data[0]; /* * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED EXECUTION. * * Invoke ADCs until the new ADC value differs from the initial * value or a timeout occurs. The timeout protects against the * possibility that the driver is restarting and the ADC data is a * fixed value resulting from the applied ADC analog input being * unusually quiet or at the rail. */ for (index = 0; index < 500; index++) { s626_ai_rinsn(dev, dev->subdevices, NULL, data); AdcData = data[0]; if (AdcData != StartVal) break; } } #endif /* SAA7146 BUG WORKAROUND */ /* * Initialize the DAC interface */ /* * Init Audio2's output DMAC attributes: * burst length = 1 DWORD * threshold = 1 DWORD. */ WR7146(P_PCI_BT_A, 0); /* * Init Audio2's output DMA physical addresses. The protection * address is set to 1 DWORD past the base address so that a * single DWORD will be transferred each time a DMA transfer is * enabled. */ pPhysBuf = devpriv->ANABuf.PhysicalBase + (DAC_WDMABUF_OS * sizeof(uint32_t)); WR7146(P_BASEA2_OUT, (uint32_t) pPhysBuf); WR7146(P_PROTA2_OUT, (uint32_t) (pPhysBuf + sizeof(uint32_t))); /* * Cache Audio2's output DMA buffer logical address. This is * where DAC data is buffered for A2 output DMA transfers. */ devpriv->pDacWBuf = (uint32_t *)devpriv->ANABuf.LogicalBase + DAC_WDMABUF_OS; /* * Audio2's output channels does not use paging. The * protection violation handling bit is set so that the * DMAC will automatically halt and its PCI address pointer * will be reset when the protection address is reached. */ WR7146(P_PAGEA2_OUT, 8); /* * Initialize time slot list 2 (TSL2), which is used to control * the clock generation for and serialization of data to be sent * to the DAC devices. Slot 0 is a NOP that is used to trap TSL * execution; this permits other slots to be safely modified * without first turning off the TSL sequencer (which is * apparently impossible to do). Also, SD3 (which is driven by a * pull-up resistor) is shifted in and stored to the MSB of * FB_BUFFER2 to be used as evidence that the slot sequence has * not yet finished executing. */ /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */ SETVECT(0, XSD2 | RSD3 | SIB_A2 | EOS); /* * Initialize slot 1, which is constant. Slot 1 causes a * DWORD to be transferred from audio channel 2's output FIFO * to the FIFO's output buffer so that it can be serialized * and sent to the DAC during subsequent slots. All remaining * slots are dynamically populated as required by the target * DAC device. */ /* Slot 1: Fetch DWORD from Audio2's output FIFO */ SETVECT(1, LF_A2); /* Start DAC's audio interface (TSL2) running */ WR7146(P_ACON1, ACON1_DACSTART); /* * Init Trim DACs to calibrated values. Do it twice because the * SAA7146 audio channel does not always reset properly and * sometimes causes the first few TrimDAC writes to malfunction. */ LoadTrimDACs(dev); LoadTrimDACs(dev); /* * Manually init all gate array hardware in case this is a soft * reset (we have no way of determining whether this is a warm * or cold start). This is necessary because the gate array will * reset only in response to a PCI hard reset; there is no soft * reset function. */ /* * Init all DAC outputs to 0V and init all DAC setpoint and * polarity images. */ for (chan = 0; chan < S626_DAC_CHANNELS; chan++) SetDAC(dev, chan, 0); /* Init counters */ CountersInit(dev); /* * Without modifying the state of the Battery Backup enab, disable * the watchdog timer, set DIO channels 0-5 to operate in the * standard DIO (vs. counter overflow) mode, disable the battery * charger, and reset the watchdog interval selector to zero. */ WriteMISC2(dev, (uint16_t)(DEBIread(dev, LP_RDMISC2) & MISC2_BATT_ENABLE)); /* Initialize the digital I/O subsystem */ s626_dio_init(dev); /* enable interrupt test */ /* writel(IRQ_GPIO3 | IRQ_RPS1, devpriv->base_addr + P_IER); */ } static int s626_attach_pci(struct comedi_device *dev, struct pci_dev *pcidev) { struct s626_private *devpriv; struct comedi_subdevice *s; int ret; comedi_set_hw_dev(dev, &pcidev->dev); dev->board_name = dev->driver->driver_name; ret = alloc_private(dev, sizeof(*devpriv)); if (ret) return ret; devpriv = dev->private; ret = comedi_pci_enable(pcidev, dev->board_name); if (ret) return ret; dev->iobase = 1; /* detach needs this */ devpriv->base_addr = ioremap(pci_resource_start(pcidev, 0), pci_resource_len(pcidev, 0)); if (!devpriv->base_addr) return -ENOMEM; /* disable master interrupt */ writel(0, devpriv->base_addr + P_IER); /* soft reset */ writel(MC1_SOFT_RESET, devpriv->base_addr + P_MC1); /* DMA FIXME DMA// */ ret = s626_allocate_dma_buffers(dev); if (ret) return ret; if (pcidev->irq) { ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED, dev->board_name, dev); if (ret == 0) dev->irq = pcidev->irq; } ret = comedi_alloc_subdevices(dev, 6); if (ret) return ret; s = dev->subdevices + 0; /* analog input subdevice */ dev->read_subdev = s; /* we support single-ended (ground) and differential */ s->type = COMEDI_SUBD_AI; s->subdev_flags = SDF_READABLE | SDF_DIFF | SDF_CMD_READ; s->n_chan = S626_ADC_CHANNELS; s->maxdata = (0xffff >> 2); s->range_table = &s626_range_table; s->len_chanlist = S626_ADC_CHANNELS; s->insn_config = s626_ai_insn_config; s->insn_read = s626_ai_insn_read; s->do_cmd = s626_ai_cmd; s->do_cmdtest = s626_ai_cmdtest; s->cancel = s626_ai_cancel; s = dev->subdevices + 1; /* analog output subdevice */ s->type = COMEDI_SUBD_AO; s->subdev_flags = SDF_WRITABLE | SDF_READABLE; s->n_chan = S626_DAC_CHANNELS; s->maxdata = (0x3fff); s->range_table = &range_bipolar10; s->insn_write = s626_ao_winsn; s->insn_read = s626_ao_rinsn; s = dev->subdevices + 2; /* digital I/O subdevice */ s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_WRITABLE | SDF_READABLE; s->n_chan = 16; s->maxdata = 1; s->io_bits = 0xffff; s->private = &dio_private_A; s->range_table = &range_digital; s->insn_config = s626_dio_insn_config; s->insn_bits = s626_dio_insn_bits; s = dev->subdevices + 3; /* digital I/O subdevice */ s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_WRITABLE | SDF_READABLE; s->n_chan = 16; s->maxdata = 1; s->io_bits = 0xffff; s->private = &dio_private_B; s->range_table = &range_digital; s->insn_config = s626_dio_insn_config; s->insn_bits = s626_dio_insn_bits; s = dev->subdevices + 4; /* digital I/O subdevice */ s->type = COMEDI_SUBD_DIO; s->subdev_flags = SDF_WRITABLE | SDF_READABLE; s->n_chan = 16; s->maxdata = 1; s->io_bits = 0xffff; s->private = &dio_private_C; s->range_table = &range_digital; s->insn_config = s626_dio_insn_config; s->insn_bits = s626_dio_insn_bits; s = dev->subdevices + 5; /* encoder (counter) subdevice */ s->type = COMEDI_SUBD_COUNTER; s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL; s->n_chan = S626_ENCODER_CHANNELS; s->private = enc_private_data; s->insn_config = s626_enc_insn_config; s->insn_read = s626_enc_insn_read; s->insn_write = s626_enc_insn_write; s->maxdata = 0xffffff; s->range_table = &range_unknown; s626_initialize(dev); dev_info(dev->class_dev, "%s attached\n", dev->board_name); return 0; } static void s626_detach(struct comedi_device *dev) { struct pci_dev *pcidev = comedi_to_pci_dev(dev); struct s626_private *devpriv = dev->private; if (devpriv) { /* stop ai_command */ devpriv->ai_cmd_running = 0; if (devpriv->base_addr) { /* interrupt mask */ WR7146(P_IER, 0); /* Disable master interrupt. */ WR7146(P_ISR, IRQ_GPIO3 | IRQ_RPS1); /* Clear board's IRQ status flag. */ /* Disable the watchdog timer and battery charger. */ WriteMISC2(dev, 0); /* Close all interfaces on 7146 device. */ WR7146(P_MC1, MC1_SHUTDOWN); WR7146(P_ACON1, ACON1_BASE); CloseDMAB(dev, &devpriv->RPSBuf, DMABUF_SIZE); CloseDMAB(dev, &devpriv->ANABuf, DMABUF_SIZE); } if (dev->irq) free_irq(dev->irq, dev); if (devpriv->base_addr) iounmap(devpriv->base_addr); } if (pcidev) { if (dev->iobase) comedi_pci_disable(pcidev); } } static struct comedi_driver s626_driver = { .driver_name = "s626", .module = THIS_MODULE, .attach_pci = s626_attach_pci, .detach = s626_detach, }; static int __devinit s626_pci_probe(struct pci_dev *dev, const struct pci_device_id *ent) { return comedi_pci_auto_config(dev, &s626_driver); } static void __devexit s626_pci_remove(struct pci_dev *dev) { comedi_pci_auto_unconfig(dev); } /* * For devices with vendor:device id == 0x1131:0x7146 you must specify * also subvendor:subdevice ids, because otherwise it will conflict with * Philips SAA7146 media/dvb based cards. */ static DEFINE_PCI_DEVICE_TABLE(s626_pci_table) = { { PCI_VENDOR_ID_S626, PCI_DEVICE_ID_S626, PCI_SUBVENDOR_ID_S626, PCI_SUBDEVICE_ID_S626, 0, 0, 0 }, { 0 } }; MODULE_DEVICE_TABLE(pci, s626_pci_table); static struct pci_driver s626_pci_driver = { .name = "s626", .id_table = s626_pci_table, .probe = s626_pci_probe, .remove = __devexit_p(s626_pci_remove), }; module_comedi_pci_driver(s626_driver, s626_pci_driver); MODULE_AUTHOR("Gianluca Palli <gpalli@xxxxxxxxxxxxx>"); MODULE_DESCRIPTION("Sensoray 626 Comedi driver module"); MODULE_LICENSE("GPL");
_______________________________________________ devel mailing list devel@xxxxxxxxxxxxxxxxxxxxxx http://driverdev.linuxdriverproject.org/mailman/listinfo/devel