This reverts commit 95ace52e4036482da1895b6e19f15141802cc3dd. Re-instate the code so subsequent commits can clean it up and get it building properly. Signed-off-by: Chris Packham <chris.packham@xxxxxxxxxxxxxxxxxxx> --- drivers/staging/Kconfig | 2 + drivers/staging/Makefile | 1 + drivers/staging/octeon-usb/Kconfig | 11 + drivers/staging/octeon-usb/Makefile | 2 + drivers/staging/octeon-usb/TODO | 8 + drivers/staging/octeon-usb/octeon-hcd.c | 3737 +++++++++++++++++++++++ drivers/staging/octeon-usb/octeon-hcd.h | 1847 +++++++++++ 7 files changed, 5608 insertions(+) create mode 100644 drivers/staging/octeon-usb/Kconfig create mode 100644 drivers/staging/octeon-usb/Makefile create mode 100644 drivers/staging/octeon-usb/TODO create mode 100644 drivers/staging/octeon-usb/octeon-hcd.c create mode 100644 drivers/staging/octeon-usb/octeon-hcd.h diff --git a/drivers/staging/Kconfig b/drivers/staging/Kconfig index baccd7c883cc..f1926e8abc80 100644 --- a/drivers/staging/Kconfig +++ b/drivers/staging/Kconfig @@ -42,6 +42,8 @@ source "drivers/staging/rtl8188eu/Kconfig" source "drivers/staging/rts5208/Kconfig" +source "drivers/staging/octeon-usb/Kconfig" + source "drivers/staging/vt6655/Kconfig" source "drivers/staging/vt6656/Kconfig" diff --git a/drivers/staging/Makefile b/drivers/staging/Makefile index fdd03fd6e704..87633b5b24a9 100644 --- a/drivers/staging/Makefile +++ b/drivers/staging/Makefile @@ -12,6 +12,7 @@ obj-$(CONFIG_R8712U) += rtl8712/ obj-$(CONFIG_R8188EU) += rtl8188eu/ obj-$(CONFIG_RTS5208) += rts5208/ obj-$(CONFIG_NETLOGIC_XLR_NET) += netlogic/ +obj-$(CONFIG_OCTEON_USB) += octeon-usb/ obj-$(CONFIG_VT6655) += vt6655/ obj-$(CONFIG_VT6656) += vt6656/ obj-$(CONFIG_VME_BUS) += vme/ diff --git a/drivers/staging/octeon-usb/Kconfig b/drivers/staging/octeon-usb/Kconfig new file mode 100644 index 000000000000..6a5d842ee0f2 --- /dev/null +++ b/drivers/staging/octeon-usb/Kconfig @@ -0,0 +1,11 @@ +# SPDX-License-Identifier: GPL-2.0 +config OCTEON_USB + tristate "Cavium Networks Octeon USB support" + depends on CAVIUM_OCTEON_SOC && USB + help + This driver supports USB host controller on some Cavium + Networks' products in the Octeon family. + + To compile this driver as a module, choose M here. The module + will be called octeon-hcd. + diff --git a/drivers/staging/octeon-usb/Makefile b/drivers/staging/octeon-usb/Makefile new file mode 100644 index 000000000000..9873a0130ad5 --- /dev/null +++ b/drivers/staging/octeon-usb/Makefile @@ -0,0 +1,2 @@ +# SPDX-License-Identifier: GPL-2.0 +obj-${CONFIG_OCTEON_USB} := octeon-hcd.o diff --git a/drivers/staging/octeon-usb/TODO b/drivers/staging/octeon-usb/TODO new file mode 100644 index 000000000000..2b29acca5caa --- /dev/null +++ b/drivers/staging/octeon-usb/TODO @@ -0,0 +1,8 @@ +This driver is functional and has been tested on EdgeRouter Lite, +D-Link DSR-1000N and EBH5600 evaluation board with USB mass storage. + +TODO: + - kernel coding style + - checkpatch warnings + +Contact: Aaro Koskinen <aaro.koskinen@xxxxxx> diff --git a/drivers/staging/octeon-usb/octeon-hcd.c b/drivers/staging/octeon-usb/octeon-hcd.c new file mode 100644 index 000000000000..582c9187559d --- /dev/null +++ b/drivers/staging/octeon-usb/octeon-hcd.c @@ -0,0 +1,3737 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Copyright (C) 2008 Cavium Networks + * + * Some parts of the code were originally released under BSD license: + * + * Copyright (c) 2003-2010 Cavium Networks (support@xxxxxxxxxx). All rights + * reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * + * * Neither the name of Cavium Networks nor the names of + * its contributors may be used to endorse or promote products + * derived from this software without specific prior written + * permission. + * + * This Software, including technical data, may be subject to U.S. export + * control laws, including the U.S. Export Administration Act and its associated + * regulations, and may be subject to export or import regulations in other + * countries. + * + * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" + * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR + * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO + * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION + * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM + * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, + * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF + * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR + * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR + * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. + */ + +#include <linux/usb.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/usb/hcd.h> +#include <linux/prefetch.h> +#include <linux/dma-mapping.h> +#include <linux/platform_device.h> + +#include <asm/octeon/octeon.h> + +#include "octeon-hcd.h" + +/** + * enum cvmx_usb_speed - the possible USB device speeds + * + * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps + * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps + * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps + */ +enum cvmx_usb_speed { + CVMX_USB_SPEED_HIGH = 0, + CVMX_USB_SPEED_FULL = 1, + CVMX_USB_SPEED_LOW = 2, +}; + +/** + * enum cvmx_usb_transfer - the possible USB transfer types + * + * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status + * transfers + * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low + * priority periodic transfers + * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority + * transfers + * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority + * periodic transfers + */ +enum cvmx_usb_transfer { + CVMX_USB_TRANSFER_CONTROL = 0, + CVMX_USB_TRANSFER_ISOCHRONOUS = 1, + CVMX_USB_TRANSFER_BULK = 2, + CVMX_USB_TRANSFER_INTERRUPT = 3, +}; + +/** + * enum cvmx_usb_direction - the transfer directions + * + * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host + * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon + */ +enum cvmx_usb_direction { + CVMX_USB_DIRECTION_OUT, + CVMX_USB_DIRECTION_IN, +}; + +/** + * enum cvmx_usb_status - possible callback function status codes + * + * @CVMX_USB_STATUS_OK: The transaction / operation finished without + * any errors + * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented + * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight + * by a user call to cvmx_usb_cancel + * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected + * error status + * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response + * from the device + * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the + * device even after a number of retries + * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle + * error even after a number of retries + * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error + * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error + * even after a number of retries + */ +enum cvmx_usb_status { + CVMX_USB_STATUS_OK, + CVMX_USB_STATUS_SHORT, + CVMX_USB_STATUS_CANCEL, + CVMX_USB_STATUS_ERROR, + CVMX_USB_STATUS_STALL, + CVMX_USB_STATUS_XACTERR, + CVMX_USB_STATUS_DATATGLERR, + CVMX_USB_STATUS_BABBLEERR, + CVMX_USB_STATUS_FRAMEERR, +}; + +/** + * struct cvmx_usb_port_status - the USB port status information + * + * @port_enabled: 1 = Usb port is enabled, 0 = disabled + * @port_over_current: 1 = Over current detected, 0 = Over current not + * detected. Octeon doesn't support over current detection. + * @port_powered: 1 = Port power is being supplied to the device, 0 = + * power is off. Octeon doesn't support turning port power + * off. + * @port_speed: Current port speed. + * @connected: 1 = A device is connected to the port, 0 = No device is + * connected. + * @connect_change: 1 = Device connected state changed since the last set + * status call. + */ +struct cvmx_usb_port_status { + u32 reserved : 25; + u32 port_enabled : 1; + u32 port_over_current : 1; + u32 port_powered : 1; + enum cvmx_usb_speed port_speed : 2; + u32 connected : 1; + u32 connect_change : 1; +}; + +/** + * struct cvmx_usb_iso_packet - descriptor for Isochronous packets + * + * @offset: This is the offset in bytes into the main buffer where this data + * is stored. + * @length: This is the length in bytes of the data. + * @status: This is the status of this individual packet transfer. + */ +struct cvmx_usb_iso_packet { + int offset; + int length; + enum cvmx_usb_status status; +}; + +/** + * enum cvmx_usb_initialize_flags - flags used by the initialization function + * + * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal + * as clock source at USB_XO and + * USB_XI. + * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V + * board clock source at USB_XO. + * USB_XI should be tied to GND. + * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field + * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or + * crystal + * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock + * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock + * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for + * data transfer use for the USB + */ +enum cvmx_usb_initialize_flags { + CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0, + CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1, + CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3, + CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3, + CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3, + CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3, + /* Bits 3-4 used to encode the clock frequency */ + CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5, +}; + +/** + * enum cvmx_usb_pipe_flags - internal flags for a pipe. + * + * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is + * actively using hardware. + * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed + * pipe is in the ping state. + */ +enum cvmx_usb_pipe_flags { + CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17, + CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18, +}; + +/* Maximum number of times to retry failed transactions */ +#define MAX_RETRIES 3 + +/* Maximum number of hardware channels supported by the USB block */ +#define MAX_CHANNELS 8 + +/* + * The low level hardware can transfer a maximum of this number of bytes in each + * transfer. The field is 19 bits wide + */ +#define MAX_TRANSFER_BYTES ((1 << 19) - 1) + +/* + * The low level hardware can transfer a maximum of this number of packets in + * each transfer. The field is 10 bits wide + */ +#define MAX_TRANSFER_PACKETS ((1 << 10) - 1) + +/** + * Logical transactions may take numerous low level + * transactions, especially when splits are concerned. This + * enum represents all of the possible stages a transaction can + * be in. Note that split completes are always even. This is so + * the NAK handler can backup to the previous low level + * transaction with a simple clearing of bit 0. + */ +enum cvmx_usb_stage { + CVMX_USB_STAGE_NON_CONTROL, + CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE, + CVMX_USB_STAGE_SETUP, + CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE, + CVMX_USB_STAGE_DATA, + CVMX_USB_STAGE_DATA_SPLIT_COMPLETE, + CVMX_USB_STAGE_STATUS, + CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE, +}; + +/** + * struct cvmx_usb_transaction - describes each pending USB transaction + * regardless of type. These are linked together + * to form a list of pending requests for a pipe. + * + * @node: List node for transactions in the