Hi Alois, FYI, there are new smatch warnings show up in tree: git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging.git staging-next head: e1878957b4676a17cf398f7f5723b365e9a2ca48 commit: 2eae6bdc12f4e49b7f94f032b82d664dcf3881bc [115/274] Staging: add ced1401 USB driver drivers/staging/ced1401/usb1401.c:505 CopyUserSpace() warn: statement has no effect 3 + drivers/staging/ced1401/usb1401.c:1065 Handle1401Esc() error: double unlock 'spin_lock:&pdx->stagedLock' -- drivers/staging/ced1401/ced_ioc.c:830 WaitEvent() warn: buffer overflow 'pdx->rTransDef' 8 <= 8 + drivers/staging/ced1401/ced_ioc.c:855 WaitEvent() warn: inconsistent returns mutex:&pdx->io_mutex: locked (839) unlocked (826,855) drivers/staging/ced1401/ced_ioc.c:871 TestEvent() warn: buffer overflow 'pdx->rTransDef' 8 <= 8 + drivers/staging/ced1401/ced_ioc.c:898 GetTransfer() warn: 'tx' puts 3104 bytes on stack + drivers/staging/ced1401/ced_ioc.c:906 GetTransfer() warn: check that 'tx.seg' doesn't leak information + drivers/staging/ced1401/ced_ioc.c:1057 CheckSelfTest() warn: check that 'gst.code' doesn't leak information vim +1065 drivers/staging/ced1401/usb1401.c 2eae6bdc Alois Schlögl 2012-09-17 1049 } 2eae6bdc Alois Schlögl 2012-09-17 1050 else 2eae6bdc Alois Schlögl 2012-09-17 1051 { 2eae6bdc Alois Schlögl 2012-09-17 1052 if ((wTransType == TM_EXTTOHOST) || (wTransType == TM_EXTTO1401)) 2eae6bdc Alois Schlögl 2012-09-17 1053 { 2eae6bdc Alois Schlögl 2012-09-17 1054 iReturn = ReadWriteMem(pdx, !pdx->rDMAInfo.bOutWard, pdx->rDMAInfo.wIdent, pdx->rDMAInfo.dwOffset, pdx->rDMAInfo.dwSize); 2eae6bdc Alois Schlögl 2012-09-17 1055 if (iReturn != U14ERR_NOERROR) 2eae6bdc Alois Schlögl 2012-09-17 1056 dev_err(&pdx->interface->dev, "%s ReadWriteMem() failed %d", __func__, iReturn); 2eae6bdc Alois Schlögl 2012-09-17 1057 } 2eae6bdc Alois Schlögl 2012-09-17 1058 else // This covers non-linear transfer setup 2eae6bdc Alois Schlögl 2012-09-17 1059 dev_err(&pdx->interface->dev, "%s Unknown block xfer type %d", __func__, wTransType); 2eae6bdc Alois Schlögl 2012-09-17 1060 } 2eae6bdc Alois Schlögl 2012-09-17 1061 } 2eae6bdc Alois Schlögl 2012-09-17 1062 else // Failed to read parameters 2eae6bdc Alois Schlögl 2012-09-17 1063 dev_err(&pdx->interface->dev, "%s ReadDMAInfo() fail", __func__); 2eae6bdc Alois Schlögl 2012-09-17 1064 2eae6bdc Alois Schlögl 2012-09-17 @1065 spin_unlock(&pdx->stagedLock); // OK here 2eae6bdc Alois Schlögl 2012-09-17 1066 } 2eae6bdc Alois Schlögl 2012-09-17 1067 2eae6bdc Alois Schlögl 2012-09-17 1068 dev_dbg(&pdx->interface->dev, "%s returns %d", __func__, iReturn); 2eae6bdc Alois Schlögl 2012-09-17 1069 2eae6bdc Alois Schlögl 2012-09-17 1070 return iReturn; 2eae6bdc Alois Schlögl 2012-09-17 1071 } 2eae6bdc Alois Schlögl 2012-09-17 1072 2eae6bdc Alois Schlögl 2012-09-17 1073 /**************************************************************************** --- 0-DAY kernel build testing backend Open Source Technology Center Fengguang Wu, Yuanhan Liu Intel Corporation
/* ced_ioc.c ioctl part of the 1401 usb device driver for linux. Copyright (C) 2010 Cambridge Electronic Design Ltd Author Greg P Smith (greg@xxxxxxxxx) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kref.h> #include <linux/uaccess.h> #include <linux/usb.h> #include <linux/mutex.h> #include <linux/page-flags.h> #include <linux/pagemap.h> #include <linux/jiffies.h> #include "usb1401.h" /**************************************************************************** ** FlushOutBuff ** ** Empties the Output buffer and sets int lines. Used from user level only ****************************************************************************/ void FlushOutBuff(DEVICE_EXTENSION *pdx) { dev_dbg(&pdx->interface->dev, "%s currentState=%d", __func__, pdx->sCurrentState); if (pdx->sCurrentState == U14ERR_TIME) /* Do nothing if hardware in trouble */ return; // CharSend_Cancel(pdx); /* Kill off any pending I/O */ spin_lock_irq(&pdx->charOutLock); pdx->dwNumOutput = 0; pdx->dwOutBuffGet = 0; pdx->dwOutBuffPut = 0; spin_unlock_irq(&pdx->charOutLock); } /**************************************************************************** ** ** FlushInBuff ** ** Empties the input buffer and sets int lines ****************************************************************************/ void FlushInBuff(DEVICE_EXTENSION *pdx) { dev_dbg(&pdx->interface->dev, "%s currentState=%d", __func__, pdx->sCurrentState); if (pdx->sCurrentState == U14ERR_TIME) /* Do nothing if hardware in trouble */ return; // CharRead_Cancel(pDevObject); /* Kill off any pending I/O */ spin_lock_irq(&pdx->charInLock); pdx->dwNumInput = 0; pdx->dwInBuffGet = 0; pdx->dwInBuffPut = 0; spin_unlock_irq(&pdx->charInLock); } /**************************************************************************** ** PutChars ** ** Utility routine to copy chars into the output buffer and fire them off. ** called from user mode, holds charOutLock. ****************************************************************************/ static int PutChars(DEVICE_EXTENSION* pdx, const char* pCh, unsigned int uCount) { int iReturn; spin_lock_irq(&pdx->charOutLock); // get the output spin lock if ((OUTBUF_SZ - pdx->dwNumOutput) >= uCount) { unsigned int u; for (u=0; u<uCount; u++) { pdx->outputBuffer[pdx->dwOutBuffPut++] = pCh[u]; if (pdx->dwOutBuffPut >= OUTBUF_SZ) pdx->dwOutBuffPut = 0; } pdx->dwNumOutput += uCount; spin_unlock_irq(&pdx->charOutLock); iReturn = SendChars(pdx); // ...give a chance to transmit data } else { iReturn = U14ERR_NOOUT; // no room at the out (ha-ha) spin_unlock_irq(&pdx->charOutLock); } return iReturn; } /***************************************************************************** ** Add the data in pData (local pointer) of length n to the output buffer, and ** trigger an output transfer if this is appropriate. User mode. ** Holds the io_mutex *****************************************************************************/ int SendString(DEVICE_EXTENSION* pdx, const char __user* pData, unsigned int n) { int iReturn = U14ERR_NOERROR; // assume all will be well char buffer[OUTBUF_SZ+1]; // space in our address space for characters if (n > OUTBUF_SZ) // check space in local buffer... return U14ERR_NOOUT; // ...too many characters if (copy_from_user(buffer, pData, n)) return -ENOMEM; // could not copy buffer[n] = 0; // terminate for debug purposes mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o if (n > 0) // do nothing if nowt to do! { dev_dbg(&pdx->interface->dev, "%s n=%d>%s<", __func__, n, buffer); iReturn = PutChars(pdx, buffer, n); } Allowi(pdx, false); // make sure we have input int mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** SendChar ** ** Sends a single character to the 1401. User mode, holds io_mutex. ****************************************************************************/ int SendChar(DEVICE_EXTENSION *pdx, char c) { int iReturn; mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o iReturn = PutChars(pdx, &c, 1); dev_dbg(&pdx->interface->dev,"SendChar >%c< (0x%02x)", c, c); Allowi(pdx, false); // Make sure char reads are running mutex_unlock(&pdx->io_mutex); return iReturn; } /*************************************************************************** ** ** Get1401State ** ** Retrieves state information from the 1401, adjusts the 1401 state held ** in the device extension to indicate the current 1401 type. ** ** *state is updated with information about the 1401 state as returned by the ** 1401. The low byte is a code for what 1401 is doing: ** ** 0 normal 1401 operation ** 1 sending chars to host ** 2 sending block data to host ** 3 reading block data from host ** 4 sending an escape sequence to the host ** 0x80 1401 is executing self-test, in which case the upper word ** is the last error code seen (or zero for no new error). ** ** *error is updated with error information if a self-test error code ** is returned in the upper word of state. ** ** both state and error are set to -1 if there are comms problems, and ** to zero if there is a simple failure. ** ** return error code (U14ERR_NOERROR for OK) */ int Get1401State(DEVICE_EXTENSION* pdx, __u32* state, __u32* error) { int nGot; dev_dbg(&pdx->interface->dev, "Get1401State() entry"); *state = 0xFFFFFFFF; // Start off with invalid state nGot = usb_control_msg(pdx->udev, usb_rcvctrlpipe(pdx->udev, 0), GET_STATUS, (D_TO_H|VENDOR|DEVREQ), 0,0, pdx->statBuf, sizeof(pdx->statBuf), HZ); if (nGot != sizeof(pdx->statBuf)) { dev_err(&pdx->interface->dev, "Get1401State() FAILED, return code %d", nGot); pdx->sCurrentState = U14ERR_TIME; // Indicate that things are very wrong indeed *state = 0; // Force status values to a known state *error = 0; } else { int nDevice; dev_dbg(&pdx->interface->dev, "Get1401State() Success, state: 0x%x, 0x%x", pdx->statBuf[0], pdx->statBuf[1]); *state = pdx->statBuf[0]; // Return the state values to the calling code *error = pdx->statBuf[1]; nDevice = pdx->udev->descriptor.bcdDevice >> 8; // 1401 type code value switch (nDevice) // so we can clean up current state { case 0: pdx->sCurrentState = U14ERR_U1401; break; default: // allow lots of device codes for future 1401s if ((nDevice >= 1) && (nDevice <= 23)) pdx->sCurrentState = (short)(nDevice + 6); else pdx->sCurrentState = U14ERR_ILL; break; } } return pdx->sCurrentState >= 0 ? U14ERR_NOERROR : pdx->sCurrentState; } /**************************************************************************** ** ReadWrite_Cancel ** ** Kills off staged read\write request from the USB if one is pending. ****************************************************************************/ int ReadWrite_Cancel(DEVICE_EXTENSION *pdx) { dev_dbg(&pdx->interface->dev, "ReadWrite_Cancel entry %d", pdx->bStagedUrbPending); #ifdef NOT_WRITTEN_YET int ntStatus = STATUS_SUCCESS; bool bResult = false; unsigned int i; // We can fill this in when we know how we will implement the staged transfer stuff spin_lock_irq(&pdx->stagedLock); if (pdx->bStagedUrbPending) // anything to be cancelled? May need more... { dev_info(&pdx->interface-dev, "ReadWrite_Cancel about to cancel Urb"); // KeClearEvent(&pdx->StagingDoneEvent); // Clear the staging done flag USB_ASSERT(pdx->pStagedIrp != NULL); // Release the spinlock first otherwise the completion routine may hang // on the spinlock while this function hands waiting for the event. spin_unlock_irq(&pdx->stagedLock); bResult = IoCancelIrp(pdx->pStagedIrp); // Actually do the cancel if (bResult) { LARGE_INTEGER timeout; timeout.QuadPart = -10000000; // Use a timeout of 1 second dev_info(&pdx->interface-dev, "ReadWrite_Cancel about to wait till done"); ntStatus = KeWaitForSingleObject(&pdx->StagingDoneEvent, Executive, KernelMode, FALSE, &timeout); } else { dev_info(&pdx->interface-dev, "ReadWrite_Cancel, cancellation failed"); ntStatus = U14ERR_FAIL; } USB_KdPrint(DBGLVL_DEFAULT, ("ReadWrite_Cancel ntStatus = 0x%x decimal %d\n", ntStatus, ntStatus)); } else spin_unlock_irq(&pdx->stagedLock); dev_info(&pdx->interface-dev, "ReadWrite_Cancel done"); return ntStatus; #else return U14ERR_NOERROR; #endif } /*************************************************************************** ** InSelfTest - utility to check in self test. Return 1 for ST, 0 for not or ** a -ve error code if we failed for some reason. ***************************************************************************/ static int InSelfTest(DEVICE_EXTENSION* pdx, unsigned int* pState) { unsigned int state, error; int iReturn = Get1401State(pdx, &state, &error); // see if in self-test if (iReturn == U14ERR_NOERROR) // if all still OK iReturn = (state == (unsigned int)-1) || // TX problem or... ((state & 0xff) == 0x80); // ...self test *pState = state; // return actual state return iReturn; } /*************************************************************************** ** Is1401 - ALWAYS CALLED HOLDING THE io_mutex ** ** Tests for the current state of the 1401. Sets sCurrentState: ** ** U14ERR_NOIF 1401 i/f card not installed (not done here) ** U14ERR_OFF 1401 apparently not switched on ** U14ERR_NC 1401 appears to be not connected ** U14ERR_ILL 1401 if it is there its not very well at all ** U14ERR_TIME 1401 appears OK, but doesn't communicate - very bad ** U14ERR_STD 1401 OK and ready for use ** U14ERR_PLUS 1401+ OK and ready for use ** U14ERR_U1401 Micro1401 OK and ready for use ** U14ERR_POWER Power1401 OK and ready for use ** U14ERR_U14012 Micro1401 mkII OK and ready for use ** ** Returns TRUE if a 1401 detected and OK, else FALSE ****************************************************************************/ bool Is1401(DEVICE_EXTENSION* pdx) { int iReturn; dev_dbg(&pdx->interface->dev, "%s", __func__); ced_draw_down(pdx); // wait for, then kill outstanding Urbs FlushInBuff(pdx); // Clear out input buffer & pipe FlushOutBuff(pdx); // Clear output buffer & pipe // The next call returns 0 if OK, but has returned 1 in the past, meaning that // usb_unlock_device() is needed... now it always is iReturn = usb_lock_device_for_reset(pdx->udev, pdx->interface); // release the io_mutex