pipe. + * @type: Type of transaction, duplicated of the pipe. + * @flags: State flags for this transaction. + * @buffer: User's physical buffer address to read/write. + * @buffer_length: Size of the user's buffer in bytes. + * @control_header: For control transactions, physical address of the 8 + * byte standard header. + * @iso_start_frame: For ISO transactions, the starting frame number. + * @iso_number_packets: For ISO transactions, the number of packets in the + * request. + * @iso_packets: For ISO transactions, the sub packets in the request. + * @actual_bytes: Actual bytes transfer for this transaction. + * @stage: For control transactions, the current stage. + * @urb: URB. + */ +struct cvmx_usb_transaction { + struct list_head node; + enum cvmx_usb_transfer type; + u64 buffer; + int buffer_length; + u64 control_header; + int iso_start_frame; + int iso_number_packets; + struct cvmx_usb_iso_packet *iso_packets; + int xfersize; + int pktcnt; + int retries; + int actual_bytes; + enum cvmx_usb_stage stage; + struct urb *urb; +}; + +/** + * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon + * and some USB device. It contains a list of pending + * request to the device. + * + * @node: List node for pipe list + * @next: Pipe after this one in the list + * @transactions: List of pending transactions + * @interval: For periodic pipes, the interval between packets in + * frames + * @next_tx_frame: The next frame this pipe is allowed to transmit on + * @flags: State flags for this pipe + * @device_speed: Speed of device connected to this pipe + * @transfer_type: Type of transaction supported by this pipe + * @transfer_dir: IN or OUT. Ignored for Control + * @multi_count: Max packet in a row for the device + * @max_packet: The device's maximum packet size in bytes + * @device_addr: USB device address at other end of pipe + * @endpoint_num: USB endpoint number at other end of pipe + * @hub_device_addr: Hub address this device is connected to + * @hub_port: Hub port this device is connected to + * @pid_toggle: This toggles between 0/1 on every packet send to track + * the data pid needed + * @channel: Hardware DMA channel for this pipe + * @split_sc_frame: The low order bits of the frame number the split + * complete should be sent on + */ +struct cvmx_usb_pipe { + struct list_head node; + struct list_head transactions; + u64 interval; + u64 next_tx_frame; + enum cvmx_usb_pipe_flags flags; + enum cvmx_usb_speed device_speed; + enum cvmx_usb_transfer transfer_type; + enum cvmx_usb_direction transfer_dir; + int multi_count; + u16 max_packet; + u8 device_addr; + u8 endpoint_num; + u8 hub_device_addr; + u8 hub_port; + u8 pid_toggle; + u8 channel; + s8 split_sc_frame; +}; + +struct cvmx_usb_tx_fifo { + struct { + int channel; + int size; + u64 address; + } entry[MAX_CHANNELS + 1]; + int head; + int tail; +}; + +/** + * struct octeon_hcd - the state of the USB block + * + * lock: Serialization lock. + * init_flags: Flags passed to initialize. + * index: Which USB block this is for. + * idle_hardware_channels: Bit set for every idle hardware channel. + * usbcx_hprt: Stored port status so we don't need to read a CSR to + * determine splits. + * pipe_for_channel: Map channels to pipes. + * pipe: Storage for pipes. + * indent: Used by debug output to indent functions. + * port_status: Last port status used for change notification. + * idle_pipes: List of open pipes that have no transactions. + * active_pipes: Active pipes indexed by transfer type. + * frame_number: Increments every SOF interrupt for time keeping. + * active_split: Points to the current active split, or NULL. + */ +struct octeon_hcd { + spinlock_t lock; /* serialization lock */ + int init_flags; + int index; + int idle_hardware_channels; + union cvmx_usbcx_hprt usbcx_hprt; + struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS]; + int indent; + struct cvmx_usb_port_status port_status; + struct list_head idle_pipes; + struct list_head active_pipes[4]; + u64 frame_number; + struct cvmx_usb_transaction *active_split; + struct cvmx_usb_tx_fifo periodic; + struct cvmx_usb_tx_fifo nonperiodic; +}; + +/* + * This macro logically sets a single field in a CSR. It does the sequence + * read, modify, and write + */ +#define USB_SET_FIELD32(address, _union, field, value) \ + do { \ + union _union c; \ + \ + c.u32 = cvmx_usb_read_csr32(usb, address); \ + c.s.field = value; \ + cvmx_usb_write_csr32(usb, address, c.u32); \ + } while (0) + +/* Returns the IO address to push/pop stuff data from the FIFOs */ +#define USB_FIFO_ADDRESS(channel, usb_index) \ + (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000) + +/** + * struct octeon_temp_buffer - a bounce buffer for USB transfers + * @orig_buffer: the original buffer passed by the USB stack + * @data: the newly allocated temporary buffer (excluding meta-data) + * + * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If + * the buffer is too short, we need to allocate a temporary one, and this struct + * represents it. + */ +struct octeon_temp_buffer { + void *orig_buffer; + u8 data[0]; +}; + +static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p) +{ + return container_of((void *)p, struct usb_hcd, hcd_priv); +} + +/** + * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer + * (if needed) + * @urb: URB. + * @mem_flags: Memory allocation flags. + * + * This function allocates a temporary bounce buffer whenever it's needed + * due to HW limitations. + */ +static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags) +{ + struct octeon_temp_buffer *temp; + + if (urb->num_sgs || urb->sg || + (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) || + !(urb->transfer_buffer_length % sizeof(u32))) + return 0; + + temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) + + sizeof(*temp), mem_flags); + if (!temp) + return -ENOMEM; + + temp->orig_buffer = urb->transfer_buffer; + if (usb_urb_dir_out(urb)) + memcpy(temp->data, urb->transfer_buffer, + urb->transfer_buffer_length); + urb->transfer_buffer = temp->data; + urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER; + + return 0; +} + +/** + * octeon_free_temp_buffer - free a temporary buffer used by USB transfers. + * @urb: URB. + * + * Frees a buffer allocated by octeon_alloc_temp_buffer(). + */ +static void octeon_free_temp_buffer(struct urb *urb) +{ + struct octeon_temp_buffer *temp; + size_t length; + + if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER)) + return; + + temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer, + data); + if (usb_urb_dir_in(urb)) { + if (usb_pipeisoc(urb->pipe)) + length = urb->transfer_buffer_length; + else + length = urb->actual_length; + + memcpy(temp->orig_buffer, urb->transfer_buffer, length); + } + urb->transfer_buffer = temp->orig_buffer; + urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER; + kfree(temp); +} + +/** + * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma(). + * @hcd: USB HCD structure. + * @urb: URB. + * @mem_flags: Memory allocation flags. + */ +static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, + gfp_t mem_flags) +{ + int ret; + + ret = octeon_alloc_temp_buffer(urb, mem_flags); + if (ret) + return ret; + + ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags); + if (ret) + octeon_free_temp_buffer(urb); + + return ret; +} + +/** + * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma() + * @hcd: USB HCD structure. + * @urb: URB. + */ +static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb) +{ + usb_hcd_unmap_urb_for_dma(hcd, urb); + octeon_free_temp_buffer(urb); +} + +/** + * Read a USB 32bit CSR. It performs the necessary address swizzle + * for 32bit CSRs and logs the value in a readable format if + * debugging is on. + * + * @usb: USB block this access is for + * @address: 64bit address to read + * + * Returns: Result of the read + */ +static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address) +{ + return cvmx_read64_uint32(address ^ 4); +} + +/** + * Write a USB 32bit CSR. It performs the necessary address + * swizzle for 32bit CSRs and logs the value in a readable format + * if debugging is on. + * + * @usb: USB block this access is for + * @address: 64bit address to write + * @value: Value to write + */ +static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb, + u64 address, u32 value) +{ + cvmx_write64_uint32(address ^ 4, value); + cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); +} + +/** + * Return non zero if this pipe connects to a non HIGH speed + * device through a high speed hub. + * + * @usb: USB block this access is for + * @pipe: Pipe to check + * + * Returns: Non zero if we need to do split transactions + */ +static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe) +{ + return pipe->device_speed != CVMX_USB_SPEED_HIGH && + usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH; +} + +/** + * Trivial utility function to return the correct PID for a pipe + * + * @pipe: pipe to check + * + * Returns: PID for pipe + */ +static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe) +{ + if (pipe->pid_toggle) + return 2; /* Data1 */ + return 0; /* Data0 */ +} + +/* Loops through register until txfflsh or rxfflsh become zero.*/ +static int cvmx_wait_tx_rx(struct octeon_hcd *usb, int fflsh_type) +{ + int result; + u64 address = CVMX_USBCX_GRSTCTL(usb->index); + u64 done = cvmx_get_cycle() + 100 * + (u64)octeon_get_clock_rate / 1000000; + union cvmx_usbcx_grstctl c; + + while (1) { + c.u32 = cvmx_usb_read_csr32(usb, address); + if (fflsh_type == 0 && c.s.txfflsh == 0) { + result = 0; + break; + } else if (fflsh_type == 1 && c.s.rxfflsh == 0) { + result = 0; + break; + } else if (cvmx_get_cycle() > done) { + result = -1; + break; + } + + __delay(100); + } + return result; +} + +static void cvmx_fifo_setup(struct octeon_hcd *usb) +{ + union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3; + union cvmx_usbcx_gnptxfsiz npsiz; + union cvmx_usbcx_hptxfsiz psiz; + + usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GHWCFG3(usb->index)); + + /* + * Program the USBC_GRXFSIZ register to select the size of the receive + * FIFO (25%). + */ + USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz, + rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4); + + /* + * Program the USBC_GNPTXFSIZ register to select the size and the start + * address of the non-periodic transmit FIFO for nonperiodic + * transactions (50%). + */ + npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index)); + npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2; + npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4; + cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32); + + /* + * Program the USBC_HPTXFSIZ register to select the size and start + * address of the periodic transmit FIFO for periodic transactions + * (25%). + */ + psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index)); + psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4; + psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4; + cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32); + + /* Flush all FIFOs */ + USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), + cvmx_usbcx_grstctl, txfnum, 0x10); + USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), + cvmx_usbcx_grstctl, txfflsh, 1); + cvmx_wait_tx_rx(usb, 0); + USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index), + cvmx_usbcx_grstctl, rxfflsh, 1); + cvmx_wait_tx_rx(usb, 1); +} + +/** + * Shutdown a USB port after a call to cvmx_usb_initialize(). + * The port should be disabled with all pipes closed when this + * function is called. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * + * Returns: 0 or a negative error code. + */ +static int cvmx_usb_shutdown(struct octeon_hcd *usb) +{ + union cvmx_usbnx_clk_ctl usbn_clk_ctl; + + /* Make sure all pipes are closed */ + if (!list_empty(&usb->idle_pipes) || + !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) || + !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) || + !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) || + !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK])) + return -EBUSY; + + /* Disable the clocks and put them in power on reset */ + usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); + usbn_clk_ctl.s.enable = 1; + usbn_clk_ctl.s.por = 1; + usbn_clk_ctl.s.hclk_rst = 1; + usbn_clk_ctl.s.prst = 0; + usbn_clk_ctl.s.hrst = 0; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + return 0; +} + +/** + * Initialize a USB port for use. This must be called before any + * other access to the Octeon USB port is made. The port starts + * off in the disabled state. + * + * @dev: Pointer to struct device for logging purposes. + * @usb: Pointer to struct octeon_hcd. + * + * Returns: 0 or a negative error code. + */ +static int cvmx_usb_initialize(struct device *dev, + struct octeon_hcd *usb) +{ + int channel; + int divisor; + int retries = 0; + union cvmx_usbcx_hcfg usbcx_hcfg; + union cvmx_usbnx_clk_ctl usbn_clk_ctl; + union cvmx_usbcx_gintsts usbc_gintsts; + union cvmx_usbcx_gahbcfg usbcx_gahbcfg; + union cvmx_usbcx_gintmsk usbcx_gintmsk; + union cvmx_usbcx_gusbcfg usbcx_gusbcfg; + union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status; + +retry: + /* + * Power On Reset and PHY Initialization + * + * 1. Wait for DCOK to assert (nothing to do) + * + * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and + * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0 + */ + usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index)); + usbn_clk_ctl.s.por = 1; + usbn_clk_ctl.s.hrst = 0; + usbn_clk_ctl.s.prst = 0; + usbn_clk_ctl.s.hclk_rst = 0; + usbn_clk_ctl.s.enable = 0; + /* + * 2b. Select the USB reference clock/crystal parameters by writing + * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON] + */ + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) { + /* + * The USB port uses 12/24/48MHz 2.5V board clock + * source at USB_XO. USB_XI should be tied to GND. + * Most Octeon evaluation boards require this setting + */ + if (OCTEON_IS_MODEL(OCTEON_CN3XXX) || + OCTEON_IS_MODEL(OCTEON_CN56XX) || + OCTEON_IS_MODEL(OCTEON_CN50XX)) + /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */ + usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */ + else + /* From CN52XX manual */ + usbn_clk_ctl.s.p_rtype = 1; + + switch (usb->init_flags & + CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) { + case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: + usbn_clk_ctl.s.p_c_sel = 0; + break; + case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: + usbn_clk_ctl.s.p_c_sel = 1; + break; + case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: + usbn_clk_ctl.s.p_c_sel = 2; + break; + } + } else { + /* + * The USB port uses a 12MHz crystal as clock source + * at USB_XO and USB_XI + */ + if (OCTEON_IS_MODEL(OCTEON_CN3XXX)) + /* From CN31XX,CN30XX manual */ + usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */ + else + /* From CN56XX,CN52XX,CN50XX manuals. */ + usbn_clk_ctl.s.p_rtype = 0; + + usbn_clk_ctl.s.p_c_sel = 0; + } + /* + * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and + * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down + * such that USB is as close as possible to 125Mhz + */ + divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000); + /* Lower than 4 doesn't seem to work properly */ + if (divisor < 4) + divisor = 4; + usbn_clk_ctl.s.divide = divisor; + usbn_clk_ctl.s.divide2 = 0; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + + /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */ + usbn_clk_ctl.s.hclk_rst = 1; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */ + __delay(64); + /* + * 3. Program the power-on reset field in the USBN clock-control + * register: + * USBN_CLK_CTL[POR] = 0 + */ + usbn_clk_ctl.s.por = 0; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + /* 4. Wait 1 ms for PHY clock to start */ + mdelay(1); + /* + * 5. Program the Reset input from automatic test equipment field in the + * USBP control and status register: + * USBN_USBP_CTL_STATUS[ATE_RESET] = 1 + */ + usbn_usbp_ctl_status.u64 = + cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index)); + usbn_usbp_ctl_status.s.ate_reset = 1; + cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), + usbn_usbp_ctl_status.u64); + /* 6. Wait 10 cycles */ + __delay(10); + /* + * 7. Clear ATE_RESET field in the USBN clock-control register: + * USBN_USBP_CTL_STATUS[ATE_RESET] = 0 + */ + usbn_usbp_ctl_status.s.ate_reset = 0; + cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), + usbn_usbp_ctl_status.u64); + /* + * 8. Program the PHY reset field in the USBN clock-control register: + * USBN_CLK_CTL[PRST] = 1 + */ + usbn_clk_ctl.s.prst = 1; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + /* + * 9. Program the USBP control and status register to select host or + * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for + * device + */ + usbn_usbp_ctl_status.s.hst_mode = 0; + cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index), + usbn_usbp_ctl_status.u64); + /* 10. Wait 1 us */ + udelay(1); + /* + * 11. Program the hreset_n field in the USBN clock-control register: + * USBN_CLK_CTL[HRST] = 1 + */ + usbn_clk_ctl.s.hrst = 1; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + /* 12. Proceed to USB core initialization */ + usbn_clk_ctl.s.enable = 1; + cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64); + udelay(1); + + /* + * USB Core Initialization + * + * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to + * determine USB core configuration parameters. + * + * Nothing needed + * + * 2. Program the following fields in the global AHB configuration + * register (USBC_GAHBCFG) + * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode + * Burst length, USBC_GAHBCFG[HBSTLEN] = 0 + * Nonperiodic TxFIFO empty level (slave mode only), + * USBC_GAHBCFG[NPTXFEMPLVL] + * Periodic TxFIFO empty level (slave mode only), + * USBC_GAHBCFG[PTXFEMPLVL] + * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1 + */ + usbcx_gahbcfg.u32 = 0; + usbcx_gahbcfg.s.dmaen = !(usb->init_flags & + CVMX_USB_INITIALIZE_FLAGS_NO_DMA); + usbcx_gahbcfg.s.hbstlen = 0; + usbcx_gahbcfg.s.nptxfemplvl = 1; + usbcx_gahbcfg.s.ptxfemplvl = 1; + usbcx_gahbcfg.s.glblintrmsk = 1; + cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index), + usbcx_gahbcfg.u32); + + /* + * 3. Program the following fields in USBC_GUSBCFG register. + * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0 + * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0 + * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5 + * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0 + */ + usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GUSBCFG(usb->index)); + usbcx_gusbcfg.s.toutcal = 0; + usbcx_gusbcfg.s.ddrsel = 0; + usbcx_gusbcfg.s.usbtrdtim = 0x5; + usbcx_gusbcfg.s.phylpwrclksel = 0; + cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index), + usbcx_gusbcfg.u32); + + /* + * 4. The software must unmask the following bits in the USBC_GINTMSK + * register. + * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1 + * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1 + */ + usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GINTMSK(usb->index)); + usbcx_gintmsk.s.otgintmsk = 1; + usbcx_gintmsk.s.modemismsk = 1; + usbcx_gintmsk.s.hchintmsk = 1; + usbcx_gintmsk.s.sofmsk = 0; + /* We need RX FIFO interrupts if we don't have DMA */ + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) + usbcx_gintmsk.s.rxflvlmsk = 1; + cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index), + usbcx_gintmsk.u32); + + /* + * Disable all channel interrupts. We'll enable them per channel later. + */ + for (channel = 0; channel < 8; channel++) + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCINTMSKX(channel, usb->index), + 0); + + /* + * Host Port Initialization + * + * 1. Program the host-port interrupt-mask field to unmask, + * USBC_GINTMSK[PRTINT] = 1 + */ + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, prtintmsk, 1); + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, disconnintmsk, 1); + + /* + * 2. Program the USBC_HCFG register to select full-speed host + * or high-speed host. + */ + usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index)); + usbcx_hcfg.s.fslssupp = 0; + usbcx_hcfg.s.fslspclksel = 0; + cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32); + + cvmx_fifo_setup(usb); + + /* + * If the controller is getting port events right after the reset, it + * means the initialization failed. Try resetting the controller again + * in such case. This is seen to happen after cold boot on DSR-1000N. + */ + usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GINTSTS(usb->index)); + cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), + usbc_gintsts.u32); + dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32); + if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint) + return 0; + if (retries++ >= 5) + return -EAGAIN; + dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n", + (int)usbc_gintsts.u32); + msleep(50); + cvmx_usb_shutdown(usb); + msleep(50); + goto retry; +} + +/** + * Reset a USB port. After this call succeeds, the USB port is + * online and servicing requests. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + */ +static void cvmx_usb_reset_port(struct octeon_hcd *usb) +{ + usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HPRT(usb->index)); + + /* Program the port reset bit to start the reset process */ + USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, + prtrst, 1); + + /* + * Wait at least 50ms (high speed), or 10ms (full speed) for the reset + * process to complete. + */ + mdelay(50); + + /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */ + USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, + prtrst, 0); + + /* + * Read the port speed field to get the enumerated speed, + * USBC_HPRT[PRTSPD]. + */ + usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HPRT(usb->index)); +} + +/** + * Disable a USB port. After this call the USB port will not + * generate data transfers and will not generate events. + * Transactions in process will fail and call their + * associated callbacks. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * + * Returns: 0 or a negative error code. + */ +static int cvmx_usb_disable(struct octeon_hcd *usb) +{ + /* Disable the port */ + USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt, + prtena, 1); + return 0; +} + +/** + * Get the current state of the USB port. Use this call to + * determine if the usb port has anything connected, is enabled, + * or has some sort of error condition. The return value of this + * call has "changed" bits to signal of the value of some fields + * have changed between calls. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * + * Returns: Port status information + */ +static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb) +{ + union cvmx_usbcx_hprt usbc_hprt; + struct cvmx_usb_port_status result; + + memset(&result, 0, sizeof(result)); + + usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); + result.port_enabled = usbc_hprt.s.prtena; + result.port_over_current = usbc_hprt.s.prtovrcurract; + result.port_powered = usbc_hprt.s.prtpwr; + result.port_speed = usbc_hprt.s.prtspd; + result.connected = usbc_hprt.s.prtconnsts; + result.connect_change = + result.connected != usb->port_status.connected; + + return result; +} + +/** + * Open a virtual pipe between the host and a USB device. A pipe + * must be opened before data can be transferred between a device + * and Octeon. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @device_addr: + * USB device address to open the pipe to + * (0-127). + * @endpoint_num: + * USB endpoint number to open the pipe to + * (0-15). + * @device_speed: + * The speed of the device the pipe is going + * to. This must match the device's speed, + * which may be different than the port speed. + * @max_packet: The maximum packet length the device can + * transmit/receive (low speed=0-8, full + * speed=0-1023, high speed=0-1024). This value + * comes from the standard endpoint descriptor + * field wMaxPacketSize bits <10:0>. + * @transfer_type: + * The type of transfer this pipe is for. + * @transfer_dir: + * The direction the pipe is in. This is not + * used for control pipes. + * @interval: For ISOCHRONOUS and INTERRUPT transfers, + * this is how often the transfer is scheduled + * for. All other transfers should specify + * zero. The units are in frames (8000/sec at + * high speed, 1000/sec for full speed). + * @multi_count: + * For high speed devices, this is the maximum + * allowed number of packet per microframe. + * Specify zero for non high speed devices. This + * value comes from the standard endpoint descriptor + * field wMaxPacketSize bits <12:11>. + * @hub_device_addr: + * Hub device address this device is connected + * to. Devices connected directly to Octeon + * use zero. This is only used when the device + * is full/low speed behind a high speed hub. + * The address will be of the high speed hub, + * not and full speed hubs after it. + * @hub_port: Which port on the hub the device is + * connected. Use zero for devices connected + * directly to Octeon. Like hub_device_addr, + * this is only used for full/low speed + * devices behind a high speed hub. + * + * Returns: A non-NULL value is a pipe. NULL means an error. + */ +static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb, + int device_addr, + int endpoint_num, + enum cvmx_usb_speed + device_speed, + int max_packet, + enum cvmx_usb_transfer + transfer_type, + enum cvmx_usb_direction + transfer_dir, + int interval, int multi_count, + int hub_device_addr, + int hub_port) +{ + struct cvmx_usb_pipe *pipe; + + pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC); + if (!pipe) + return NULL; + if ((device_speed == CVMX_USB_SPEED_HIGH) && + (transfer_dir == CVMX_USB_DIRECTION_OUT) && + (transfer_type == CVMX_USB_TRANSFER_BULK)) + pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; + pipe->device_addr = device_addr; + pipe->endpoint_num = endpoint_num; + pipe->device_speed = device_speed; + pipe->max_packet = max_packet; + pipe->transfer_type = transfer_type; + pipe->transfer_dir = transfer_dir; + INIT_LIST_HEAD(&pipe->transactions); + + /* + * All pipes use interval to rate limit NAK processing. Force an + * interval if one wasn't supplied + */ + if (!interval) + interval = 1; + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + pipe->interval = interval * 8; + /* Force start splits to be schedule on uFrame 0 */ + pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) + + pipe->interval; + } else { + pipe->interval = interval; + pipe->next_tx_frame = usb->frame_number + pipe->interval; + } + pipe->multi_count = multi_count; + pipe->hub_device_addr = hub_device_addr; + pipe->hub_port = hub_port; + pipe->pid_toggle = 0; + pipe->split_sc_frame = -1; + list_add_tail(&pipe->node, &usb->idle_pipes); + + /* + * We don't need to tell the hardware about this pipe yet since + * it doesn't have any submitted requests + */ + + return pipe; +} + +/** + * Poll the RX FIFOs and remove data as needed. This function is only used + * in non DMA mode. It is very important that this function be called quickly + * enough to prevent FIFO overflow. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + */ +static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb) +{ + union cvmx_usbcx_grxstsph rx_status; + int channel; + int bytes; + u64 address; + u32 *ptr; + + rx_status.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GRXSTSPH(usb->index)); + /* Only read data if IN data is there */ + if (rx_status.s.pktsts != 2) + return; + /* Check if no data is available */ + if (!rx_status.s.bcnt) + return; + + channel = rx_status.s.chnum; + bytes = rx_status.s.bcnt; + if (!bytes) + return; + + /* Get where the DMA engine would have written this data */ + address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + + channel * 8); + + ptr = cvmx_phys_to_ptr(address); + cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8, + address + bytes); + + /* Loop writing the FIFO data for this packet into memory */ + while (bytes > 0) { + *ptr++ = cvmx_usb_read_csr32(usb, + USB_FIFO_ADDRESS(channel, usb->index)); + bytes -= 4; + } + CVMX_SYNCW; +} + +/** + * Fill the TX hardware fifo with data out of the software + * fifos + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @fifo: Software fifo to use + * @available: Amount of space in the hardware fifo + * + * Returns: Non zero if the hardware fifo was too small and needs + * to be serviced again. + */ +static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb, + struct cvmx_usb_tx_fifo *fifo, int available) +{ + /* + * We're done either when there isn't anymore space or the software FIFO + * is empty + */ + while (available && (fifo->head != fifo->tail)) { + int i = fifo->tail; + const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address); + u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel, + usb->index) ^ 4; + int words = available; + + /* Limit the amount of data to what the SW fifo has */ + if (fifo->entry[i].size <= available) { + words = fifo->entry[i].size; + fifo->tail++; + if (fifo->tail > MAX_CHANNELS) + fifo->tail = 0; + } + + /* Update the next locations and counts */ + available -= words; + fifo->entry[i].address += words * 4; + fifo->entry[i].size -= words; + + /* + * Write the HW fifo data. The read every three writes is due + * to an errata on CN3XXX chips + */ + while (words > 3) { + cvmx_write64_uint32(csr_address, *ptr++); + cvmx_write64_uint32(csr_address, *ptr++); + cvmx_write64_uint32(csr_address, *ptr++); + cvmx_read64_uint64( + CVMX_USBNX_DMA0_INB_CHN0(usb->index)); + words -= 3; + } + cvmx_write64_uint32(csr_address, *ptr++); + if (--words) { + cvmx_write64_uint32(csr_address, *ptr++); + if (--words) + cvmx_write64_uint32(csr_address, *ptr++); + } + cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index)); + } + return fifo->head != fifo->tail; +} + +/** + * Check the hardware FIFOs and fill them as needed + * + * @usb: USB device state populated by cvmx_usb_initialize(). + */ +static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb) +{ + if (usb->periodic.head != usb->periodic.tail) { + union cvmx_usbcx_hptxsts tx_status; + + tx_status.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HPTXSTS(usb->index)); + if (cvmx_usb_fill_tx_hw(usb, &usb->periodic, + tx_status.s.ptxfspcavail)) + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, ptxfempmsk, 1); + else + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, ptxfempmsk, 0); + } + + if (usb->nonperiodic.head != usb->nonperiodic.tail) { + union cvmx_usbcx_gnptxsts tx_status; + + tx_status.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GNPTXSTS(usb->index)); + if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic, + tx_status.s.nptxfspcavail)) + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, nptxfempmsk, 1); + else + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, nptxfempmsk, 0); + } +} + +/** + * Fill the TX FIFO with an outgoing packet + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @channel: Channel number to get packet from + */ +static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel) +{ + union cvmx_usbcx_hccharx hcchar; + union cvmx_usbcx_hcspltx usbc_hcsplt; + union cvmx_usbcx_hctsizx usbc_hctsiz; + struct cvmx_usb_tx_fifo *fifo; + + /* We only need to fill data on outbound channels */ + hcchar.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCCHARX(channel, usb->index)); + if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT) + return; + + /* OUT Splits only have data on the start and not the complete */ + usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCSPLTX(channel, usb->index)); + if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt) + return; + + /* + * Find out how many bytes we need to fill and convert it into 32bit + * words. + */ + usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCTSIZX(channel, usb->index)); + if (!usbc_hctsiz.s.xfersize) + return; + + if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) || + (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS)) + fifo = &usb->periodic; + else + fifo = &usb->nonperiodic; + + fifo->entry[fifo->head].channel = channel; + fifo->entry[fifo->head].address = + cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + + channel * 8); + fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2; + fifo->head++; + if (fifo->head > MAX_CHANNELS) + fifo->head = 0; + + cvmx_usb_poll_tx_fifo(usb); +} + +/** + * Perform channel specific setup for Control transactions. All + * the generic stuff will already have been done in cvmx_usb_start_channel(). + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @channel: Channel to setup + * @pipe: Pipe for control transaction + */ +static void cvmx_usb_start_channel_control(struct octeon_hcd *usb, + int channel, + struct cvmx_usb_pipe *pipe) +{ + struct usb_hcd *hcd = octeon_to_hcd(usb); + struct device *dev = hcd->self.controller; + struct cvmx_usb_transaction *transaction = + list_first_entry(&pipe->transactions, typeof(*transaction), + node); + struct usb_ctrlrequest *header = + cvmx_phys_to_ptr(transaction->control_header); + int bytes_to_transfer = transaction->buffer_length - + transaction->actual_bytes; + int packets_to_transfer; + union cvmx_usbcx_hctsizx usbc_hctsiz; + + usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCTSIZX(channel, usb->index)); + + switch (transaction->stage) { + case CVMX_USB_STAGE_NON_CONTROL: + case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: + dev_err(dev, "%s: ERROR - Non control stage\n", __func__); + break; + case CVMX_USB_STAGE_SETUP: + usbc_hctsiz.s.pid = 3; /* Setup */ + bytes_to_transfer = sizeof(*header); + /* All Control operations start with a setup going OUT */ + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, epdir, + CVMX_USB_DIRECTION_OUT); + /* + * Setup send the control header instead of the buffer data. The + * buffer data will be used in the next stage + */ + cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) + + channel * 8, + transaction->control_header); + break; + case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: + usbc_hctsiz.s.pid = 3; /* Setup */ + bytes_to_transfer = 0; + /* All Control operations start with a setup going OUT */ + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, epdir, + CVMX_USB_DIRECTION_OUT); + + USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), + cvmx_usbcx_hcspltx, compsplt, 1); + break; + case CVMX_USB_STAGE_DATA: + usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + if (header->bRequestType & USB_DIR_IN) + bytes_to_transfer = 0; + else if (bytes_to_transfer > pipe->max_packet) + bytes_to_transfer = pipe->max_packet; + } + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, epdir, + ((header->bRequestType & USB_DIR_IN) ? + CVMX_USB_DIRECTION_IN : + CVMX_USB_DIRECTION_OUT)); + break; + case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: + usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); + if (!(header->bRequestType & USB_DIR_IN)) + bytes_to_transfer = 0; + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, epdir, + ((header->bRequestType & USB_DIR_IN) ? + CVMX_USB_DIRECTION_IN : + CVMX_USB_DIRECTION_OUT)); + USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), + cvmx_usbcx_hcspltx, compsplt, 1); + break; + case CVMX_USB_STAGE_STATUS: + usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); + bytes_to_transfer = 0; + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, epdir, + ((header->bRequestType & USB_DIR_IN) ? + CVMX_USB_DIRECTION_OUT : + CVMX_USB_DIRECTION_IN)); + break; + case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: + usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); + bytes_to_transfer = 0; + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, epdir, + ((header->bRequestType & USB_DIR_IN) ? + CVMX_USB_DIRECTION_OUT : + CVMX_USB_DIRECTION_IN)); + USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index), + cvmx_usbcx_hcspltx, compsplt, 1); + break; + } + + /* + * Make sure the transfer never exceeds the byte limit of the hardware. + * Further bytes will be sent as continued transactions + */ + if (bytes_to_transfer > MAX_TRANSFER_BYTES) { + /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */ + bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet; + bytes_to_transfer *= pipe->max_packet; + } + + /* + * Calculate the number of packets to transfer. If the length is zero + * we still need to transfer one packet + */ + packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer, + pipe->max_packet); + if (packets_to_transfer == 0) { + packets_to_transfer = 1; + } else if ((packets_to_transfer > 1) && + (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { + /* + * Limit to one packet when not using DMA. Channels must be + * restarted between every packet for IN transactions, so there + * is no reason to do multiple packets in a row + */ + packets_to_transfer = 1; + bytes_to_transfer = packets_to_transfer * pipe->max_packet; + } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { + /* + * Limit the number of packet and data transferred to what the + * hardware can handle + */ + packets_to_transfer = MAX_TRANSFER_PACKETS; + bytes_to_transfer = packets_to_transfer * pipe->max_packet; + } + + usbc_hctsiz.s.xfersize = bytes_to_transfer; + usbc_hctsiz.s.pktcnt = packets_to_transfer; + + cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index), + usbc_hctsiz.u32); +} + +/** + * Start a channel to perform the pipe's head transaction + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @channel: Channel to setup + * @pipe: Pipe to start + */ +static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel, + struct cvmx_usb_pipe *pipe) +{ + struct cvmx_usb_transaction *transaction = + list_first_entry(&pipe->transactions, typeof(*transaction), + node); + + /* Make sure all writes to the DMA region get flushed */ + CVMX_SYNCW; + + /* Attach the channel to the pipe */ + usb->pipe_for_channel[channel] = pipe; + pipe->channel = channel; + pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED; + + /* Mark this channel as in use */ + usb->idle_hardware_channels &= ~(1 << channel); + + /* Enable the channel interrupt bits */ + { + union cvmx_usbcx_hcintx usbc_hcint; + union cvmx_usbcx_hcintmskx usbc_hcintmsk; + union cvmx_usbcx_haintmsk usbc_haintmsk; + + /* Clear all channel status bits */ + usbc_hcint.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCINTX(channel, usb->index)); + + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCINTX(channel, usb->index), + usbc_hcint.u32); + + usbc_hcintmsk.u32 = 0; + usbc_hcintmsk.s.chhltdmsk = 1; + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { + /* + * Channels need these extra interrupts when we aren't + * in DMA mode. + */ + usbc_hcintmsk.s.datatglerrmsk = 1; + usbc_hcintmsk.s.frmovrunmsk = 1; + usbc_hcintmsk.s.bblerrmsk = 1; + usbc_hcintmsk.s.xacterrmsk = 1; + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + /* + * Splits don't generate xfercompl, so we need + * ACK and NYET. + */ + usbc_hcintmsk.s.nyetmsk = 1; + usbc_hcintmsk.s.ackmsk = 1; + } + usbc_hcintmsk.s.nakmsk = 1; + usbc_hcintmsk.s.stallmsk = 1; + usbc_hcintmsk.s.xfercomplmsk = 1; + } + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCINTMSKX(channel, usb->index), + usbc_hcintmsk.u32); + + /* Enable the channel interrupt to propagate */ + usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HAINTMSK(usb->index)); + usbc_haintmsk.s.haintmsk |= 1 << channel; + cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index), + usbc_haintmsk.u32); + } + + /* Setup the location the DMA engine uses. */ + { + u64 reg; + u64 dma_address = transaction->buffer + + transaction->actual_bytes; + + if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) + dma_address = transaction->buffer + + transaction->iso_packets[0].offset + + transaction->actual_bytes; + + if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) + reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index); + else + reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index); + cvmx_write64_uint64(reg + channel * 8, dma_address); + } + + /* Setup both the size of the transfer and the SPLIT characteristics */ + { + union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0}; + union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0}; + int packets_to_transfer; + int bytes_to_transfer = transaction->buffer_length - + transaction->actual_bytes; + + /* + * ISOCHRONOUS transactions store each individual transfer size + * in the packet structure, not the global buffer_length + */ + if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) + bytes_to_transfer = + transaction->iso_packets[0].length - + transaction->actual_bytes; + + /* + * We need to do split transactions when we are talking to non + * high speed devices that are behind a high speed hub + */ + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + /* + * On the start split phase (stage is even) record the + * frame number we will need to send the split complete. + * We only store the lower two bits since the time ahead + * can only be two frames + */ + if ((transaction->stage & 1) == 0) { + if (transaction->type == CVMX_USB_TRANSFER_BULK) + pipe->split_sc_frame = + (usb->frame_number + 1) & 0x7f; + else + pipe->split_sc_frame = + (usb->frame_number + 2) & 0x7f; + } else { + pipe->split_sc_frame = -1; + } + + usbc_hcsplt.s.spltena = 1; + usbc_hcsplt.s.hubaddr = pipe->hub_device_addr; + usbc_hcsplt.s.prtaddr = pipe->hub_port; + usbc_hcsplt.s.compsplt = (transaction->stage == + CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE); + + /* + * SPLIT transactions can only ever transmit one data + * packet so limit the transfer size to the max packet + * size + */ + if (bytes_to_transfer > pipe->max_packet) + bytes_to_transfer = pipe->max_packet; + + /* + * ISOCHRONOUS OUT splits are unique in that they limit + * data transfers to 188 byte chunks representing the + * begin/middle/end of the data or all + */ + if (!usbc_hcsplt.s.compsplt && + (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && + (pipe->transfer_type == + CVMX_USB_TRANSFER_ISOCHRONOUS)) { + /* + * Clear the split complete frame number as + * there isn't going to be a split complete + */ + pipe->split_sc_frame = -1; + /* + * See if we've started this transfer and sent + * data + */ + if (transaction->actual_bytes == 0) { + /* + * Nothing sent yet, this is either a + * begin or the entire payload + */ + if (bytes_to_transfer <= 188) + /* Entire payload in one go */ + usbc_hcsplt.s.xactpos = 3; + else + /* First part of payload */ + usbc_hcsplt.s.xactpos = 2; + } else { + /* + * Continuing the previous data, we must + * either be in the middle or at the end + */ + if (bytes_to_transfer <= 188) + /* End of payload */ + usbc_hcsplt.s.xactpos = 1; + else + /* Middle of payload */ + usbc_hcsplt.s.xactpos = 0; + } + /* + * Again, the transfer size is limited to 188 + * bytes + */ + if (bytes_to_transfer > 188) + bytes_to_transfer = 188; + } + } + + /* + * Make sure the transfer never exceeds the byte limit of the + * hardware. Further bytes will be sent as continued + * transactions + */ + if (bytes_to_transfer > MAX_TRANSFER_BYTES) { + /* + * Round MAX_TRANSFER_BYTES to a multiple of out packet + * size + */ + bytes_to_transfer = MAX_TRANSFER_BYTES / + pipe->max_packet; + bytes_to_transfer *= pipe->max_packet; + } + + /* + * Calculate the number of packets to transfer. If the length is + * zero we still need to transfer one packet + */ + packets_to_transfer = + DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet); + if (packets_to_transfer == 0) { + packets_to_transfer = 1; + } else if ((packets_to_transfer > 1) && + (usb->init_flags & + CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) { + /* + * Limit to one packet when not using DMA. Channels must + * be restarted between every packet for IN + * transactions, so there is no reason to do multiple + * packets in a row + */ + packets_to_transfer = 1; + bytes_to_transfer = packets_to_transfer * + pipe->max_packet; + } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) { + /* + * Limit the number of packet and data transferred to + * what the hardware can handle + */ + packets_to_transfer = MAX_TRANSFER_PACKETS; + bytes_to_transfer = packets_to_transfer * + pipe->max_packet; + } + + usbc_hctsiz.s.xfersize = bytes_to_transfer; + usbc_hctsiz.s.pktcnt = packets_to_transfer; + + /* Update the DATA0/DATA1 toggle */ + usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe); + /* + * High speed pipes may need a hardware ping before they start + */ + if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING) + usbc_hctsiz.s.dopng = 1; + + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCSPLTX(channel, usb->index), + usbc_hcsplt.u32); + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCTSIZX(channel, usb->index), + usbc_hctsiz.u32); + } + + /* Setup the Host Channel Characteristics Register */ + { + union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0}; + + /* + * Set the startframe odd/even properly. This is only used for + * periodic + */ + usbc_hcchar.s.oddfrm = usb->frame_number & 1; + + /* + * Set the number of back to back packets allowed by this + * endpoint. Split transactions interpret "ec" as the number of + * immediate retries of failure. These retries happen too + * quickly, so we disable these entirely for splits + */ + if (cvmx_usb_pipe_needs_split(usb, pipe)) + usbc_hcchar.s.ec = 1; + else if (pipe->multi_count < 1) + usbc_hcchar.s.ec = 1; + else if (pipe->multi_count > 3) + usbc_hcchar.s.ec = 3; + else + usbc_hcchar.s.ec = pipe->multi_count; + + /* Set the rest of the endpoint specific settings */ + usbc_hcchar.s.devaddr = pipe->device_addr; + usbc_hcchar.s.eptype = transaction->type; + usbc_hcchar.s.lspddev = + (pipe->device_speed == CVMX_USB_SPEED_LOW); + usbc_hcchar.s.epdir = pipe->transfer_dir; + usbc_hcchar.s.epnum = pipe->endpoint_num; + usbc_hcchar.s.mps = pipe->max_packet; + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCCHARX(channel, usb->index), + usbc_hcchar.u32); + } + + /* Do transaction type specific fixups as needed */ + switch (transaction->type) { + case CVMX_USB_TRANSFER_CONTROL: + cvmx_usb_start_channel_control(usb, channel, pipe); + break; + case CVMX_USB_TRANSFER_BULK: + case CVMX_USB_TRANSFER_INTERRUPT: + break; + case CVMX_USB_TRANSFER_ISOCHRONOUS: + if (!cvmx_usb_pipe_needs_split(usb, pipe)) { + /* + * ISO transactions require different PIDs depending on + * direction and how many packets are needed + */ + if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { + if (pipe->multi_count < 2) /* Need DATA0 */ + USB_SET_FIELD32( + CVMX_USBCX_HCTSIZX(channel, + usb->index), + cvmx_usbcx_hctsizx, pid, 0); + else /* Need MDATA */ + USB_SET_FIELD32( + CVMX_USBCX_HCTSIZX(channel, + usb->index), + cvmx_usbcx_hctsizx, pid, 3); + } + } + break; + } + { + union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 = + cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCTSIZX(channel, + usb->index)) + }; + transaction->xfersize = usbc_hctsiz.s.xfersize; + transaction->pktcnt = usbc_hctsiz.s.pktcnt; + } + /* Remember when we start a split transaction */ + if (cvmx_usb_pipe_needs_split(usb, pipe)) + usb->active_split = transaction; + USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index), + cvmx_usbcx_hccharx, chena, 1); + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) + cvmx_usb_fill_tx_fifo(usb, channel); +} + +/** + * Find a pipe that is ready to be scheduled to hardware. + * @usb: USB device state populated by cvmx_usb_initialize(). + * @xfer_type: Transfer type + * + * Returns: Pipe or NULL if none are ready + */ +static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(struct octeon_hcd *usb, + enum cvmx_usb_transfer xfer_type) +{ + struct list_head *list = usb->active_pipes + xfer_type; + u64 current_frame = usb->frame_number; + struct cvmx_usb_pipe *pipe; + + list_for_each_entry(pipe, list, node) { + struct cvmx_usb_transaction *t = + list_first_entry(&pipe->transactions, typeof(*t), + node); + if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t && + (pipe->next_tx_frame <= current_frame) && + ((pipe->split_sc_frame == -1) || + ((((int)current_frame - pipe->split_sc_frame) & 0x7f) < + 0x40)) && + (!usb->active_split || (usb->active_split == t))) { + prefetch(t); + return pipe; + } + } + return NULL; +} + +static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb, + int is_sof) +{ + struct cvmx_usb_pipe *pipe; + + /* Find a pipe needing service. */ + if (is_sof) { + /* + * Only process periodic pipes on SOF interrupts. This way we + * are sure that the periodic data is sent in the beginning of + * the frame. + */ + pipe = cvmx_usb_find_ready_pipe(usb, + CVMX_USB_TRANSFER_ISOCHRONOUS); + if (pipe) + return pipe; + pipe = cvmx_usb_find_ready_pipe(usb, + CVMX_USB_TRANSFER_INTERRUPT); + if (pipe) + return pipe; + } + pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL); + if (pipe) + return pipe; + return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK); +} + +/** + * Called whenever a pipe might need to be scheduled to the + * hardware. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @is_sof: True if this schedule was called on a SOF interrupt. + */ +static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof) +{ + int channel; + struct cvmx_usb_pipe *pipe; + int need_sof; + enum cvmx_usb_transfer ttype; + + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { + /* + * Without DMA we need to be careful to not schedule something + * at the end of a frame and cause an overrun. + */ + union cvmx_usbcx_hfnum hfnum = { + .u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HFNUM(usb->index)) + }; + + union cvmx_usbcx_hfir hfir = { + .u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HFIR(usb->index)) + }; + + if (hfnum.s.frrem < hfir.s.frint / 4) + goto done; + } + + while (usb->idle_hardware_channels) { + /* Find an idle channel */ + channel = __fls(usb->idle_hardware_channels); + if (unlikely(channel > 7)) + break; + + pipe = cvmx_usb_next_pipe(usb, is_sof); + if (!pipe) + break; + + cvmx_usb_start_channel(usb, channel, pipe); + } + +done: + /* + * Only enable SOF interrupts when we have transactions pending in the + * future that might need to be scheduled + */ + need_sof = 0; + for (ttype = CVMX_USB_TRANSFER_CONTROL; + ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) { + list_for_each_entry(pipe, &usb->active_pipes[ttype], node) { + if (pipe->next_tx_frame > usb->frame_number) { + need_sof = 1; + break; + } + } + } + USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index), + cvmx_usbcx_gintmsk, sofmsk, need_sof); +} + +static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb, + enum cvmx_usb_status status, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction + *transaction, + int bytes_transferred, + struct urb *urb) +{ + struct usb_hcd *hcd = octeon_to_hcd(usb); + struct device *dev = hcd->self.controller; + + if (likely(status == CVMX_USB_STATUS_OK)) + urb->actual_length = bytes_transferred; + else + urb->actual_length = 0; + + urb->hcpriv = NULL; + + /* For Isochronous transactions we need to update the URB packet status + * list from data in our private copy + */ + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) { + int i; + /* + * The pointer to the private list is stored in the setup_packet + * field. + */ + struct cvmx_usb_iso_packet *iso_packet = + (struct cvmx_usb_iso_packet *)urb->setup_packet; + /* Recalculate the transfer size by adding up each packet */ + urb->actual_length = 0; + for (i = 0; i < urb->number_of_packets; i++) { + if (iso_packet[i].status == CVMX_USB_STATUS_OK) { + urb->iso_frame_desc[i].status = 0; + urb->iso_frame_desc[i].actual_length = + iso_packet[i].length; + urb->actual_length += + urb->iso_frame_desc[i].actual_length; + } else { + dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n", + i, urb->number_of_packets, + iso_packet[i].status, pipe, + transaction, iso_packet[i].length); + urb->iso_frame_desc[i].status = -EREMOTEIO; + } + } + /* Free the private list now that we don't need it anymore */ + kfree(iso_packet); + urb->setup_packet = NULL; + } + + switch (status) { + case CVMX_USB_STATUS_OK: + urb->status = 0; + break; + case CVMX_USB_STATUS_CANCEL: + if (urb->status == 0) + urb->status = -ENOENT; + break; + case CVMX_USB_STATUS_STALL: + dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n", + pipe, transaction, bytes_transferred); + urb->status = -EPIPE; + break; + case CVMX_USB_STATUS_BABBLEERR: + dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n", + pipe, transaction, bytes_transferred); + urb->status = -EPIPE; + break; + case CVMX_USB_STATUS_SHORT: + dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n", + pipe, transaction, bytes_transferred); + urb->status = -EREMOTEIO; + break; + case CVMX_USB_STATUS_ERROR: + case CVMX_USB_STATUS_XACTERR: + case CVMX_USB_STATUS_DATATGLERR: + case CVMX_USB_STATUS_FRAMEERR: + dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n", + status, pipe, transaction, bytes_transferred); + urb->status = -EPROTO; + break; + } + usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb); + spin_unlock(&usb->lock); + usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status); + spin_lock(&usb->lock); +} + +/** + * Signal the completion of a transaction and free it. The + * transaction will be removed from the pipe transaction list. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Pipe the transaction is on + * @transaction: + * Transaction that completed + * @complete_code: + * Completion code + */ +static void cvmx_usb_complete(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction *transaction, + enum cvmx_usb_status complete_code) +{ + /* If this was a split then clear our split in progress marker */ + if (usb->active_split == transaction) + usb->active_split = NULL; + + /* + * Isochronous transactions need extra processing as they might not be + * done after a single data transfer + */ + if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) { + /* Update the number of bytes transferred in this ISO packet */ + transaction->iso_packets[0].length = transaction->actual_bytes; + transaction->iso_packets[0].status = complete_code; + + /* + * If there are more ISOs pending and we succeeded, schedule the + * next one + */ + if ((transaction->iso_number_packets > 1) && + (complete_code == CVMX_USB_STATUS_OK)) { + /* No bytes transferred for this packet as of yet */ + transaction->actual_bytes = 0; + /* One less ISO waiting to transfer */ + transaction->iso_number_packets--; + /* Increment to the next location in our packet array */ + transaction->iso_packets++; + transaction->stage = CVMX_USB_STAGE_NON_CONTROL; + return; + } + } + + /* Remove the transaction from the pipe list */ + list_del(&transaction->node); + if (list_empty(&pipe->transactions)) + list_move_tail(&pipe->node, &usb->idle_pipes); + octeon_usb_urb_complete_callback(usb, complete_code, pipe, + transaction, + transaction->actual_bytes, + transaction->urb); + kfree(transaction); +} + +/** + * Submit a usb transaction to a pipe. Called for all types + * of transactions. + * + * @usb: + * @pipe: Which pipe to submit to. + * @type: Transaction type + * @buffer: User buffer for the transaction + * @buffer_length: + * User buffer's length in bytes + * @control_header: + * For control transactions, the 8 byte standard header + * @iso_start_frame: + * For ISO transactions, the start frame + * @iso_number_packets: + * For ISO, the number of packet in the transaction. + * @iso_packets: + * A description of each ISO packet + * @urb: URB for the callback + * + * Returns: Transaction or NULL on failure. + */ +static struct cvmx_usb_transaction *cvmx_usb_submit_transaction( + struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + enum cvmx_usb_transfer type, + u64 buffer, + int buffer_length, + u64 control_header, + int iso_start_frame, + int iso_number_packets, + struct cvmx_usb_iso_packet *iso_packets, + struct urb *urb) +{ + struct cvmx_usb_transaction *transaction; + + if (unlikely(pipe->transfer_type != type)) + return NULL; + + transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC); + if (unlikely(!transaction)) + return NULL; + + transaction->type = type; + transaction->buffer = buffer; + transaction->buffer_length = buffer_length; + transaction->control_header = control_header; + /* FIXME: This is not used, implement it. */ + transaction->iso_start_frame = iso_start_frame; + transaction->iso_number_packets = iso_number_packets; + transaction->iso_packets = iso_packets; + transaction->urb = urb; + if (transaction->type == CVMX_USB_TRANSFER_CONTROL) + transaction->stage = CVMX_USB_STAGE_SETUP; + else + transaction->stage = CVMX_USB_STAGE_NON_CONTROL; + + if (!list_empty(&pipe->transactions)) { + list_add_tail(&transaction->node, &pipe->transactions); + } else { + list_add_tail(&transaction->node, &pipe->transactions); + list_move_tail(&pipe->node, + &usb->active_pipes[pipe->transfer_type]); + + /* + * We may need to schedule the pipe if this was the head of the + * pipe. + */ + cvmx_usb_schedule(usb, 0); + } + + return transaction; +} + +/** + * Call to submit a USB Bulk transfer to a pipe. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Handle to the pipe for the transfer. + * @urb: URB. + * + * Returns: A submitted transaction or NULL on failure. + */ +static struct cvmx_usb_transaction *cvmx_usb_submit_bulk( + struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct urb *urb) +{ + return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK, + urb->transfer_dma, + urb->transfer_buffer_length, + 0, /* control_header */ + 0, /* iso_start_frame */ + 0, /* iso_number_packets */ + NULL, /* iso_packets */ + urb); +} + +/** + * Call to submit a USB Interrupt transfer to a pipe. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Handle to the pipe for the transfer. + * @urb: URB returned when the callback is called. + * + * Returns: A submitted transaction or NULL on failure. + */ +static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt( + struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct urb *urb) +{ + return cvmx_usb_submit_transaction(usb, pipe, + CVMX_USB_TRANSFER_INTERRUPT, + urb->transfer_dma, + urb->transfer_buffer_length, + 0, /* control_header */ + 0, /* iso_start_frame */ + 0, /* iso_number_packets */ + NULL, /* iso_packets */ + urb); +} + +/** + * Call to submit a USB Control transfer to a pipe. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Handle to the pipe for the transfer. + * @urb: URB. + * + * Returns: A submitted transaction or NULL on failure. + */ +static struct cvmx_usb_transaction *cvmx_usb_submit_control( + struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct urb *urb) +{ + int buffer_length = urb->transfer_buffer_length; + u64 control_header = urb->setup_dma; + struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header); + + if ((header->bRequestType & USB_DIR_IN) == 0) + buffer_length = le16_to_cpu(header->wLength); + + return cvmx_usb_submit_transaction(usb, pipe, + CVMX_USB_TRANSFER_CONTROL, + urb->transfer_dma, buffer_length, + control_header, + 0, /* iso_start_frame */ + 0, /* iso_number_packets */ + NULL, /* iso_packets */ + urb); +} + +/** + * Call to submit a USB Isochronous transfer to a pipe. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Handle to the pipe for the transfer. + * @urb: URB returned when the callback is called. + * + * Returns: A submitted transaction or NULL on failure. + */ +static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous( + struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct urb *urb) +{ + struct cvmx_usb_iso_packet *packets; + + packets = (struct cvmx_usb_iso_packet *)urb->setup_packet; + return cvmx_usb_submit_transaction(usb, pipe, + CVMX_USB_TRANSFER_ISOCHRONOUS, + urb->transfer_dma, + urb->transfer_buffer_length, + 0, /* control_header */ + urb->start_frame, + urb->number_of_packets, + packets, urb); +} + +/** + * Cancel one outstanding request in a pipe. Canceling a request + * can fail if the transaction has already completed before cancel + * is called. Even after a successful cancel call, it may take + * a frame or two for the cvmx_usb_poll() function to call the + * associated callback. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Pipe to cancel requests in. + * @transaction: Transaction to cancel, returned by the submit function. + * + * Returns: 0 or a negative error code. + */ +static int cvmx_usb_cancel(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction *transaction) +{ + /* + * If the transaction is the HEAD of the queue and scheduled. We need to + * treat it special + */ + if (list_first_entry(&pipe->transactions, typeof(*transaction), node) == + transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) { + union cvmx_usbcx_hccharx usbc_hcchar; + + usb->pipe_for_channel[pipe->channel] = NULL; + pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; + + CVMX_SYNCW; + + usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCCHARX(pipe->channel, usb->index)); + /* + * If the channel isn't enabled then the transaction already + * completed. + */ + if (usbc_hcchar.s.chena) { + usbc_hcchar.s.chdis = 1; + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCCHARX(pipe->channel, + usb->index), + usbc_hcchar.u32); + } + } + cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL); + return 0; +} + +/** + * Cancel all outstanding requests in a pipe. Logically all this + * does is call cvmx_usb_cancel() in a loop. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Pipe to cancel requests in. + * + * Returns: 0 or a negative error code. + */ +static int cvmx_usb_cancel_all(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe) +{ + struct cvmx_usb_transaction *transaction, *next; + + /* Simply loop through and attempt to cancel each transaction */ + list_for_each_entry_safe(transaction, next, &pipe->transactions, node) { + int result = cvmx_usb_cancel(usb, pipe, transaction); + + if (unlikely(result != 0)) + return result; + } + return 0; +} + +/** + * Close a pipe created with cvmx_usb_open_pipe(). + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * @pipe: Pipe to close. + * + * Returns: 0 or a negative error code. EBUSY is returned if the pipe has + * outstanding transfers. + */ +static int cvmx_usb_close_pipe(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe) +{ + /* Fail if the pipe has pending transactions */ + if (!list_empty(&pipe->transactions)) + return -EBUSY; + + list_del(&pipe->node); + kfree(pipe); + + return 0; +} + +/** + * Get the current USB protocol level frame number. The frame + * number is always in the range of 0-0x7ff. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * + * Returns: USB frame number + */ +static int cvmx_usb_get_frame_number(struct octeon_hcd *usb) +{ + union cvmx_usbcx_hfnum usbc_hfnum; + + usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); + + return usbc_hfnum.s.frnum; +} + +static void cvmx_usb_transfer_control(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction *transaction, + union cvmx_usbcx_hccharx usbc_hcchar, + int buffer_space_left, + int bytes_in_last_packet) +{ + switch (transaction->stage) { + case CVMX_USB_STAGE_NON_CONTROL: + case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE: + /* This should be impossible */ + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_ERROR); + break; + case CVMX_USB_STAGE_SETUP: + pipe->pid_toggle = 1; + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + transaction->stage = + CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE; + } else { + struct usb_ctrlrequest *header = + cvmx_phys_to_ptr(transaction->control_header); + if (header->wLength) + transaction->stage = CVMX_USB_STAGE_DATA; + else + transaction->stage = CVMX_USB_STAGE_STATUS; + } + break; + case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE: + { + struct usb_ctrlrequest *header = + cvmx_phys_to_ptr(transaction->control_header); + if (header->wLength) + transaction->stage = CVMX_USB_STAGE_DATA; + else + transaction->stage = CVMX_USB_STAGE_STATUS; + } + break; + case CVMX_USB_STAGE_DATA: + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE; + /* + * For setup OUT data that are splits, + * the hardware doesn't appear to count + * transferred data. Here we manually + * update the data transferred + */ + if (!usbc_hcchar.s.epdir) { + if (buffer_space_left < pipe->max_packet) + transaction->actual_bytes += + buffer_space_left; + else + transaction->actual_bytes += + pipe->max_packet; + } + } else if ((buffer_space_left == 0) || + (bytes_in_last_packet < pipe->max_packet)) { + pipe->pid_toggle = 1; + transaction->stage = CVMX_USB_STAGE_STATUS; + } + break; + case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE: + if ((buffer_space_left == 0) || + (bytes_in_last_packet < pipe->max_packet)) { + pipe->pid_toggle = 1; + transaction->stage = CVMX_USB_STAGE_STATUS; + } else { + transaction->stage = CVMX_USB_STAGE_DATA; + } + break; + case CVMX_USB_STAGE_STATUS: + if (cvmx_usb_pipe_needs_split(usb, pipe)) + transaction->stage = + CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE; + else + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_OK); + break; + case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE: + cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); + break; + } +} + +static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction *transaction, + union cvmx_usbcx_hcintx usbc_hcint, + int buffer_space_left, + int bytes_in_last_packet) +{ + /* + * The only time a bulk transfer isn't complete when it finishes with + * an ACK is during a split transaction. For splits we need to continue + * the transfer if more data is needed. + */ + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) + transaction->stage = + CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; + else if (buffer_space_left && + (bytes_in_last_packet == pipe->max_packet)) + transaction->stage = CVMX_USB_STAGE_NON_CONTROL; + else + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_OK); + } else { + if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && + (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) && + (usbc_hcint.s.nak)) + pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; + if (!buffer_space_left || + (bytes_in_last_packet < pipe->max_packet)) + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_OK); + } +} + +static void cvmx_usb_transfer_intr(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction *transaction, + int buffer_space_left, + int bytes_in_last_packet) +{ + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) { + transaction->stage = + CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; + } else if (buffer_space_left && + (bytes_in_last_packet == pipe->max_packet)) { + transaction->stage = CVMX_USB_STAGE_NON_CONTROL; + } else { + pipe->next_tx_frame += pipe->interval; + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_OK); + } + } else if (!buffer_space_left || + (bytes_in_last_packet < pipe->max_packet)) { + pipe->next_tx_frame += pipe->interval; + cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); + } +} + +static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb, + struct cvmx_usb_pipe *pipe, + struct cvmx_usb_transaction *transaction, + int buffer_space_left, + int bytes_in_last_packet, + int bytes_this_transfer) +{ + if (cvmx_usb_pipe_needs_split(usb, pipe)) { + /* + * ISOCHRONOUS OUT splits don't require a complete split stage. + * Instead they use a sequence of begin OUT splits to transfer + * the data 188 bytes at a time. Once the transfer is complete, + * the pipe sleeps until the next schedule interval. + */ + if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) { + /* + * If no space left or this wasn't a max size packet + * then this transfer is complete. Otherwise start it + * again to send the next 188 bytes + */ + if (!buffer_space_left || (bytes_this_transfer < 188)) { + pipe->next_tx_frame += pipe->interval; + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_OK); + } + return; + } + if (transaction->stage == + CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) { + /* + * We are in the incoming data phase. Keep getting data + * until we run out of space or get a small packet + */ + if ((buffer_space_left == 0) || + (bytes_in_last_packet < pipe->max_packet)) { + pipe->next_tx_frame += pipe->interval; + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_OK); + } + } else { + transaction->stage = + CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE; + } + } else { + pipe->next_tx_frame += pipe->interval; + cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK); + } +} + +/** + * Poll a channel for status + * + * @usb: USB device + * @channel: Channel to poll + * + * Returns: Zero on success + */ +static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel) +{ + struct usb_hcd *hcd = octeon_to_hcd(usb); + struct device *dev = hcd->self.controller; + union cvmx_usbcx_hcintx usbc_hcint; + union cvmx_usbcx_hctsizx usbc_hctsiz; + union cvmx_usbcx_hccharx usbc_hcchar; + struct cvmx_usb_pipe *pipe; + struct cvmx_usb_transaction *transaction; + int bytes_this_transfer; + int bytes_in_last_packet; + int packets_processed; + int buffer_space_left; + + /* Read the interrupt status bits for the channel */ + usbc_hcint.