because if we don't, we will deadlock due to system // calls back into the driver. mutex_unlock(&pdx->io_mutex); // locked, so we will not get system calls if (iReturn >= 0) // if we failed { iReturn = usb_reset_device(pdx->udev); // try to do the reset usb_unlock_device(pdx->udev); // undo the lock } mutex_lock(&pdx->io_mutex); // hold stuff off while we wait pdx->dwDMAFlag = MODE_CHAR; // Clear DMA mode flag regardless! if (iReturn == 0) // if all is OK still { unsigned int state; iReturn = InSelfTest(pdx, &state); // see if likely in self test if (iReturn > 0) // do we need to wait for self-test? { unsigned long ulTimeOut = jiffies + 30*HZ; // when to give up while((iReturn > 0) && time_before(jiffies, ulTimeOut)) { schedule(); // let other stuff run iReturn = InSelfTest(pdx, &state); // see if done yet } } if (iReturn == 0) // if all is OK... iReturn = state == 0; // then sucess is that the state is 0 } else iReturn = 0; // we failed pdx->bForceReset = false; // Clear forced reset flag now return iReturn > 0; } /**************************************************************************** ** QuickCheck - ALWAYS CALLED HOLDING THE io_mutex ** This is used to test for a 1401. It will try to do a quick check if all is ** OK, that is the 1401 was OK the last time it was asked, and there is no DMA ** in progress, and if the bTestBuff flag is set, the character buffers must be ** empty too. If the quick check shows that the state is still the same, then ** all is OK. ** ** If any of the above conditions are not met, or if the state or type of the ** 1401 has changed since the previous test, the full Is1401 test is done, but ** only if bCanReset is also TRUE. ** ** The return value is TRUE if a useable 1401 is found, FALSE if not */ bool QuickCheck(DEVICE_EXTENSION* pdx, bool bTestBuff, bool bCanReset) { bool bRet = false; // assume it will fail and we will reset bool bShortTest; bShortTest = ((pdx->dwDMAFlag == MODE_CHAR) && // no DMA running (!pdx->bForceReset) && // Not had a real reset forced (pdx->sCurrentState >= U14ERR_STD)); // No 1401 errors stored dev_dbg(&pdx->interface->dev, "%s DMAFlag:%d, state:%d, force:%d, testBuff:%d, short:%d", __func__, pdx->dwDMAFlag, pdx->sCurrentState, pdx->bForceReset, bTestBuff, bShortTest); if ((bTestBuff) && // Buffer check requested, and... (pdx->dwNumInput || pdx->dwNumOutput)) // ...characters were in the buffer? { bShortTest = false; // Then do the full test dev_dbg(&pdx->interface->dev, "%s will reset as buffers not empty", __func__); } if (bShortTest || !bCanReset) // Still OK to try the short test? { // Always test if no reset - we want state update unsigned int state, error; dev_dbg(&pdx->interface->dev, "%s->Get1401State", __func__); if (Get1401State(pdx, &state, &error) == U14ERR_NOERROR) // Check on the 1401 state { if ((state & 0xFF) == 0) // If call worked, check the status value bRet = true; // If that was zero, all is OK, no reset needed } } if (!bRet && bCanReset) // If all not OK, then { dev_info(&pdx->interface->dev, "%s->Is1401 %d %d %d %d", __func__, bShortTest, pdx->sCurrentState, bTestBuff, pdx->bForceReset); bRet = Is1401(pdx); // do full test } return bRet; } /**************************************************************************** ** Reset1401 ** ** Resets the 1401 and empties the i/o buffers *****************************************************************************/ int Reset1401(DEVICE_EXTENSION *pdx) { mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o dev_dbg(&pdx->interface->dev,"ABout to call QuickCheck"); QuickCheck(pdx, true, true); // Check 1401, reset if not OK mutex_unlock(&pdx->io_mutex); return U14ERR_NOERROR; } /**************************************************************************** ** GetChar ** ** Gets a single character from the 1401 ****************************************************************************/ int GetChar(DEVICE_EXTENSION *pdx) { int iReturn = U14ERR_NOIN; // assume we will get nothing mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o dev_dbg(&pdx->interface->dev, "GetChar"); Allowi(pdx, false); // Make sure char reads are running SendChars(pdx); // and send any buffered chars spin_lock_irq(&pdx->charInLock); if (pdx->dwNumInput > 0) // worth looking { iReturn = pdx->inputBuffer[pdx->dwInBuffGet++]; if (pdx->dwInBuffGet >= INBUF_SZ) pdx->dwInBuffGet = 0; pdx->dwNumInput--; } else iReturn = U14ERR_NOIN; // no input data to read spin_unlock_irq(&pdx->charInLock); Allowi(pdx, false); // Make sure char reads are running mutex_unlock(&pdx->io_mutex); // Protect disconnect from new i/o return iReturn; } /**************************************************************************** ** GetString ** ** Gets a string from the 1401. Returns chars up to the next CR or when ** there are no more to read or nowhere to put them. CR is translated to ** 0 and counted as a character. If the string does not end in a 0, we will ** add one, if there is room, but it is not counted as a character. ** ** returns the count of characters (including the terminator, or 0 if none ** or a negative error code. ****************************************************************************/ int GetString(DEVICE_EXTENSION *pdx, char __user* pUser, int n) { int nAvailable; // character in the buffer int iReturn = U14ERR_NOIN; if (n <= 0) return -ENOMEM; mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o Allowi(pdx, false); // Make sure char reads are running SendChars(pdx); // and send any buffered chars spin_lock_irq(&pdx->charInLock); nAvailable = pdx->dwNumInput; // characters available now if (nAvailable > n) // read max of space in pUser... nAvailable = n; // ...or input characters if (nAvailable > 0) // worth looking? { char buffer[INBUF_SZ+1]; // space for a linear copy of data int nGot = 0; int nCopyToUser; // number to copy to user char cData; do { cData = pdx->inputBuffer[pdx->dwInBuffGet++]; if (cData == CR_CHAR) // replace CR with zero cData = (char)0; if (pdx->dwInBuffGet >= INBUF_SZ) pdx->dwInBuffGet = 0; // wrap buffer pointer buffer[nGot++] = cData; // save the output } while((nGot < nAvailable) && cData); nCopyToUser = nGot; // what to copy... if (cData) // do we need null { buffer[nGot] = (char)0; // make it tidy if (nGot < n) // if space in user buffer... ++nCopyToUser; // ...copy the 0 as well. } pdx->dwNumInput -= nGot; spin_unlock_irq(&pdx->charInLock); dev_dbg(&pdx->interface->dev,"GetString read %d characters >%s<", nGot, buffer); copy_to_user(pUser, buffer, nCopyToUser); iReturn = nGot; // report characters read } else spin_unlock_irq(&pdx->charInLock); Allowi(pdx, false); // Make sure char reads are running mutex_unlock(&pdx->io_mutex); // Protect disconnect from new i/o return iReturn; } /******************************************************************************* ** Get count of characters in the inout buffer. *******************************************************************************/ int Stat1401(DEVICE_EXTENSION *pdx) { int iReturn; mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o Allowi(pdx, false); // make sure we allow pending chars SendChars(pdx); // in both directions iReturn = pdx->dwNumInput; // no lock as single read mutex_unlock(&pdx->io_mutex); // Protect disconnect from new i/o return iReturn; } /**************************************************************************** ** LineCount ** ** Returns the number of newline chars in the buffer. There is no need for ** any fancy interlocks as we only read the interrupt routine data, and the ** system is arranged so nothing can be destroyed. ****************************************************************************/ int LineCount(DEVICE_EXTENSION *pdx) { int iReturn = 0; // will be count of line ends mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o Allowi(pdx, false); // Make sure char reads are running SendChars(pdx); // and send any buffered chars spin_lock_irq(&pdx->charInLock); // Get protection if (pdx->dwNumInput > 0) // worth looking? { unsigned int dwIndex = pdx->dwInBuffGet;// start at first available unsigned int dwEnd = pdx->dwInBuffPut; // Position for search end do { if (pdx->inputBuffer[dwIndex++] == CR_CHAR) ++iReturn; // inc count if CR if (dwIndex >= INBUF_SZ) // see if we fall off buff dwIndex = 0; } while (dwIndex != dwEnd); // go to last avaliable } spin_unlock_irq(&pdx->charInLock); dev_dbg(&pdx->interface->dev,"LineCount returned %d", iReturn); mutex_unlock(&pdx->io_mutex); // Protect disconnect from new i/o return iReturn; } /**************************************************************************** ** GetOutBufSpace ** ** Gets the space in the output buffer. Called from user code. *****************************************************************************/ int GetOutBufSpace(DEVICE_EXTENSION *pdx) { int iReturn; mutex_lock(&pdx->io_mutex); // Protect disconnect from new i/o SendChars(pdx); // send any buffered chars iReturn = (int)(OUTBUF_SZ - pdx->dwNumOutput); // no lock needed for single read dev_dbg(&pdx->interface->dev,"OutBufSpace %d", iReturn); mutex_unlock(&pdx->io_mutex); // Protect disconnect from new i/o return iReturn; } /**************************************************************************** ** ** ClearArea ** ** Clears up a transfer area. This is always called in the context of a user ** request, never from a call-back. ****************************************************************************/ int ClearArea(DEVICE_EXTENSION *pdx, int nArea) { int iReturn = U14ERR_NOERROR; if ((nArea < 0) || (nArea >= MAX_TRANSAREAS)) { iReturn = U14ERR_BADAREA; dev_err(&pdx->interface->dev, "%s Attempt to clear area %d", __func__, nArea); } else { TRANSAREA *pTA = &pdx->rTransDef[nArea]; // to save typing if (!pTA->bUsed) // if not used... iReturn = U14ERR_NOTSET; // ...nothing to be done else { // We must save the memory we return as we shouldn't mess with memory while // holding a spin lock. struct page **pPages = 0; // save page address list int nPages = 0; // and number of pages int np; dev_dbg(&pdx->interface->dev, "%s area %d", __func__, nArea); spin_lock_irq(&pdx->stagedLock); if ((pdx->StagedId == nArea) && (pdx->dwDMAFlag > MODE_CHAR)) { iReturn = U14ERR_UNLOCKFAIL; // cannot delete as in use dev_err(&pdx->interface->dev, "%s call on area %d while active", __func__, nArea); } else { pPages = pTA->pPages; // save page address list nPages = pTA->nPages; // and page count if (pTA->dwEventSz) // if events flagging in use wake_up_interruptible(&pTA->wqEvent); // release anything that was waiting if (pdx->bXFerWaiting && (pdx->rDMAInfo.wIdent == nArea)) pdx->bXFerWaiting = false; // Cannot have pending xfer if area cleared // Clean out the TRANSAREA except for the wait queue, which is at the end // This sets bUsed to false and dwEventSz to 0 to say area not used and no events. memset(pTA, 0, sizeof(TRANSAREA)-sizeof(wait_queue_head_t)); } spin_unlock_irq(&pdx->stagedLock); if (pPages) // if we decided to release the memory { // Now we must undo the pinning down of the pages. We will assume the worst and mark // all the pages as dirty. Don't be tempted to move this up above as you must not be // holding a spin lock to do this stuff as it is not atomic. dev_dbg(&pdx->interface->dev, "%s nPages=%d", __func__, nPages); for (np = 0; np < nPages; ++np) { if (pPages[np]) { SetPageDirty(pPages[np]); page_cache_release(pPages[np]); } } kfree(pPages); dev_dbg(&pdx->interface->dev, "%s kfree(pPages) done", __func__); } } } return iReturn; } /**************************************************************************** ** SetArea ** ** Sets up a transfer area - the functional part. Called by both ** SetTransfer and SetCircular. ****************************************************************************/ static int SetArea(DEVICE_EXTENSION *pdx, int nArea, char __user* puBuf, unsigned int dwLength, bool bCircular, bool bCircToHost) { // Start by working out the page aligned start of the area and the size // of the area in pages, allowing for the start not being aligned and the // end needing to be rounded up to a page boundary. unsigned long ulStart = ((unsigned long)puBuf) & PAGE_MASK; unsigned int ulOffset = ((unsigned long)puBuf) & (PAGE_SIZE-1); int len = (dwLength + ulOffset+PAGE_SIZE - 1) >> PAGE_SHIFT; TRANSAREA *pTA = &pdx->rTransDef[nArea]; // to save typing struct page **pPages = 0; // space for page tables int nPages = 0; // and number of pages int iReturn = ClearArea(pdx, nArea); // see if OK to use this area if ((iReturn != U14ERR_NOTSET) && // if not area unused and... (iReturn != U14ERR_NOERROR)) // ...not all OK, then... return iReturn; // ...we cannot use this area if (!access_ok(VERIFY_WRITE, puBuf, dwLength)) // if we cannot access the memory... return -EFAULT; // ...then we are done // Now allocate space to hold the page pointer and virtual address pointer tables pPages = (struct page **)kmalloc(len*sizeof(struct page *), GFP_KERNEL); if (!pPages) { iReturn = U14ERR_NOMEMORY; goto error; } dev_dbg(&pdx->interface->dev, "%s %p, length=%06x, circular %d", __func__, puBuf, dwLength, bCircular); // To pin down user pages we must first acquire the mapping semaphore. down_read(¤t->mm->mmap_sem); // get memory map semaphore nPages = get_user_pages(current, current->mm, ulStart, len, 1, 0, pPages, 0); up_read(¤t->mm->mmap_sem); // release the semaphore dev_dbg(&pdx->interface->dev, "%s nPages = %d", __func__, nPages); if (nPages > 0) // if we succeeded { // If you are tempted to use page_address (form LDD3), forget it. You MUST use // kmap() or kmap_atomic() to get a virtual address. page_address will give you // (null) or at least it does in this context with an x86 machine. spin_lock_irq(&pdx->stagedLock); pTA->lpvBuff = puBuf; // keep start of region (user address) pTA->dwBaseOffset = ulOffset; // save offset in first page to start of xfer pTA->dwLength = dwLength; // Size if the region in bytes pTA->pPages = pPages; // list of pages that are used by buffer pTA->nPages = nPages; // number of pages pTA->bCircular = bCircular; pTA->bCircToHost = bCircToHost; pTA->aBlocks[0].dwOffset = 0; pTA->aBlocks[0].dwSize = 0; pTA->aBlocks[1].dwOffset = 0; pTA->aBlocks[1].dwSize = 0; pTA->bUsed = true; // This is now a used block spin_unlock_irq(&pdx->stagedLock); iReturn = U14ERR_NOERROR; // say all was well } else { iReturn = U14ERR_LOCKFAIL; goto error; } return iReturn; error: kfree(pPages); return iReturn; } /**************************************************************************** ** SetTransfer ** ** Sets up a transfer area record. If the area is already set, we attempt to ** unset it. Unsetting will fail if the area is booked, and a transfer to that ** area is in progress. Otherwise, we will release the area and re-assign it. ****************************************************************************/ int SetTransfer(DEVICE_EXTENSION *pdx, TRANSFERDESC __user *pTD) { int iReturn; TRANSFERDESC td; copy_from_user(&td, pTD, sizeof(td)); mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev,"%s area:%d, size:%08x", __func__, td.wAreaNum, td.dwLength); // The strange cast is done so that we don't get warnings in 32-bit linux about the size of the // pointer. The pointer is always passed as a 64-bit object so that we don't have problems using // a 32-bit program on a 64-bit system. unsigned long is 64-bits on a 64-bit system. iReturn = SetArea(pdx, td.wAreaNum, (char __user *)((unsigned long)td.lpvBuff), td.dwLength, false, false); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** UnSetTransfer ** Erases a transfer area record ****************************************************************************/ int UnsetTransfer(DEVICE_EXTENSION *pdx, int nArea) { int iReturn; mutex_lock(&pdx->io_mutex); iReturn = ClearArea(pdx, nArea); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** SetEvent ** Creates an event that we can test for based on a transfer to/from an area. ** The area must be setup for a transfer. We attempt to simulate the Windows ** driver behavior for events (as we don't actually use them), which is to ** pretend that whatever the user asked for was achieved, so we return 1 if ** try to create one, and 0 if they ask to remove (assuming all else was OK). ****************************************************************************/ int SetEvent(DEVICE_EXTENSION *pdx, TRANSFEREVENT __user*pTE) { int iReturn = U14ERR_NOERROR; TRANSFEREVENT te; copy_from_user(&te, pTE, sizeof(te)); // get a local copy of the data if (te.wAreaNum >= MAX_TRANSAREAS) // the area must exist return U14ERR_BADAREA; else { TRANSAREA *pTA = &pdx->rTransDef[te.wAreaNum]; mutex_lock(&pdx->io_mutex); // make sure we have no competitor spin_lock_irq(&pdx->stagedLock); if (pTA->bUsed) // area must be in use { pTA->dwEventSt = te.dwStart; // set area regions pTA->dwEventSz = te.dwLength; // set size (0 cancels it) pTA->bEventToHost = te.wFlags & 1; // set the direction pTA->iWakeUp = 0; // zero the wake up count } else iReturn = U14ERR_NOTSET; spin_unlock_irq(&pdx->stagedLock); mutex_unlock(&pdx->io_mutex); } return iReturn == U14ERR_NOERROR ? (te.iSetEvent ? 1 : U14ERR_NOERROR) : iReturn; } /**************************************************************************** ** WaitEvent ** Sleep the process with a timeout waiting for an event. Returns the number ** of times that a block met the event condition since we last cleared it or ** 0 if timed out, or -ve error (bad area or not set, or signal). ****************************************************************************/ int WaitEvent(DEVICE_EXTENSION *pdx, int nArea, int msTimeOut) { int iReturn; if ((unsigned)nArea > MAX_TRANSAREAS) return U14ERR_BADAREA; else { int iWait; TRANSAREA *pTA = &pdx->rTransDef[nArea]; msTimeOut = (msTimeOut * HZ + 999)/1000; // convert timeout to jiffies // We cannot wait holding the mutex, but we check the flags while holding // it. This may well be pointless as another thread could get in between // releasing it and the wait call. However, this would have to clear the // iWakeUp flag. However, the !pTA-bUsed may help us in this case. mutex_lock(&pdx->io_mutex); // make sure we have no competitor if (!pTA->bUsed || !pTA->dwEventSz) // check something to wait for... return U14ERR_NOTSET; // ...else we do nothing mutex_unlock(&pdx->io_mutex); if (msTimeOut) iWait = wait_event_interruptible_timeout(pTA->wqEvent, pTA->iWakeUp || !pTA->bUsed, msTimeOut); else iWait = wait_event_interruptible(pTA->wqEvent, pTA->iWakeUp || !pTA->bUsed); if (iWait) iReturn = -ERESTARTSYS; // oops - we have had a SIGNAL else iReturn = pTA->iWakeUp; // else the wakeup count spin_lock_irq(&pdx->stagedLock); pTA->iWakeUp = 0; // clear the flag spin_unlock_irq(&pdx->stagedLock); } return iReturn; } /**************************************************************************** ** TestEvent ** Test the event to see if a WaitEvent would return immediately. Returns the ** number of times a block completed since the last call, or 0 if none or a ** negative error. ****************************************************************************/ int TestEvent(DEVICE_EXTENSION *pdx, int nArea) { int iReturn; if ((unsigned)nArea > MAX_TRANSAREAS) iReturn = U14ERR_BADAREA; else { TRANSAREA *pTA = &pdx->rTransDef[nArea]; mutex_lock(&pdx->io_mutex); // make sure we have no competitor spin_lock_irq(&pdx->stagedLock); iReturn = pTA->iWakeUp; // get wakeup count since last call pTA->iWakeUp = 0; // clear the count spin_unlock_irq(&pdx->stagedLock); mutex_unlock(&pdx->io_mutex); } return iReturn; } /**************************************************************************** ** GetTransferInfo ** Puts the current state of the 1401 in a TGET_TX_BLOCK. *****************************************************************************/ int GetTransfer(DEVICE_EXTENSION *pdx, TGET_TX_BLOCK __user *pTX) { int iReturn = U14ERR_NOERROR; unsigned int dwIdent; mutex_lock(&pdx->io_mutex); dwIdent = pdx->StagedId; // area ident for last xfer if (dwIdent >= MAX_TRANSAREAS) iReturn = U14ERR_BADAREA; else { // Return the best information we have - we don't have physical addresses TGET_TX_BLOCK tx; memset(&tx, 0, sizeof(tx)); // clean out local work structure tx.size = pdx->rTransDef[dwIdent].dwLength; tx.linear = (long long)((long)pdx->rTransDef[dwIdent].lpvBuff); tx.avail = GET_TX_MAXENTRIES; // how many blocks we could return tx.used = 1; // number we actually return tx.entries[0].physical = (long long)(tx.linear+pdx->StagedOffset); tx.entries[0].size = tx.size; copy_to_user(pTX, &tx, sizeof(tx)); } mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** KillIO1401 ** ** Empties the host i/o buffers ****************************************************************************/ int KillIO1401(DEVICE_EXTENSION *pdx) { dev_dbg(&pdx->interface->dev, "%s", __func__); mutex_lock(&pdx->io_mutex); FlushOutBuff(pdx); FlushInBuff(pdx); mutex_unlock(&pdx->io_mutex); return U14ERR_NOERROR; } /**************************************************************************** ** BlkTransState ** Returns a 0 or a 1 for whether DMA is happening. No point holding a mutex ** for this as it only does one read. *****************************************************************************/ int BlkTransState(DEVICE_EXTENSION *pdx) { int iReturn = pdx->dwDMAFlag != MODE_CHAR; dev_dbg(&pdx->interface->dev, "%s = %d", __func__, iReturn); return iReturn; } /**************************************************************************** ** StateOf1401 ** ** Puts the current state of the 1401 in the Irp return buffer. *****************************************************************************/ int StateOf1401(DEVICE_EXTENSION *pdx) { int iReturn; mutex_lock(&pdx->io_mutex); QuickCheck(pdx, false, false); // get state up to date, no reset iReturn = pdx->sCurrentState; mutex_unlock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s = %d", __func__, iReturn); return iReturn; } /**************************************************************************** ** StartSelfTest ** ** Initiates a self-test cycle. The assumption is that we have no interrupts ** active, so we should make sure that this is the case. *****************************************************************************/ int StartSelfTest(DEVICE_EXTENSION *pdx) { int nGot; mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s", __func__); ced_draw_down(pdx); // wait for, then kill outstanding Urbs FlushInBuff(pdx); // Clear out input buffer & pipe FlushOutBuff(pdx); // Clear output buffer & pipe // ReadWrite_Cancel(pDeviceObject); /* so things stay tidy */ pdx->dwDMAFlag = MODE_CHAR; /* Clear DMA mode flags here */ nGot = usb_control_msg(pdx->udev, usb_rcvctrlpipe(pdx->udev, 0), DB_SELFTEST, (H_TO_D|VENDOR|DEVREQ), 0, 0, 0, 0, HZ); // allow 1 second timeout pdx->ulSelfTestTime = jiffies + HZ*30; // 30 seconds into the future mutex_unlock(&pdx->io_mutex); if (nGot < 0) dev_err(&pdx->interface->dev, "%s err=%d", __func__, nGot); return nGot < 0 ? U14ERR_FAIL : U14ERR_NOERROR; } /**************************************************************************** ** CheckSelfTest ** ** Check progress of a self-test cycle ****************************************************************************/ int CheckSelfTest(DEVICE_EXTENSION *pdx, TGET_SELFTEST __user *pGST) { unsigned int state, error; int iReturn; TGET_SELFTEST gst; // local work space memset(&gst, 0, sizeof(gst)); // clear out the space (sets code 0) mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s", __func__); iReturn = Get1401State(pdx, &state, &error); if (iReturn == U14ERR_NOERROR) // Only accept zero if it happens twice iReturn = Get1401State(pdx, &state, &error); if (iReturn != U14ERR_NOERROR) // Self-test can cause comms errors { // so we assume still testing dev_err(&pdx->interface->dev, "%s Get1401State=%d, assuming still testing", __func__, iReturn); state = 0x80; // Force still-testing, no error error = 0; iReturn = U14ERR_NOERROR; } if ((state == -1) && (error == -1)) // If Get1401State had problems { dev_err(&pdx->interface->dev, "%s Get1401State failed, assuming still testing", __func__); state = 0x80; // Force still-testing, no error error = 0; } if ((state & 0xFF) == 0x80) // If we are still in self-test { if (state & 0x00FF0000) // Have we got an error? { gst.code = (state & 0x00FF0000) >> 16; // read the error code gst.x = error & 0x0000FFFF; // Error data X gst.y = (error & 0xFFFF0000) >> 16; // and data Y dev_dbg(&pdx->interface->dev,"Self-test error code %d", gst.code); } else // No error, check for timeout { unsigned long ulNow = jiffies; // get current time if (time_after(ulNow, pdx->ulSelfTestTime)) { gst.code = -2; // Flag the timeout dev_dbg(&pdx->interface->dev, "Self-test timed-out"); } else dev_dbg(&pdx->interface->dev, "Self-test on-going"); } } else { gst.code = -1; // Flag the test is done dev_dbg(&pdx->interface->dev, "Self-test done"); } if (gst.code < 0) // If we have a problem or finished { // If using the 2890 we should reset properly if ((pdx->nPipes == 4) && (pdx->s1401Type <= TYPEPOWER)) Is1401(pdx); // Get 1401 reset and OK else QuickCheck(pdx, true, true); // Otherwise check without reset unless problems } mutex_unlock(&pdx->io_mutex); copy_to_user(pGST, &gst, sizeof(gst)); // copy result to user space return iReturn; } /**************************************************************************** ** TypeOf1401 ** ** Returns code for standard, plus, micro1401, power1401 or none ****************************************************************************/ int TypeOf1401(DEVICE_EXTENSION *pdx) { int iReturn = TYPEUNKNOWN; mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s", __func__); switch (pdx->s1401Type) { case TYPE1401: iReturn = U14ERR_STD; break; // Handle these types directly case TYPEPLUS: iReturn = U14ERR_PLUS; break; case TYPEU1401:iReturn = U14ERR_U1401;break; default: if ((pdx->s1401Type >= TYPEPOWER) && (pdx->s1401Type <= 25)) iReturn = pdx->s1401Type + 4; // We can calculate types else // for up-coming 1401 designs iReturn = TYPEUNKNOWN; // Don't know or not there } dev_dbg(&pdx->interface->dev, "%s %d", __func__, iReturn); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** TransferFlags ** ** Returns flags on block transfer abilities ****************************************************************************/ int TransferFlags(DEVICE_EXTENSION *pdx) { int iReturn = U14TF_MULTIA | U14TF_DIAG | // we always have multiple DMA area U14TF_NOTIFY | U14TF_CIRCTH; // diagnostics, notify and circular dev_dbg(&pdx->interface->dev, "%s", __func__); mutex_lock(&pdx->io_mutex); if (pdx->bIsUSB2) // Set flag for USB2 if appropriate iReturn |= U14TF_USB2; mutex_unlock(&pdx->io_mutex); return iReturn; } /*************************************************************************** ** DbgCmd1401 ** Issues a debug\diagnostic command to the 1401 along with a 32-bit datum ** This is a utility command used for dbg operations. */ static int DbgCmd1401(DEVICE_EXTENSION *pdx, unsigned char cmd, unsigned int data) { int iReturn; dev_dbg(&pdx->interface->dev, "%s entry", __func__); iReturn = usb_control_msg(pdx->udev, usb_sndctrlpipe(pdx->udev, 0), cmd, (H_TO_D|VENDOR|DEVREQ), (unsigned short)data, (unsigned short)(data >> 16), 0, 0, HZ); // allow 1 second timeout if (iReturn < 0) dev_err(&pdx->interface->dev, "%s fail code=%d", __func__, iReturn); return iReturn; } /**************************************************************************** ** DbgPeek ** ** Execute the diagnostic peek operation. Uses address, width and repeats. ****************************************************************************/ int DbgPeek(DEVICE_EXTENSION *pdx, TDBGBLOCK __user* pDB) { int iReturn; TDBGBLOCK db; copy_from_user(&db, pDB, sizeof(db)); // get the data mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s @ %08x", __func__, db.iAddr); iReturn = DbgCmd1401(pdx, DB_SETADD, db.iAddr); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_PEEK, 0); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** DbgPoke ** ** Execute the diagnostic poke operation. Parameters are in the CSBLOCK struct ** in order address, size, repeats and value to poke. ****************************************************************************/ int DbgPoke(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB) { int iReturn; TDBGBLOCK db; copy_from_user(&db, pDB, sizeof(db)); // get the data mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s @ %08x", __func__, db.iAddr); iReturn = DbgCmd1401(pdx, DB_SETADD, db.iAddr); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_POKE, db.iData); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** DbgRampData ** ** Execute the diagnostic ramp data operation. Parameters are in the CSBLOCK struct ** in order address, default, enable mask, size and repeats. ****************************************************************************/ int DbgRampData(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB) { int iReturn; TDBGBLOCK db; copy_from_user(&db, pDB, sizeof(db)); // get the data mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s @ %08x", __func__, db.iAddr); iReturn = DbgCmd1401(pdx, DB_SETADD, db.iAddr); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_SETDEF, db.iDefault); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_SETMASK, db.iMask); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_RAMPD, 0); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** DbgRampAddr ** ** Execute the diagnostic ramp address operation ****************************************************************************/ int DbgRampAddr(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB) { int iReturn; TDBGBLOCK db; copy_from_user(&db, pDB, sizeof(db)); // get the data mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s", __func__); iReturn = DbgCmd1401(pdx, DB_SETDEF, db.iDefault); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_SETMASK, db.iMask); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_WIDTH, db.iWidth); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_REPEATS, db.iRepeats); if (iReturn == U14ERR_NOERROR) iReturn = DbgCmd1401(pdx, DB_RAMPA, 0); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** DbgGetData ** ** Retrieve the data resulting from the last debug Peek operation ****************************************************************************/ int DbgGetData(DEVICE_EXTENSION *pdx, TDBGBLOCK __user *pDB) { int iReturn; TDBGBLOCK db; memset(&db, 0, sizeof(db)); // fill returned block with 0s mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s", __func__); // Read back the last peeked value from the 1401. iReturn = usb_control_msg(pdx->udev, usb_rcvctrlpipe(pdx->udev, 0), DB_DATA, (D_TO_H|VENDOR|DEVREQ), 0,0, &db.iData, sizeof(db.iData), HZ); if (iReturn == sizeof(db.iData)) { copy_to_user(pDB, &db, sizeof(db)); iReturn = U14ERR_NOERROR; } else dev_err(&pdx->interface->dev, "%s failed, code %d", __func__, iReturn); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** DbgStopLoop ** ** Stop any never-ending debug loop, we just call Get1401State for USB ** ****************************************************************************/ int DbgStopLoop(DEVICE_EXTENSION *pdx) { int iReturn; unsigned int uState, uErr; mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev, "%s", __func__); iReturn = Get1401State(pdx, &uState, &uErr); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** SetCircular ** ** Sets up a transfer area record for circular transfers. If the area is ** already set, we attempt to unset it. Unsetting will fail if the area is ** booked and a transfer to that area is in progress. Otherwise, we will ** release the area and re-assign it. ****************************************************************************/ int SetCircular(DEVICE_EXTENSION *pdx, TRANSFERDESC __user *pTD) { int iReturn; bool bToHost; TRANSFERDESC td; copy_from_user(&td, pTD, sizeof(td)); mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev,"%s area:%d, size:%08x", __func__, td.wAreaNum, td.dwLength); bToHost = td.eSize != 0; // this is used as the tohost flag // The strange cast is done so that we don't get warnings in 32-bit linux about the size of the // pointer. The pointer is always passed as a 64-bit object so that we don't have problems using // a 32-bit program on a 64-bit system. unsigned long is 64-bits on a 64-bit system. iReturn = SetArea(pdx, td.wAreaNum, (char __user *)((unsigned long)td.lpvBuff), td.dwLength, true, bToHost); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** GetCircBlock ** ** Return the next available block of circularly-transferred data. ****************************************************************************/ int GetCircBlock(DEVICE_EXTENSION *pdx, TCIRCBLOCK __user* pCB) { int iReturn = U14ERR_NOERROR; unsigned int nArea; TCIRCBLOCK cb; dev_dbg(&pdx->interface->dev, "%s", __func__); copy_from_user(&cb, pCB, sizeof(cb)); mutex_lock(&pdx->io_mutex); nArea = cb.nArea; // Retrieve parameters first cb.dwOffset = 0; // set default result (nothing) cb.dwSize = 0; if (nArea < MAX_TRANSAREAS) // The area number must be OK { TRANSAREA* pArea = &pdx->rTransDef[nArea]; // Pointer to relevant info spin_lock_irq(&pdx->stagedLock); // Lock others out if ((pArea->bUsed) && (pArea->bCircular) && // Must be circular area (pArea->bCircToHost)) // For now at least must be to host { if (pArea->aBlocks[0].dwSize > 0) // Got anything? { cb.dwOffset = pArea->aBlocks[0].dwOffset; cb.dwSize = pArea->aBlocks[0].dwSize; dev_dbg(&pdx->interface->dev, "%s return block 0: %d bytes at %d", __func__, cb.dwSize, cb.dwOffset); } } else iReturn = U14ERR_NOTSET; spin_unlock_irq(&pdx->stagedLock); } else iReturn = U14ERR_BADAREA; copy_to_user(pCB, &cb, sizeof(cb)); mutex_unlock(&pdx->io_mutex); return iReturn; } /**************************************************************************** ** FreeCircBlock ** ** Frees a block of circularly-transferred data and returns the next one. ****************************************************************************/ int FreeCircBlock(DEVICE_EXTENSION *pdx, TCIRCBLOCK __user* pCB) { int iReturn = U14ERR_NOERROR; unsigned int nArea, uStart, uSize; TCIRCBLOCK cb; dev_dbg(&pdx->interface->dev, "%s", __func__); copy_from_user(&cb, pCB, sizeof(cb)); mutex_lock(&pdx->io_mutex); nArea = cb.nArea; // Retrieve parameters first uStart = cb.dwOffset; uSize = cb.dwSize; cb.dwOffset = 0; // then set default result (nothing) cb.dwSize = 0; if (nArea < MAX_TRANSAREAS) // The area number must be OK { TRANSAREA* pArea = &pdx->rTransDef[nArea]; // Pointer to relevant info spin_lock_irq(&pdx->stagedLock); // Lock others out if ((pArea->bUsed) && (pArea->bCircular) && // Must be circular area (pArea->bCircToHost)) // For now at least must be to host { bool bWaiting = false; if ((pArea->aBlocks[0].dwSize >= uSize) && // Got anything? (pArea->aBlocks[0].dwOffset == uStart)) // Must be legal data { pArea->aBlocks[0].dwSize -= uSize; pArea->aBlocks[0].dwOffset += uSize; if (pArea->aBlocks[0].dwSize == 0) // Have we emptied this block? { if (pArea->aBlocks[1].dwSize) // Is there a second block? { pArea->aBlocks[0] = pArea->aBlocks[1]; // Copy down block 2 data pArea->aBlocks[1].dwSize = 0; // and mark the second block as unused pArea->aBlocks[1].dwOffset = 0; } else pArea->aBlocks[0].dwOffset = 0; } dev_dbg(&pdx->interface->dev, "%s free %d bytes at %d, return %d bytes at %d, wait=%d", __func__, uSize, uStart, pArea->aBlocks[0].dwSize, pArea->aBlocks[0].dwOffset, pdx->bXFerWaiting); // Return the next available block of memory as well if (pArea->aBlocks[0].dwSize > 0) // Got anything? { cb.dwOffset = pArea->aBlocks[0].dwOffset; cb.dwSize = pArea->aBlocks[0].dwSize; } bWaiting = pdx->bXFerWaiting; if (bWaiting && pdx->bStagedUrbPending) { dev_err(&pdx->interface->dev, "%s ERROR: waiting xfer and staged Urb pending!", __func__); bWaiting = false; } } else { dev_err(&pdx->interface->dev, "%s ERROR: freeing %d bytes at %d, block 0 is %d bytes at %d", __func__, uSize, uStart, pArea->aBlocks[0].dwSize, pArea->aBlocks[0].dwOffset); iReturn = U14ERR_NOMEMORY; } // If we have one, kick off pending transfer if (bWaiting) // Got a block xfer waiting? { int RWMStat = ReadWriteMem(pdx, !pdx->rDMAInfo.bOutWard, pdx->rDMAInfo.wIdent, pdx->rDMAInfo.dwOffset, pdx->rDMAInfo.dwSize); if (RWMStat != U14ERR_NOERROR) dev_err(&pdx->interface->dev, "%s rw setup failed %d", __func__, RWMStat); } } else iReturn = U14ERR_NOTSET; spin_unlock_irq(&pdx->stagedLock); } else iReturn = U14ERR_BADAREA; copy_to_user(pCB, &cb, sizeof(cb)); mutex_unlock(&pdx->io_mutex); return iReturn; }
/*********************************************************************************** CED1401 usb driver. This basic loading is based on the usb-skeleton.c code that is: Copyright (C) 2001-2004 Greg Kroah-Hartman (greg@xxxxxxxxx) Copyright (C) 2012 Alois Schloegl <alois.schloegl@xxxxxxxxx> There is not a great deal of the skeleton left. All the remainder dealing specifically with the CED1401 is based on drivers written by CED for other systems (mainly Windows) and is: Copyright (C) 2010 Cambridge Electronic Design Ltd Author Greg P Smith (greg@xxxxxxxxx) This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. Endpoints ********* There are 4 endpoints plus the control endpoint in the standard interface provided by most 1401s. The control endpoint is used for standard USB requests, plus various CED-specific transactions such as start self test, debug and get the 1401 status. The other endpoints are: 1 Characters to the 1401 2 Characters from the 1401 3 Block data to the 1401 4 Block data to the host. inside the driver these are indexed as an array from 0 to 3, transactions over the control endpoint are carried out using a separate mechanism. The use of the endpoints is mostly straightforward, with the driver issuing IO request packets (IRPs) as required to transfer data to and from the 1401. The handling of endpoint 2 is different because it is used for characters from the 1401, which can appear spontaneously and without any other driver activity - for example to repeatedly request DMA transfers in Spike2. The desired effect is achieved by using an interrupt endpoint which can be polled to see if it has data available, and writing the driver so that it always maintains a pending read IRP from that endpoint which will read the character data and terminate as soon as the 1401 makes data available. This works very well, some care is taken with when you kick off this character read IRP to avoid it being active when it is not wanted but generally it is running all the time. In the 2270, there are only three endpoints plus the control endpoint. In addition to the transactions mentioned above, the control endpoint is used to transfer character data to the 1401. The other endpoints are used as: 1 Characters from the 1401 2 Block data to the 1401 3 Block data to the host. The type of interface available is specified by the interface subclass field in the interface descriptor provided by the 1401. See the USB_INT_ constants for the values that this field can hold. **************************************************************************** Linux implementation Although Linux Device Drivers (3rd Edition) was a major source of information, it is very out of date. A lot of information was gleaned from the latest usb_skeleton.c code (you need to download the kernel sources to get this). To match the Windows version, everything is done using ioctl calls. All the device state is held in the DEVICE_EXTENSION (named to match Windows use). Block transfers are done by using get_user_pages() to pin down a list of pages that we hold a pointer to in the device driver. We also allocate a coherent transfer buffer of size STAGED_SZ (this must be a multiple of the bulk endpoint size so that the 1401 does not realise that we break large transfers down into smaller pieces). We use kmap_atomic() to get a kernel va for each page, as it is required, for copying; see CopyUserSpace(). All character and data transfers are done using asynchronous IO. All Urbs are tracked by anchoring them. Status and debug ioctls are implemented with the synchronous non-Urb based transfers. */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/usb.h> #include <linux/mutex.h> #include <linux/mm.h> #include <linux/highmem.h> #include <linux/version.h> #if ( LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,35) ) #include <linux/init.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/kref.h> #include <linux/uaccess.h> #endif #include "usb1401.h" /* Define these values to match your devices */ #define USB_CED_VENDOR_ID 0x0525 #define USB_CED_PRODUCT_ID 0xa0f0 /* table of devices that work with this driver */ static const struct usb_device_id ced_table[] = { { USB_DEVICE(USB_CED_VENDOR_ID, USB_CED_PRODUCT_ID) }, { } /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, ced_table); /* Get a minor range for your devices from the usb maintainer */ #define USB_CED_MINOR_BASE 192 /* our private defines. if this grows any larger, use your own .h file */ #define MAX_TRANSFER (PAGE_SIZE - 512) /* MAX_TRANSFER is chosen so that the VM is not stressed by allocations > PAGE_SIZE and the number of packets in a page is an integer 512 is the largest possible packet on EHCI */ #define WRITES_IN_FLIGHT 8 /* arbitrarily chosen */ /* The cause for these errors is that the driver makes use of the functions usb_buffer_alloc() and usb_buffer_free() which got renamed in kernel 2.6.35. This is stated in the Changelog: USB: rename usb_buffer_alloc() and usb_buffer_free() users For more clearance what the functions actually do, usb_buffer_alloc() is renamed to usb_alloc_coherent() usb_buffer_free() is renamed to usb_free_coherent() This is needed on Debian 2.6.32-5-amd64 */ #if ( LINUX_VERSION_CODE < KERNEL_VERSION(2,6,35) ) #define usb_alloc_coherent usb_buffer_alloc #define usb_free_coherent usb_buffer_free #define noop_llseek NULL #endif static struct usb_driver ced_driver; static void ced_delete(struct kref *kref) { DEVICE_EXTENSION *pdx = to_DEVICE_EXTENSION(kref); // Free up the output buffer, then free the output urb. Note that the interface member // of pdx will probably be NULL, so cannot be used to get to dev. usb_free_coherent(pdx->udev, OUTBUF_SZ, pdx->pCoherCharOut, pdx->pUrbCharOut->transfer_dma); usb_free_urb(pdx->pUrbCharOut); // Do the same for chan input usb_free_coherent(pdx->udev, INBUF_SZ, pdx->pCoherCharIn, pdx->pUrbCharIn->transfer_dma); usb_free_urb(pdx->pUrbCharIn); // Do the same for the block transfers usb_free_coherent(pdx->udev, STAGED_SZ, pdx->pCoherStagedIO, pdx->pStagedUrb->transfer_dma); usb_free_urb(pdx->pStagedUrb); usb_put_dev(pdx->udev); kfree(pdx); } // This is the driver end of the open() call from user space. static int ced_open(struct inode *inode, struct file *file) { DEVICE_EXTENSION *pdx; int retval = 0; int subminor = iminor(inode); struct usb_interface* interface = usb_find_interface(&ced_driver, subminor); if (!interface) { err("%s - error, can't find device for minor %d", __func__, subminor); retval = -ENODEV; goto exit; } pdx = usb_get_intfdata(interface); if (!pdx) { retval = -ENODEV; goto exit; } dev_dbg(&interface->dev, "%s got pdx", __func__); /* increment our usage count for the device */ kref_get(&pdx->kref); /* lock the device to allow correctly handling errors * in resumption */ mutex_lock(&pdx->io_mutex); if (!pdx->open_count++) { retval = usb_autopm_get_interface(interface); if (retval) { pdx->open_count--; mutex_unlock(&pdx->io_mutex); kref_put(&pdx->kref, ced_delete); goto exit; } } else { //uncomment this block if you want exclusive open dev_err(&interface->dev, "%s fail: already open", __func__); retval = -EBUSY; pdx->open_count--; mutex_unlock(&pdx->io_mutex); kref_put(&pdx->kref, ced_delete); goto exit; } /* prevent the device from being autosuspended */ /* save our object in the file's private structure */ file->private_data = pdx; mutex_unlock(&pdx->io_mutex); exit: return retval; } static int ced_release(struct inode *inode, struct file *file) { DEVICE_EXTENSION *pdx = file->private_data; if (pdx == NULL) return -ENODEV; dev_dbg(&pdx->interface->dev,"%s called", __func__); mutex_lock(&pdx->io_mutex); if (!--pdx->open_count && pdx->interface) // Allow autosuspend usb_autopm_put_interface(pdx->interface); mutex_unlock(&pdx->io_mutex); kref_put(&pdx->kref, ced_delete); // decrement the count on our device return 0; } static int ced_flush(struct file *file, fl_owner_t id) { int res; DEVICE_EXTENSION *pdx = file->private_data; if (pdx == NULL) return -ENODEV; dev_dbg(&pdx->interface->dev,"%s char in pend=%d", __func__, pdx->bReadCharsPending); /* wait for io to stop */ mutex_lock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev,"%s got io_mutex", __func__); ced_draw_down(pdx); /* read out errors, leave subsequent opens a clean slate */ spin_lock_irq(&pdx->err_lock); res = pdx->errors ? (pdx->errors == -EPIPE ? -EPIPE : -EIO) : 0; pdx->errors = 0; spin_unlock_irq(&pdx->err_lock); mutex_unlock(&pdx->io_mutex); dev_dbg(&pdx->interface->dev,"%s exit reached", __func__); return res; } static ssize_t ced_read(struct file *file, char *buffer, size_t count, loff_t *ppos) { DEVICE_EXTENSION *pdx = file->private_data; dev_err(&pdx->interface->dev, "%s called: use ioctl for cedusb", __func__); return 0; // as we do not do reads this way } static ssize_t ced_write(struct file *file, const char *user_buffer, size_t count, loff_t *ppos) { DEVICE_EXTENSION *pdx = file->private_data; dev_err(&pdx->interface->dev, "%s called: use ioctl for cedusb", __func__); return 0; } /*************************************************************************** ** CanAcceptIoRequests ** If the device is removed, interface is set NULL. We also clear our pointer ** from the interface, so we should make sure that pdx is not NULL. This will ** not help with a device extension held by a file. ** return true if can accept new io requests, else false */ static bool CanAcceptIoRequests(DEVICE_EXTENSION* pdx) { return pdx && pdx->interface; // Can we accept IO requests } /**************************************************************************** ** Callback routine to complete writes. This may need to fire off another ** urb to complete the transfer. ****************************************************************************/ static void ced_writechar_callback(struct urb* pUrb) { DEVICE_EXTENSION *pdx = pUrb->context; int nGot = pUrb->actual_length; // what we transferred if (pUrb->status) { // sync/async unlink faults aren't errors if (!(pUrb->status == -ENOENT || pUrb->status == -ECONNRESET || pUrb->status == -ESHUTDOWN)) { dev_err(&pdx->interface->dev, "%s - nonzero write bulk status received: %d", __func__, pUrb->status); } spin_lock(&pdx->err_lock); pdx->errors = pUrb->status; spin_unlock(&pdx->err_lock); nGot = 0; // and tidy up again if so spin_lock(&pdx->charOutLock); // already at irq level pdx->dwOutBuffGet = 0; // Reset the output buffer pdx->dwOutBuffPut = 0; pdx->dwNumOutput = 0; // Clear the char count pdx->bPipeError[0] = 1; // Flag an error for later pdx->bSendCharsPending = false; // Allow other threads again spin_unlock(&pdx->charOutLock); // already at irq level dev_dbg(&pdx->interface->dev, "%s - char out done, 0 chars sent", __func__); } else { dev_dbg(&pdx->interface->dev, "%s - char out done, %d chars sent", __func__, nGot); spin_lock(&pdx->charOutLock); // already at irq level pdx->dwNumOutput -= nGot; // Now adjust the char send buffer pdx->dwOutBuffGet += nGot; // to match what we did if (pdx->dwOutBuffGet >= OUTBUF_SZ) // Can't do this any earlier as data could be overwritten pdx->dwOutBuffGet = 0; if (pdx->dwNumOutput > 0) // if more to be done... { int nPipe = 0; // The pipe number to use int iReturn; char* pDat = &pdx->outputBuffer[pdx->dwOutBuffGet]; unsigned int dwCount = pdx->dwNumOutput; // maximum to send if ((pdx->dwOutBuffGet+dwCount) > OUTBUF_SZ) // does it cross buffer end? dwCount = OUTBUF_SZ - pdx->dwOutBuffGet; spin_unlock(&pdx->charOutLock); // we are done with stuff that changes memcpy(pdx->pCoherCharOut, pDat, dwCount); // copy output data to the buffer usb_fill_bulk_urb(pdx->pUrbCharOut, pdx->udev, usb_sndbulkpipe(pdx->udev, pdx->epAddr[0]), pdx->pCoherCharOut, dwCount, ced_writechar_callback, pdx); pdx->pUrbCharOut->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(pdx->pUrbCharOut, &pdx->submitted); // in case we need to kill it iReturn = usb_submit_urb(pdx->pUrbCharOut, GFP_ATOMIC); dev_dbg(&pdx->interface->dev, "%s n=%d>%s<", __func__, dwCount, pDat); spin_lock(&pdx->charOutLock); // grab lock for errors if (iReturn) { pdx->bPipeError[nPipe] = 1; // Flag an error to be handled later pdx->bSendCharsPending = false; // Allow other threads again usb_unanchor_urb(pdx->pUrbCharOut); dev_err(&pdx->interface->dev, "%s usb_submit_urb() returned %d", __func__, iReturn); } } else pdx->bSendCharsPending = false; // Allow other threads again spin_unlock(&pdx->charOutLock); // already at irq level } } /**************************************************************************** ** SendChars ** Transmit the characters in the output buffer to the 1401. This may need ** breaking down into multiple transfers. ****************************************************************************/ int SendChars(DEVICE_EXTENSION* pdx) { int iReturn = U14ERR_NOERROR; spin_lock_irq(&pdx->charOutLock); // Protect ourselves if ((!pdx->bSendCharsPending) && // Not currently sending (pdx->dwNumOutput > 0) && // has characters to output (CanAcceptIoRequests(pdx))) // and current activity is OK { unsigned int dwCount = pdx->dwNumOutput; // Get a copy of the character count pdx->bSendCharsPending = true; // Set flag to lock out other threads dev_dbg(&pdx->interface->dev, "Send %d chars to 1401, EP0 flag %d\n", dwCount, pdx->nPipes == 3); // If we have only 3 end points we must send the characters to the 1401 using EP0. if (pdx->nPipes == 3) { // For EP0 character transmissions to the 1401, we have to hang about until they // are gone, as otherwise without more character IO activity they will never go. unsigned int count = dwCount; // Local char counter unsigned int index = 0; // The index into the char buffer spin_unlock_irq(&pdx->charOutLock); // Free spinlock as we call USBD while ((count > 0) && (iReturn == U14ERR_NOERROR)) { // We have to break the transfer up into 64-byte chunks because of a 2270 problem int n = count > 64 ? 64 : count; // Chars for this xfer, max of 64 int nSent = usb_control_msg(pdx->udev, usb_sndctrlpipe(pdx->udev,0), // use end point 0 DB_CHARS, // bRequest (H_TO_D|VENDOR|DEVREQ), // to the device, vendor request to the device 0,0, // value and index are both 0 &pdx->outputBuffer[index], // where to send from n, // how much to send 1000); // timeout in jiffies if (nSent <= 0) { iReturn = nSent ? nSent : -ETIMEDOUT; // if 0 chars says we timed out dev_err(&pdx->interface->dev, "Send %d chars by EP0 failed: %d", n, iReturn); } else { dev_dbg(&pdx->interface->dev, "Sent %d chars by EP0", n); count -= nSent; index += nSent; } } spin_lock_irq(&pdx->charOutLock); // Protect pdx changes, released by general code pdx->dwOutBuffGet = 0; // so reset the output buffer pdx->dwOutBuffPut = 0; pdx->dwNumOutput = 0; // and clear the buffer count pdx->bSendCharsPending = false; // Allow other threads again } else { // Here for sending chars normally - we hold the spin lock int nPipe = 0; // The pipe number to use char* pDat = &pdx->outputBuffer[pdx->dwOutBuffGet]; if ((pdx->dwOutBuffGet+dwCount) > OUTBUF_SZ) // does it cross buffer end? dwCount = OUTBUF_SZ - pdx->dwOutBuffGet; spin_unlock_irq(&pdx->charOutLock); // we are done with stuff that changes memcpy(pdx->pCoherCharOut, pDat, dwCount); // copy output data to the buffer usb_fill_bulk_urb(pdx->pUrbCharOut, pdx->udev, usb_sndbulkpipe(pdx->udev, pdx->epAddr[0]), pdx->pCoherCharOut, dwCount, ced_writechar_callback, pdx); pdx->pUrbCharOut->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(pdx->pUrbCharOut, &pdx->submitted); iReturn = usb_submit_urb(pdx->pUrbCharOut, GFP_KERNEL); spin_lock_irq(&pdx->charOutLock); // grab lock for errors if (iReturn) { pdx->bPipeError[nPipe] = 1; // Flag an error to be handled later pdx->bSendCharsPending = false; // Allow other threads again usb_unanchor_urb(pdx->pUrbCharOut); // remove from list of active urbs } } } else if (pdx->bSendCharsPending && (pdx->dwNumOutput > 0)) dev_dbg(&pdx->interface->dev, "SendChars bSendCharsPending:true"); dev_dbg(&pdx->interface->dev, "SendChars exit code: %d", iReturn); spin_unlock_irq(&pdx->charOutLock); // Now let go of the spinlock return iReturn; } /*************************************************************************** ** CopyUserSpace ** This moves memory between pinned down user space and the pCoherStagedIO ** memory buffer we use for transfers. Copy n bytes in the directions that ** is defined by pdx->StagedRead. The user space is determined by the area ** in pdx->StagedId and the offset in pdx->StagedDone. The user ** area may well not start on a page boundary, so allow for that. ** ** We have a table of physical pages that describe the area, so we can use ** this to get a virtual address that the kernel can use. ** ** pdx Is our device extension which holds all we know about the transfer. ** n The number of bytes to move one way or the other. ***************************************************************************/ static void CopyUserSpace(DEVICE_EXTENSION *pdx, int n) { unsigned int nArea = pdx->StagedId; if (nArea < MAX_TRANSAREAS) { TRANSAREA *pArea = &pdx->rTransDef[nArea]; // area to be used unsigned int dwOffset = pdx->StagedDone + pdx->StagedOffset + pArea->dwBaseOffset; char* pCoherBuf = pdx->pCoherStagedIO; // coherent buffer if (!pArea->bUsed) { dev_err(&pdx->interface->dev, "%s area %d unused", __func__, nArea); return; } while (n) { int nPage = dwOffset >> PAGE_SHIFT; // page number in table if (nPage < pArea->nPages) { char *pvAddress = (char*)kmap_atomic(pArea->pPages[nPage], KM_IRQ0); if (pvAddress) { unsigned int uiPageOff = dwOffset & (PAGE_SIZE-1); // offset into the page size_t uiXfer = PAGE_SIZE - uiPageOff; // max to transfer on this page if (uiXfer > n) // limit byte count if too much uiXfer = n; // for the page if (pdx->StagedRead) memcpy(pvAddress+uiPageOff, pCoherBuf, uiXfer); else memcpy(pCoherBuf, pvAddress+uiPageOff, uiXfer); kunmap_atomic(pvAddress, KM_IRQ0); dwOffset += uiXfer; pCoherBuf += uiXfer; n -= uiXfer; } else { dev_err(&pdx->interface->dev, "%s did not map page %d", __func__, nPage); return; } } else { dev_err(&pdx->interface->dev, "%s exceeded pages %d", __func__, nPage); return; } } } else dev_err(&pdx->interface->dev, "%s bad area %d", __func__, nArea); } // Forward declarations for stuff used circularly static int StageChunk(DEVICE_EXTENSION *pdx); /*************************************************************************** ** ReadWrite_Complete ** ** Completion routine for our staged read/write Irps */ static void staged_callback(struct urb* pUrb) { DEVICE_EXTENSION *pdx = pUrb->context; unsigned int nGot = pUrb->actual_length; // what we transferred bool bCancel = false; bool bRestartCharInput; // used at the end spin_lock(&pdx->stagedLock); // stop ReadWriteMem() action while this routine is running pdx->bStagedUrbPending = false; // clear the flag for staged IRP pending if (pUrb->status) { // sync/async unlink faults aren't errors if (!(pUrb->status == -ENOENT || pUrb->status == -ECONNRESET || pUrb->status == -ESHUTDOWN)) { dev_err(&pdx->interface->dev, "%s - nonzero write bulk status received: %d", __func__, pUrb->status); } else dev_info(&pdx->interface->dev, "%s - staged xfer cancelled", __func__); spin_lock(&pdx->err_lock); pdx->errors = pUrb->status; spin_unlock(&pdx->err_lock); nGot = 0; // and tidy up again if so bCancel = true; } else { dev_dbg(&pdx->interface->dev, "%s %d chars xferred", __func__, nGot); if (pdx->StagedRead) // if reading, save to user space CopyUserSpace(pdx, nGot); // copy from buffer to user if (nGot == 0) dev_dbg(&pdx->interface->dev, "%s ZLP", __func__); } // Update the transfer length based on the TransferBufferLength value in the URB pdx->StagedDone += nGot; dev_dbg(&pdx->interface->dev, "%s, done %d bytes of %d", __func__, pdx->StagedDone, pdx->StagedLength); if ((pdx->StagedDone == pdx->StagedLength) || // If no more to do (bCancel)) // or this IRP was cancelled { TRANSAREA* pArea = &pdx->rTransDef[pdx->StagedId]; // Transfer area info dev_dbg(&pdx->interface->dev, "%s transfer done, bytes %d, cancel %d", __func__, pdx->StagedDone, bCancel); // Here is where we sort out what to do with this transfer if using a circular buffer. We have // a completed transfer that can be assumed to fit into the transfer area. We should be able to // add this to the end of a growing block or to use it to start a new block unless the code // that calculates the offset to use (in ReadWriteMem) is totally duff. if ((pArea->bCircular) && (pArea->bCircToHost) && (!bCancel) && // Time to sort out circular buffer info? (pdx->StagedRead)) // Only for tohost transfers for now { if (pArea->aBlocks[1].dwSize > 0) // If block 1 is in use we must append to it { if (pdx->StagedOffset == (pArea->aBlocks[1].dwOffset + pArea->aBlocks[1].dwSize)) { pArea->aBlocks[1].dwSize += pdx->StagedLength; dev_dbg(&pdx->interface->dev, "RWM_Complete, circ block 1 now %d bytes at %d", pArea->aBlocks[1].dwSize, pArea->aBlocks[1].dwOffset); } else { // Here things have gone very, very, wrong, but I cannot see how this can actually be achieved pArea->aBlocks[1].dwOffset = pdx->StagedOffset; pArea->aBlocks[1].dwSize = pdx->StagedLength; dev_err(&pdx->interface->dev, "%s ERROR, circ block 1 re-started %d bytes at %d", __func__, pArea->aBlocks[1].dwSize, pArea->aBlocks[1].dwOffset); } } else // If block 1 is not used, we try to add to block 0 { if (pArea->aBlocks[0].dwSize > 0) // Got stored block 0 information? { // Must append onto the existing block 0 if (pdx->StagedOffset == (pArea->aBlocks[0].dwOffset + pArea->aBlocks[0].dwSize)) { pArea->aBlocks[0].dwSize += pdx->StagedLength; // Just add this transfer in dev_dbg(&pdx->interface->dev, "RWM_Complete, circ block 0 now %d bytes at %d", pArea->aBlocks[0].dwSize, pArea->aBlocks[0].dwOffset); } else // If it doesn't append, put into new block 1 { pArea->aBlocks[1].dwOffset = pdx->StagedOffset; pArea->aBlocks[1].dwSize = pdx->StagedLength; dev_dbg(&pdx->interface->dev, "RWM_Complete, circ block 1 started %d bytes at %d", pArea->aBlocks[1].dwSize, pArea->aBlocks[1].dwOffset); } } else // No info stored yet, just save in block 0 { pArea->aBlocks[0].dwOffset = pdx->StagedOffset; pArea->aBlocks[0].dwSize = pdx->StagedLength; dev_dbg(&pdx->interface->dev, "RWM_Complete, circ block 0 started %d bytes at %d", pArea->aBlocks[0].dwSize, pArea->aBlocks[0].dwOffset); } } } if (!bCancel) // Don't generate an event if cancelled { dev_dbg(&pdx->interface->dev, "RWM_Complete, bCircular %d, bToHost %d, eStart %d, eSize %d", pArea->bCircular, pArea->bEventToHost, pArea->dwEventSt, pArea->dwEventSz); if ((pArea->dwEventSz) && // Set a user-mode event... (pdx->StagedRead == pArea->bEventToHost)) // ...on transfers in this direction? { int iWakeUp = 0; // assume // If we have completed the right sort of DMA transfer then set the event to notify // the user code to wake up anyone that is waiting. if ((pArea->bCircular) && // Circular areas use a simpler test (pArea->bCircToHost)) // only in supported direction { // Is total data waiting up to size limit? unsigned int dwTotal = pArea->aBlocks[0].dwSize + pArea->aBlocks[1].dwSize; iWakeUp = (dwTotal >= pArea->dwEventSz); } else { unsigned int transEnd = pdx->StagedOffset + pdx->StagedLength; unsigned int eventEnd = pArea->dwEventSt + pArea->dwEventSz; iWakeUp = (pdx->StagedOffset < eventEnd) && (transEnd > pArea->dwEventSt); } if (iWakeUp) { dev_dbg(&pdx->interface->dev, "About to set event to notify app"); wake_up_interruptible(&pArea->wqEvent); // wake up waiting processes ++pArea->iWakeUp; // increment wakeup count } } } pdx->dwDMAFlag = MODE_CHAR; // Switch back to char mode before ReadWriteMem call if (!bCancel) // Don't look for waiting transfer if cancelled { // If we have a transfer waiting, kick it off if (pdx->bXFerWaiting) // Got a block xfer waiting? { int iReturn; dev_info(&pdx->interface->dev, "*** RWM_Complete *** pending transfer will now be set up!!!"); iReturn = ReadWriteMem(pdx, !pdx->rDMAInfo.bOutWard, pdx->rDMAInfo.wIdent, pdx->rDMAInfo.dwOffset, pdx->rDMAInfo.dwSize); if (iReturn) dev_err(&pdx->interface->dev, "RWM_Complete rw setup failed %d", iReturn); } } } else // Here for more to do StageChunk(pdx); // fire off the next bit // While we hold the stagedLock, see if we should reallow character input ints // Don't allow if cancelled, or if a new block has started or if there is a waiting block. // This feels wrong as we should ask which spin lock protects dwDMAFlag. bRestartCharInput = !bCancel && (pdx->dwDMAFlag == MODE_CHAR) && !pdx->bXFerWaiting; spin_unlock(&pdx->stagedLock); // Finally release the lock again // This is not correct as dwDMAFlag is protected by the staged lock, but it is treated // in Allowi as if it were protected by the char lock. In any case, most systems will // not be upset by char input during DMA... sigh. Needs sorting out. if (bRestartCharInput) // may be out of date, but... Allowi(pdx, true); // ...Allowi tests a lock too. dev_dbg(&pdx->interface->dev, "%s done", __func__); } /**************************************************************************** ** StageChunk ** ** Generates the next chunk of data making up a staged transfer. ** ** The calling code must have acquired the staging spinlock before calling ** this function, and is responsible for releasing it. We are at callback level. ****************************************************************************/ static int StageChunk(DEVICE_EXTENSION *pdx) { int iReturn = U14ERR_NOERROR; unsigned int ChunkSize; int nPipe = pdx->StagedRead ? 3 : 2; // The pipe number to use for reads or writes if (pdx->nPipes == 3) nPipe--; // Adjust for the 3-pipe case if (nPipe < 0) // and trap case that should never happen return U14ERR_FAIL; if (!CanAcceptIoRequests(pdx)) // got sudden remove? { dev_info(&pdx->interface->dev, "%s sudden remove, giving up", __func__); return U14ERR_FAIL; // could do with a better error } ChunkSize = (pdx->StagedLength - pdx->StagedDone); // transfer length remaining if (ChunkSize > STAGED_SZ) // make sure to keep legal ChunkSize = STAGED_SZ; // limit to max allowed if (!pdx->StagedRead) // if writing... CopyUserSpace(pdx, ChunkSize); // ...copy data into the buffer usb_fill_bulk_urb(pdx->pStagedUrb, pdx->udev, pdx->StagedRead ? usb_rcvbulkpipe(pdx->udev, pdx->epAddr[nPipe]): usb_sndbulkpipe(pdx->udev, pdx->epAddr[nPipe]), pdx->pCoherStagedIO, ChunkSize, staged_callback, pdx); pdx->pStagedUrb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; usb_anchor_urb(pdx->pStagedUrb, &pdx->submitted); // in case we need to kill it iReturn = usb_submit_urb(pdx->pStagedUrb, GFP_ATOMIC); if (iReturn) { usb_unanchor_urb(pdx->pStagedUrb); // kill it pdx->bPipeError[nPipe] = 1; // Flag an error to be handled later dev_err(&pdx->interface->dev, "%s submit urb failed, code %d", __func__, iReturn); } else pdx->bStagedUrbPending = true; // Set the flag for staged URB pending dev_dbg(&pdx->interface->dev, "%s done so far:%d, this size:%d", __func__, pdx->StagedDone, ChunkSize); return iReturn; } /*************************************************************************** ** ReadWriteMem ** ** This routine is used generally for block read and write operations. ** Breaks up a read or write in to specified sized chunks, as specified by pipe ** information on maximum transfer size. ** ** Any code that calls this must be holding the stagedLock ** ** Arguments: ** DeviceObject - pointer to our FDO (Functional Device Object) ** Read - TRUE for read, FALSE for write. This is from POV of the driver ** wIdent - the transfer area number - defines memory area and more. ** dwOffs - the start offset within the transfer area of the start of this ** transfer. ** dwLen - the number of bytes to transfer. */ int ReadWriteMem(DEVICE_EXTENSION *pdx, bool Read, unsigned short wIdent, unsigned int dwOffs, unsigned int dwLen) { TRANSAREA* pArea = &pdx->rTransDef[wIdent]; // Transfer area info if (!CanAcceptIoRequests(pdx)) // Are we in a state to accept new requests? { dev_err(&pdx->interface->dev, "%s can't accept requests", __func__); return U14ERR_FAIL; } dev_dbg(&pdx->interface->dev, "%s xfer %d bytes to %s, offset %d, area %d", __func__, dwLen, Read ? "host" : "1401", dwOffs, wIdent); // Amazingly, we can get an escape sequence back before the current staged Urb is done, so we // have to check for this situation and, if so, wait until all is OK. if (pdx->bStagedUrbPending) { pdx->bXFerWaiting = true; // Flag we are waiting dev_info(&pdx->interface->dev, "%s xfer is waiting, as previous staged pending", __func__); return U14ERR_NOERROR; } if (dwLen == 0) // allow 0-len read or write; just return success { dev_dbg(&pdx->interface->dev, "%s OK; zero-len read/write request", __func__); return U14ERR_NOERROR; } if ((pArea->bCircular) && // Circular transfer? (pArea->bCircToHost) && (Read)) // In a supported direction { // If so, we sort out offset ourself bool bWait = false; // Flag for transfer having to wait dev_dbg(&pdx->interface->dev, "Circular buffers are %d at %d and %d at %d", pArea->aBlocks[0].dwSize, pArea->aBlocks[0].dwOffset, pArea->aBlocks[1].dwSize, pArea->aBlocks[1].dwOffset); if (pArea->aBlocks[1].dwSize > 0) // Using the second block already? { dwOffs = pArea->aBlocks[1].dwOffset + pArea->aBlocks[1].dwSize; // take offset from that bWait = (dwOffs + dwLen) > pArea->aBlocks[0].dwOffset; // Wait if will overwrite block 0? bWait |= (dwOffs + dwLen) > pArea->dwLength; // or if it overflows the buffer } else // Area 1 not in use, try to use area 0 { if (pArea->aBlocks[0].dwSize == 0) // Reset block 0 if not in use pArea->aBlocks[0].dwOffset = 0; dwOffs = pArea->aBlocks[0].dwOffset + pArea->aBlocks[0].dwSize; if ((dwOffs+dwLen) > pArea->dwLength) // Off the end of the buffer? { pArea->aBlocks[1].dwOffset = 0; // Set up to use second block dwOffs = 0; bWait = (dwOffs + dwLen) > pArea->aBlocks[0].dwOffset; // Wait if will overwrite block 0? bWait |= (dwOffs + dwLen) > pArea->dwLength; // or if it overflows the buffer } } if (bWait) // This transfer will have to wait? { pdx->bXFerWaiting = true; // Flag we are waiting dev_dbg(&pdx->interface->dev, "%s xfer waiting for circular buffer space", __func__); return U14ERR_NOERROR; } dev_dbg(&pdx->interface->dev, "%s circular xfer, %d bytes starting at %d", __func__, dwLen, dwOffs); } // Save the parameters for the read\write transfer pdx->StagedRead = Read; // Save the parameters for this read pdx->StagedId = wIdent; // ID allows us to get transfer area info pdx->StagedOffset = dwOffs; // The area within the transfer area pdx->StagedLength = dwLen; pdx->StagedDone = 0; // Initialise the byte count pdx->dwDMAFlag = MODE_LINEAR; // Set DMA mode flag at this point pdx->bXFerWaiting = false; // Clearly not a transfer waiting now // KeClearEvent(&pdx->StagingDoneEvent); // Clear the transfer done event StageChunk(pdx); // fire off the first chunk return U14ERR_NOERROR; } /**************************************************************************** ** ** ReadChar ** ** Reads a character a buffer. If there is no more ** data we return FALSE. Used as part of decoding a DMA request. ** ****************************************************************************/ static bool ReadChar(unsigned char* pChar, char* pBuf, unsigned int* pdDone, unsigned int dGot) { bool bRead = false; unsigned int dDone = *pdDone; if (dDone < dGot) // If there is more data { *pChar = (unsigned char)pBuf[dDone];// Extract the next char dDone++; // Increment the done count *pdDone = dDone; bRead = true; // and flag success } return bRead; } #ifdef NOTUSED /**************************************************************************** ** ** ReadWord ** ** Reads a word from the 1401, just uses ReadChar twice; passes on any error ** *****************************************************************************/ static bool ReadWord(unsigned short* pWord, char* pBuf, unsigned int* pdDone, unsigned int dGot) { if (ReadChar((unsigned char*)pWord, pBuf, pdDone, dGot)) return ReadChar(((unsigned char*)pWord)+1, pBuf, pdDone, dGot); else return false; } #endif /**************************************************************************** ** ReadHuff ** ** Reads a coded number in and returns it, Code is: ** If data is in range 0..127 we recieve 1 byte. If data in range 128-16383 ** we recieve two bytes, top bit of first indicates another on its way. If ** data in range 16383-4194303 we get three bytes, top two bits of first set ** to indicate three byte total. ** *****************************************************************************/ static bool ReadHuff(volatile unsigned int* pDWord, char* pBuf, unsigned int* pdDone, unsigned int dGot) { unsigned char ucData; /* for each read to ReadChar */ bool bReturn = true; /* assume we will succeed */ unsigned int dwData = 0; /* Accumulator for the data */ if (ReadChar(&ucData, pBuf, pdDone, dGot)) { dwData = ucData; /* copy the data */ if ((dwData & 0x00000080) != 0) /* Bit set for more data ? */ { dwData &= 0x0000007F; /* Clear the relevant bit */ if (ReadChar(&ucData, pBuf, pdDone, dGot)) { dwData = (dwData << 8) | ucData; if ((dwData & 0x00004000) != 0) /* three byte sequence ? */ { dwData &= 0x00003FFF; /* Clear the relevant bit */ if (ReadChar(&ucData, pBuf, pdDone, dGot)) dwData = (dwData << 8) | ucData; else bReturn = false; } } else bReturn = false; /* couldn't read data */ } } else bReturn = false; *pDWord = dwData; /* return the data */ return bReturn; } /*************************************************************************** ** ** ReadDMAInfo ** ** Tries to read info about the dma request from the 1401 and decode it into ** the dma descriptor block. We have at this point had the escape character ** from the 1401 and now we must read in the rest of the information about ** the transfer request. Returns FALSE if 1401 fails to respond or obselete ** code from 1401 or bad parameters. ** ** The pBuf char pointer does not include the initial escape character, so ** we start handling the data at offset zero. ** *****************************************************************************/ static bool ReadDMAInfo(volatile DMADESC* pDmaDesc, DEVICE_EXTENSION *pdx, char* pBuf, unsigned int dwCount) { bool bResult = false; // assume we won't succeed unsigned char ucData; unsigned int dDone = 0; // We haven't parsed anything so far dev_dbg(&pdx->interface->dev, "%s", __func__); if (ReadChar(&ucData, pBuf, &dDone, dwCount)) { unsigned char ucTransCode = (ucData & 0x0F); // get code for transfer type unsigned short wIdent = ((ucData >> 4) & 0x07); // and area identifier // fill in the structure we were given pDmaDesc->wTransType = ucTransCode; // type of transfer pDmaDesc->wIdent = wIdent; // area to use pDmaDesc->dwSize = 0; // initialise other bits pDmaDesc->dwOffset = 0; dev_dbg(&pdx->interface->dev, "%s type: %d ident: %d", __func__, pDmaDesc->wTransType, pDmaDesc->wIdent); pDmaDesc->bOutWard = (ucTransCode != TM_EXTTOHOST); // set transfer direction switch (ucTransCode) { case TM_EXTTOHOST: // Extended linear transfer modes (the only ones!) case TM_EXTTO1401: { bResult = ReadHuff(&(pDmaDesc->dwOffset), pBuf, &dDone, dwCount) && ReadHuff(&(pDmaDesc->dwSize), pBuf, &dDone, dwCount); if (bResult) { dev_dbg(&pdx->interface->dev, "%s xfer offset & size %d %d", __func__, pDmaDesc->dwOffset, pDmaDesc->dwSize); if ((wIdent >= MAX_TRANSAREAS) || // Illegal area number, or... (!pdx->rTransDef[wIdent].bUsed) || // area not set up, or... (pDmaDesc->dwOffset > pdx->rTransDef[wIdent].dwLength) || // range/size ((pDmaDesc->dwOffset + pDmaDesc->dwSize) > (pdx->rTransDef[wIdent].dwLength))) { bResult = false; // bad parameter(s) dev_dbg(&pdx->interface->dev, "%s bad param - id %d, bUsed %d, offset %d, size %d, area length %d", __func__, wIdent, pdx->rTransDef[wIdent].bUsed, pDmaDesc->dwOffset, pDmaDesc->dwSize, pdx->rTransDef[wIdent].dwLength); } } break; } default: break; } } else bResult = false; if (!bResult) // now check parameters for validity dev_err(&pdx->interface->dev, "%s error reading Esc sequence", __func__); return bResult; } /**************************************************************************** ** ** Handle1401Esc ** ** Deals with an escape sequence coming from the 1401. This can either be ** a DMA transfer request of various types or a response to an escape sequence ** sent to the 1401. This is called from a callback. ** ** Parameters are ** ** dwCount - the number of characters in the device extension char in buffer, ** this is known to be at least 2 or we will not be called. ** ****************************************************************************/ static int Handle1401Esc(DEVICE_EXTENSION* pdx, char* pCh, unsigned int dwCount) { int iReturn = U14ERR_FAIL; // I have no idea what this next test is about. '?' is 0x3f, which is area 3, code // 15. At the moment, this is not used, so it does no harm, but unless someone can // tell me what this is for, it should be removed from this and the Windows driver. if (pCh[0] == '?') // Is this an information response { // Parse and save the information } else { spin_lock(&pdx->stagedLock); // Lock others out if (ReadDMAInfo(&pdx->rDMAInfo, pdx, pCh, dwCount)) // Get DMA parameters { unsigned short wTransType = pdx->rDMAInfo.wTransType; // check transfer type dev_dbg(&pdx->interface->dev, "%s xfer to %s, offset %d, length %d", __func__, pdx->rDMAInfo.bOutWard ? "1401" : "host", pdx->rDMAInfo.dwOffset, pdx->rDMAInfo.dwSize); if (pdx->bXFerWaiting) // Check here for badly out of kilter... { // This can never happen, really dev_err(&pdx->interface->dev, "ERROR: DMA setup while transfer still waiting"); spin_unlock(&pdx->stagedLock); } else { if ((wTransType == TM_EXTTOHOST) || (wTransType == TM_EXTTO1401)) { iReturn = ReadWriteMem(pdx, !pdx->rDMAInfo.bOutWard, pdx->rDMAInfo.wIdent, pdx->rDMAInfo.dwOffset, pdx->rDMAInfo.dwSize); if (iReturn != U14ERR_NOERROR) dev_err(&pdx->interface->dev, "%s ReadWriteMem() failed %d", __func__, iReturn); } else // This covers non-linear transfer setup dev_err(&pdx->interface->dev, "%s Unknown block xfer type %d", __func__, wTransType); } } else // Failed to read parameters dev_err(&pdx->interface->dev, "%s ReadDMAInfo() fail", __func__); spin_unlock(&pdx->stagedLock); // OK here } dev_dbg(&pdx->interface->dev, "%s returns %d", __func__, iReturn); return iReturn; } /**************************************************************************** ** Callback for the character read complete or error ****************************************************************************/ static void ced_readchar_callback(struct urb* pUrb) { DEVICE_EXTENSION *pdx = pUrb->context; int nGot = pUrb->actual_length; // what we transferred if (pUrb->status) // Do we have a problem to handle? { int nPipe = pdx->nPipes == 4 ? 1 : 0; // The pipe number to use for error // sync/async unlink faults aren't errors... just saying device removed or stopped if (!(pUrb->status == -ENOENT || pUrb->status == -ECONNRESET || pUrb->status == -ESHUTDOWN)) { dev_err(&pdx->interface->dev, "%s - nonzero write bulk status received: %d", __func__, pUrb->status); } else dev_dbg(&pdx->interface->dev, "%s - 0 chars pUrb->status=%d (shutdown?)", __func__, pUrb->status); spin_lock(&pdx->err_lock); pdx->errors = pUrb->status; spin_unlock(&pdx->err_lock); nGot = 0; // and tidy up again if so spin_lock(&pdx->charInLock); // already at irq level pdx->bPipeError[nPipe] = 1; // Flag an error for later } else { if ((nGot > 1) && ((pdx->pCoherCharIn[0] & 0x7f) == 0x1b)) // Esc sequence? { Handle1401Esc(pdx, &pdx->pCoherCharIn[1], nGot-1); // handle it spin_lock(&pdx->charInLock); // already at irq level } else { spin_lock(&pdx->charInLock); // already at irq level if (nGot > 0) { unsigned int i; if (nGot < INBUF_SZ) { pdx->pCoherCharIn[nGot] = 0; // tidy the string dev_dbg(&pdx->interface->dev, "%s got %d chars >%s<", __func__, nGot, pdx->pCoherCharIn); } // We know that whatever we read must fit in the input buffer for (i = 0; i < nGot; i++) { pdx->inputBuffer[pdx->dwInBuffPut++] = pdx->pCoherCharIn[i] & 0x7F; if (pdx->dwInBuffPut >= INBUF_SZ) pdx->dwInBuffPut = 0; } if ((pdx->dwNumInput + nGot) <= INBUF_SZ) pdx->dwNumInput += nGot; // Adjust the buffer count accordingly } else dev_dbg(&pdx->interface->dev, "%s read ZLP", __func__); } } pdx->bReadCharsPending = false; // No longer have a pending read spin_unlock(&pdx->charInLock); // already at irq level Allowi(pdx, true); // see if we can do the next one } /**************************************************************************** ** Allowi ** ** This is used to make sure that there is always a pending input transfer so ** we can pick up any inward transfers. This can be called in multiple contexts ** so we use the irqsave version of the spinlock. ****************************************************************************/ int Allowi(DEVICE_EXTENSION* pdx, bool bInCallback) { int iReturn = U14ERR_NOERROR; unsigned long flags; spin_lock_irqsave(&pdx->charInLock, flags); // can be called in multiple contexts // We don't want char input running while DMA is in progress as we know that this // can cause sequencing problems for the 2270. So don't. It will also allow the // ERR response to get back to the host code too early on some PCs, even if there // is no actual driver failure, so we don't allow this at all. if (!pdx->bInDrawDown && // stop input if !pdx->bReadCharsPending && // If no read request outstanding (pdx->dwNumInput < (INBUF_SZ/2)) && // and there is some space (pdx->dwDMAFlag == MODE_CHAR) && // not doing any DMA (!pdx->bXFerWaiting) && // no xfer waiting to start (CanAcceptIoRequests(pdx))) // and activity is generally OK { // then off we go unsigned int nMax = INBUF_SZ-pdx->dwNumInput; // max we could read int nPipe = pdx->nPipes == 4 ? 1 : 0; // The pipe number to use dev_dbg(&pdx->interface->dev, "%s %d chars in input buffer", __func__, pdx->dwNumInput); usb_fill_int_urb(pdx->pUrbCharIn, pdx->udev, usb_rcvintpipe(pdx->udev, pdx->epAddr[nPipe]), pdx->pCoherCharIn, nMax, ced_readchar_callback, pdx, pdx->bInterval); pdx->pUrbCharIn->transfer_flags |= URB_NO_TRANSFER_DMA_MAP; // short xfers are OK by default usb_anchor_urb(pdx->pUrbCharIn, &pdx->submitted); // in case we need to kill it iReturn = usb_submit_urb(pdx->pUrbCharIn, bInCallback ? GFP_ATOMIC : GFP_KERNEL); if (iReturn) { usb_unanchor_urb(pdx->pUrbCharIn); // remove from list of active Urbs pdx->bPipeError[nPipe] = 1; // Flag an error to be handled later dev_err(&pdx->interface->dev,"%s submit urb failed: %d", __func__, iReturn); } else pdx->bReadCharsPending = true; // Flag that we are active here } spin_unlock_irqrestore(&pdx->charInLock, flags); return iReturn; } /***************************************************************************** ** The ioctl entry point to the driver that is used by us to talk to it. ** inode The device node (no longer in 3.0.0 kernels) ** file The file that is open, which holds our pdx pointer ** ulArg The argument passed in. Note that long is 64-bits in 64-bit system, i.e. it is big ** enough for a 64-bit pointer. *****************************************************************************/ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36) static int ced_ioctl(struct file * file, unsigned int cmd, unsigned long ulArg) #else static int ced_ioctl(struct inode * node, struct file * file, unsigned int cmd, unsigned long ulArg) #endif { int err = 0; DEVICE_EXTENSION *pdx = file->private_data; if (!CanAcceptIoRequests(pdx)) // check we still exist return -ENODEV; // Check that access is allowed, where is is needed. Anything that would have an indeterminate // size will be checked by the specific command. if (_IOC_DIR(cmd) & _IOC_READ) // read from point of view of user... err = !access_ok(VERIFY_WRITE, (void __user *)ulArg, _IOC_SIZE(cmd)); // is kernel write else if (_IOC_DIR(cmd) & _IOC_WRITE) // and write from point of view of user... err = !access_ok(VERIFY_READ, (void __user *)ulArg, _IOC_SIZE(cmd)); // is kernel read if (err) return -EFAULT; switch (_IOC_NR(cmd)) { case _IOC_NR(IOCTL_CED_SENDSTRING(0)): return SendString(pdx, (const char __user*)ulArg, _IOC_SIZE(cmd)); case _IOC_NR(IOCTL_CED_RESET1401): return Reset1401(pdx); case _IOC_NR(IOCTL_CED_GETCHAR): return GetChar(pdx); case _IOC_NR(IOCTL_CED_SENDCHAR): return SendChar(pdx, (char)ulArg); case _IOC_NR(IOCTL_CED_STAT1401): return Stat1401(pdx); case _IOC_NR(IOCTL_CED_LINECOUNT): return LineCount(pdx); case _IOC_NR(IOCTL_CED_GETSTRING(0)): return GetString(pdx, (char __user*)ulArg, _IOC_SIZE(cmd)); case _IOC_NR(IOCTL_CED_SETTRANSFER): return SetTransfer(pdx, (TRANSFERDESC __user*)ulArg); case _IOC_NR(IOCTL_CED_UNSETTRANSFER): return UnsetTransfer(pdx, (int)ulArg); case _IOC_NR(IOCTL_CED_SETEVENT): return SetEvent(pdx, (TRANSFEREVENT __user*)ulArg); case _IOC_NR(IOCTL_CED_GETOUTBUFSPACE): return GetOutBufSpace(pdx); case _IOC_NR(IOCTL_CED_GETBASEADDRESS): return -1; case _IOC_NR(IOCTL_CED_GETDRIVERREVISION): return (2<<24)|(DRIVERMAJREV<<16) | DRIVERMINREV; // USB | MAJOR | MINOR case _IOC_NR(IOCTL_CED_GETTRANSFER): return GetTransfer(pdx, (TGET_TX_BLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_KILLIO1401): return KillIO1401(pdx); case _IOC_NR(IOCTL_CED_STATEOF1401): return StateOf1401(pdx); case _IOC_NR(IOCTL_CED_GRAB1401): case _IOC_NR(IOCTL_CED_FREE1401): return U14ERR_NOERROR; case _IOC_NR(IOCTL_CED_STARTSELFTEST): return StartSelfTest(pdx); case _IOC_NR(IOCTL_CED_CHECKSELFTEST): return CheckSelfTest(pdx, (TGET_SELFTEST __user*)ulArg); case _IOC_NR(IOCTL_CED_TYPEOF1401): return TypeOf1401(pdx); case _IOC_NR(IOCTL_CED_TRANSFERFLAGS): return TransferFlags(pdx); case _IOC_NR(IOCTL_CED_DBGPEEK): return DbgPeek(pdx, (TDBGBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_DBGPOKE): return DbgPoke(pdx, (TDBGBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_DBGRAMPDATA): return DbgRampData(pdx, (TDBGBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_DBGRAMPADDR): return DbgRampAddr(pdx, (TDBGBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_DBGGETDATA): return DbgGetData(pdx, (TDBGBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_DBGSTOPLOOP): return DbgStopLoop(pdx); case _IOC_NR(IOCTL_CED_FULLRESET): pdx->bForceReset = true; // Set a flag for a full reset break; case _IOC_NR(IOCTL_CED_SETCIRCULAR): return SetCircular(pdx, (TRANSFERDESC __user*)ulArg); case _IOC_NR(IOCTL_CED_GETCIRCBLOCK): return GetCircBlock(pdx, (TCIRCBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_FREECIRCBLOCK): return FreeCircBlock(pdx, (TCIRCBLOCK __user*)ulArg); case _IOC_NR(IOCTL_CED_WAITEVENT): return WaitEvent(pdx, (int)(ulArg & 0xff), (int)(ulArg >> 8)); case _IOC_NR(IOCTL_CED_TESTEVENT): return TestEvent(pdx, (int)ulArg); default: return U14ERR_NO_SUCH_FN; } return U14ERR_NOERROR; } static const struct file_operations ced_fops = { .owner = THIS_MODULE, .read = ced_read, .write = ced_write, .open = ced_open, .release = ced_release, .flush = ced_flush, .llseek = noop_llseek, #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,36) .unlocked_ioctl = ced_ioctl, #else .ioctl = ced_ioctl, #endif }; /* * usb class driver info in order to get a minor number from the usb core, * and to have the device registered with the driver core */ static struct usb_class_driver ced_class = { .name = "cedusb%d", .fops = &ced_fops, .minor_base = USB_CED_MINOR_BASE, }; // Check that the device that matches a 1401 vendor and product ID is OK to use and // initialise our DEVICE_EXTENSION. static int ced_probe(struct usb_interface *interface, const struct usb_device_id *id) { DEVICE_EXTENSION *pdx; struct usb_host_interface *iface_desc; struct usb_endpoint_descriptor *endpoint; int i, bcdDevice; int retval = -ENOMEM; // allocate memory for our device extension and initialize it pdx = kzalloc(sizeof(*pdx), GFP_KERNEL); if (!pdx) { err("Out of memory"); goto error; } for (i=0; i<MAX_TRANSAREAS; ++i) // Initialise the wait queues { init_waitqueue_head(&pdx->rTransDef[i].wqEvent); } // Put initialises for our stuff here. Note that all of *pdx is zero, so // no need to explicitly zero it. spin_lock_init(&pdx->charOutLock); spin_lock_init(&pdx->charInLock); spin_lock_init(&pdx->stagedLock); // Initialises from the skeleton stuff kref_init(&pdx->kref); mutex_init(&pdx->io_mutex); spin_lock_init(&pdx->err_lock); init_usb_anchor(&pdx->submitted); pdx->udev = usb_get_dev(interface_to_usbdev(interface)); pdx->interface = interface; // Attempt to identify the device bcdDevice = pdx->udev->descriptor.bcdDevice; i = (bcdDevice >> 8); if (i == 0) pdx->s1401Type = TYPEU1401; else if ((i>=1) && (i<=23)) pdx->s1401Type = i+2; else { dev_err(&interface->dev, "%s Unknown device. bcdDevice = %d", __func__, bcdDevice); goto error; } // set up the endpoint information. We only care about the number of EP as // we know that we are dealing with a 1401 device. iface_desc = interface->cur_altsetting; pdx->nPipes = iface_desc->desc.bNumEndpoints; dev_info(&interface->dev, "1401Type=%d with %d End Points", pdx->s1401Type, pdx->nPipes); if ((pdx->nPipes < 3) || (pdx->nPipes > 4)) goto error; // Allocate the URBs we hold for performing transfers pdx->pUrbCharOut = usb_alloc_urb(0, GFP_KERNEL); // character output URB pdx->pUrbCharIn = usb_alloc_urb(0, GFP_KERNEL); // character input URB pdx->pStagedUrb = usb_alloc_urb(0, GFP_KERNEL); // block transfer URB if (!pdx->pUrbCharOut || !pdx->pUrbCharIn || !pdx->pStagedUrb) { dev_err(&interface->dev, "%s URB alloc failed", __func__); goto error; } pdx->pCoherStagedIO = usb_alloc_coherent(pdx->udev, STAGED_SZ, GFP_KERNEL, &pdx->pStagedUrb->transfer_dma); pdx->pCoherCharOut = usb_alloc_coherent(pdx->udev, OUTBUF_SZ, GFP_KERNEL, &pdx->pUrbCharOut->transfer_dma); pdx->pCoherCharIn = usb_alloc_coherent(pdx->udev, INBUF_SZ, GFP_KERNEL, &pdx->pUrbCharIn->transfer_dma); if (!pdx->pCoherCharOut || !pdx->pCoherCharIn || !pdx->pCoherStagedIO) { dev_err(&interface->dev, "%s Coherent buffer alloc failed", __func__); goto error; } for (i = 0; i < pdx->nPipes; ++i) { endpoint = &iface_desc->endpoint[i].desc; pdx->epAddr[i] = endpoint->bEndpointAddress; dev_info(&interface->dev, "Pipe %d, ep address %02x", i, pdx->epAddr[i]); if (((pdx->nPipes==3) && (i==0)) || // if char input end point ((pdx->nPipes==4) && (i==1))) { pdx->bInterval = endpoint->bInterval; // save the endpoint interrupt interval dev_info(&interface->dev, "Pipe %d, bInterval = %d", i, pdx->bInterval); } // Detect USB2 by checking last ep size (64 if USB1) if (i == pdx->nPipes-1) // if this is the last ep (bulk) { pdx->bIsUSB2 = le16_to_cpu(endpoint->wMaxPacketSize) > 64; dev_info(&pdx->interface->dev, "USB%d", pdx->bIsUSB2 + 1); } } /* save our data pointer in this interface device */ usb_set_intfdata(interface, pdx); /* we can register the device now, as it is ready */ retval = usb_register_dev(interface, &ced_class); if (retval) { /* something prevented us from registering this driver */ err("Not able to get a minor for this device."); usb_set_intfdata(interface, NULL); goto error; } /* let the user know what node this device is now attached to */ dev_info(&interface->dev, "USB CEDUSB device now attached to cedusb #%d", interface->minor); return 0; error: if (pdx) kref_put(&pdx->kref, ced_delete); // frees allocated memory return retval; } static void ced_disconnect(struct usb_interface *interface) { DEVICE_EXTENSION *pdx = usb_get_intfdata(interface); int minor = interface->minor; // save for message at the end int i; usb_set_intfdata(interface, NULL); // remove the pdx from the interface usb_deregister_dev(interface, &ced_class); // give back our minor device number mutex_lock(&pdx->io_mutex); // stop more I/O starting while... ced_draw_down(pdx); // ...wait for then kill any io for (i=0; i<MAX_TRANSAREAS; ++i) { int iErr = ClearArea(pdx, i); // ...release any used memory if (iErr == U14ERR_UNLOCKFAIL) dev_err(&pdx->interface->dev, "%s Area %d was in used", __func__, i); } pdx->interface = NULL; // ...we kill off link to interface mutex_unlock(&pdx->io_mutex); usb_kill_anchored_urbs(&pdx->submitted); kref_put(&pdx->kref, ced_delete); // decrement our usage count dev_info(&interface->dev, "USB cedusb #%d now disconnected", minor); } // Wait for all the urbs we know of to be done with, then kill off any that // are left. NBNB we will need to have a mechanism to stop circular xfers // from trying to fire off more urbs. We will wait up to 3 seconds for Urbs // to be done. void ced_draw_down(DEVICE_EXTENSION *pdx) { int time; dev_dbg(&pdx->interface->dev,"%s called", __func__); pdx->bInDrawDown = true; time = usb_wait_anchor_empty_timeout(&pdx->submitted, 3000); if (!time) // if we timed out we kill the urbs { usb_kill_anchored_urbs(&pdx->submitted); dev_err(&pdx->interface->dev,"%s timed out", __func__); } pdx->bInDrawDown = false; } static int ced_suspend(struct usb_interface *intf, pm_message_t message) { DEVICE_EXTENSION *pdx = usb_get_intfdata(intf); if (!pdx) return 0; ced_draw_down(pdx); dev_dbg(&pdx->interface->dev,"%s called", __func__); return 0; } static int ced_resume(struct usb_interface *intf) { DEVICE_EXTENSION *pdx = usb_get_intfdata(intf); if (!pdx) return 0; dev_dbg(&pdx->interface->dev,"%s called", __func__); return 0; } static int ced_pre_reset(struct usb_interface *intf) { DEVICE_EXTENSION *pdx = usb_get_intfdata(intf); dev_dbg(&pdx->interface->dev, "%s", __func__); mutex_lock(&pdx->io_mutex); ced_draw_down(pdx); return 0; } static int ced_post_reset(struct usb_interface *intf) { DEVICE_EXTENSION *pdx = usb_get_intfdata(intf); dev_dbg(&pdx->interface->dev, "%s", __func__); /* we are sure no URBs are active - no locking needed */ pdx->errors = -EPIPE; mutex_unlock(&pdx->io_mutex); return 0; } static struct usb_driver ced_driver = { .name = "cedusb", .probe = ced_probe, .disconnect = ced_disconnect, .suspend = ced_suspend, .resume = ced_resume, .pre_reset = ced_pre_reset, .post_reset = ced_post_reset, .id_table = ced_table, .supports_autosuspend = 1, }; static int __init usb_skel_init(void) { /* register this driver with the USB subsystem */ int result = usb_register(&ced_driver); if (result) err("usb_register failed. Error number %d", result); return result; } static void __exit usb_skel_exit(void) { /* deregister this driver with the USB subsystem */ usb_deregister(&ced_driver); } module_init(usb_skel_init); module_exit(usb_skel_exit); MODULE_LICENSE("GPL");
_______________________________________________ devel mailing list devel@xxxxxxxxxxxxxxxxxxxxxx http://driverdev.linuxdriverproject.org/mailman/listinfo/devel