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCINTX(channel, usb->index)); + + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) { + usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCCHARX(channel, usb->index)); + + if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) { + /* + * There seems to be a bug in CN31XX which can cause + * interrupt IN transfers to get stuck until we do a + * write of HCCHARX without changing things + */ + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCCHARX(channel, + usb->index), + usbc_hcchar.u32); + return 0; + } + + /* + * In non DMA mode the channels don't halt themselves. We need + * to manually disable channels that are left running + */ + if (!usbc_hcint.s.chhltd) { + if (usbc_hcchar.s.chena) { + union cvmx_usbcx_hcintmskx hcintmsk; + /* Disable all interrupts except CHHLTD */ + hcintmsk.u32 = 0; + hcintmsk.s.chhltdmsk = 1; + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCINTMSKX(channel, usb->index), + hcintmsk.u32); + usbc_hcchar.s.chdis = 1; + cvmx_usb_write_csr32(usb, + CVMX_USBCX_HCCHARX(channel, usb->index), + usbc_hcchar.u32); + return 0; + } else if (usbc_hcint.s.xfercompl) { + /* + * Successful IN/OUT with transfer complete. + * Channel halt isn't needed. + */ + } else { + dev_err(dev, "USB%d: Channel %d interrupt without halt\n", + usb->index, channel); + return 0; + } + } + } else { + /* + * There is are no interrupts that we need to process when the + * channel is still running + */ + if (!usbc_hcint.s.chhltd) + return 0; + } + + /* Disable the channel interrupts now that it is done */ + cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0); + usb->idle_hardware_channels |= (1 << channel); + + /* Make sure this channel is tied to a valid pipe */ + pipe = usb->pipe_for_channel[channel]; + prefetch(pipe); + if (!pipe) + return 0; + transaction = list_first_entry(&pipe->transactions, + typeof(*transaction), + node); + prefetch(transaction); + + /* + * Disconnect this pipe from the HW channel. Later the schedule + * function will figure out which pipe needs to go + */ + usb->pipe_for_channel[channel] = NULL; + pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED; + + /* + * Read the channel config info so we can figure out how much data + * transferred + */ + usbc_hcchar.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCCHARX(channel, usb->index)); + usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HCTSIZX(channel, usb->index)); + + /* + * Calculating the number of bytes successfully transferred is dependent + * on the transfer direction + */ + packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt; + if (usbc_hcchar.s.epdir) { + /* + * IN transactions are easy. For every byte received the + * hardware decrements xfersize. All we need to do is subtract + * the current value of xfersize from its starting value and we + * know how many bytes were written to the buffer + */ + bytes_this_transfer = transaction->xfersize - + usbc_hctsiz.s.xfersize; + } else { + /* + * OUT transaction don't decrement xfersize. Instead pktcnt is + * decremented on every successful packet send. The hardware + * does this when it receives an ACK, or NYET. If it doesn't + * receive one of these responses pktcnt doesn't change + */ + bytes_this_transfer = packets_processed * usbc_hcchar.s.mps; + /* + * The last packet may not be a full transfer if we didn't have + * enough data + */ + if (bytes_this_transfer > transaction->xfersize) + bytes_this_transfer = transaction->xfersize; + } + /* Figure out how many bytes were in the last packet of the transfer */ + if (packets_processed) + bytes_in_last_packet = bytes_this_transfer - + (packets_processed - 1) * usbc_hcchar.s.mps; + else + bytes_in_last_packet = bytes_this_transfer; + + /* + * As a special case, setup transactions output the setup header, not + * the user's data. For this reason we don't count setup data as bytes + * transferred + */ + if ((transaction->stage == CVMX_USB_STAGE_SETUP) || + (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE)) + bytes_this_transfer = 0; + + /* + * Add the bytes transferred to the running total. It is important that + * bytes_this_transfer doesn't count any data that needs to be + * retransmitted + */ + transaction->actual_bytes += bytes_this_transfer; + if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS) + buffer_space_left = transaction->iso_packets[0].length - + transaction->actual_bytes; + else + buffer_space_left = transaction->buffer_length - + transaction->actual_bytes; + + /* + * We need to remember the PID toggle state for the next transaction. + * The hardware already updated it for the next transaction + */ + pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0); + + /* + * For high speed bulk out, assume the next transaction will need to do + * a ping before proceeding. If this isn't true the ACK processing below + * will clear this flag + */ + if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) && + (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) && + (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)) + pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING; + + if (WARN_ON_ONCE(bytes_this_transfer < 0)) { + /* + * In some rare cases the DMA engine seems to get stuck and + * keeps substracting same byte count over and over again. In + * such case we just need to fail every transaction. + */ + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_ERROR); + return 0; + } + + if (usbc_hcint.s.stall) { + /* + * STALL as a response means this transaction cannot be + * completed because the device can't process transactions. Tell + * the user. Any data that was transferred will be counted on + * the actual bytes transferred + */ + pipe->pid_toggle = 0; + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_STALL); + } else if (usbc_hcint.s.xacterr) { + /* + * XactErr as a response means the device signaled + * something wrong with the transfer. For example, PID + * toggle errors cause these. + */ + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_XACTERR); + } else if (usbc_hcint.s.bblerr) { + /* Babble Error (BblErr) */ + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_BABBLEERR); + } else if (usbc_hcint.s.datatglerr) { + /* Data toggle error */ + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_DATATGLERR); + } else if (usbc_hcint.s.nyet) { + /* + * NYET as a response is only allowed in three cases: as a + * response to a ping, as a response to a split transaction, and + * as a response to a bulk out. The ping case is handled by + * hardware, so we only have splits and bulk out + */ + if (!cvmx_usb_pipe_needs_split(usb, pipe)) { + transaction->retries = 0; + /* + * If there is more data to go then we need to try + * again. Otherwise this transaction is complete + */ + if ((buffer_space_left == 0) || + (bytes_in_last_packet < pipe->max_packet)) + cvmx_usb_complete(usb, pipe, + transaction, + CVMX_USB_STATUS_OK); + } else { + /* + * Split transactions retry the split complete 4 times + * then rewind to the start split and do the entire + * transactions again + */ + transaction->retries++; + if ((transaction->retries & 0x3) == 0) { + /* + * Rewind to the beginning of the transaction by + * anding off the split complete bit + */ + transaction->stage &= ~1; + pipe->split_sc_frame = -1; + } + } + } else if (usbc_hcint.s.ack) { + transaction->retries = 0; + /* + * The ACK bit can only be checked after the other error bits. + * This is because a multi packet transfer may succeed in a + * number of packets and then get a different response on the + * last packet. In this case both ACK and the last response bit + * will be set. If none of the other response bits is set, then + * the last packet must have been an ACK + * + * Since we got an ACK, we know we don't need to do a ping on + * this pipe + */ + pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING; + + switch (transaction->type) { + case CVMX_USB_TRANSFER_CONTROL: + cvmx_usb_transfer_control(usb, pipe, transaction, + usbc_hcchar, + buffer_space_left, + bytes_in_last_packet); + break; + case CVMX_USB_TRANSFER_BULK: + cvmx_usb_transfer_bulk(usb, pipe, transaction, + usbc_hcint, buffer_space_left, + bytes_in_last_packet); + break; + case CVMX_USB_TRANSFER_INTERRUPT: + cvmx_usb_transfer_intr(usb, pipe, transaction, + buffer_space_left, + bytes_in_last_packet); + break; + case CVMX_USB_TRANSFER_ISOCHRONOUS: + cvmx_usb_transfer_isoc(usb, pipe, transaction, + buffer_space_left, + bytes_in_last_packet, + bytes_this_transfer); + break; + } + } else if (usbc_hcint.s.nak) { + /* + * If this was a split then clear our split in progress marker. + */ + if (usb->active_split == transaction) + usb->active_split = NULL; + /* + * NAK as a response means the device couldn't accept the + * transaction, but it should be retried in the future. Rewind + * to the beginning of the transaction by anding off the split + * complete bit. Retry in the next interval + */ + transaction->retries = 0; + transaction->stage &= ~1; + pipe->next_tx_frame += pipe->interval; + if (pipe->next_tx_frame < usb->frame_number) + pipe->next_tx_frame = usb->frame_number + + pipe->interval - + (usb->frame_number - pipe->next_tx_frame) % + pipe->interval; + } else { + struct cvmx_usb_port_status port; + + port = cvmx_usb_get_status(usb); + if (port.port_enabled) { + /* We'll retry the exact same transaction again */ + transaction->retries++; + } else { + /* + * We get channel halted interrupts with no result bits + * sets when the cable is unplugged + */ + cvmx_usb_complete(usb, pipe, transaction, + CVMX_USB_STATUS_ERROR); + } + } + return 0; +} + +static void octeon_usb_port_callback(struct octeon_hcd *usb) +{ + spin_unlock(&usb->lock); + usb_hcd_poll_rh_status(octeon_to_hcd(usb)); + spin_lock(&usb->lock); +} + +/** + * Poll the USB block for status and call all needed callback + * handlers. This function is meant to be called in the interrupt + * handler for the USB controller. It can also be called + * periodically in a loop for non-interrupt based operation. + * + * @usb: USB device state populated by cvmx_usb_initialize(). + * + * Returns: 0 or a negative error code. + */ +static int cvmx_usb_poll(struct octeon_hcd *usb) +{ + union cvmx_usbcx_hfnum usbc_hfnum; + union cvmx_usbcx_gintsts usbc_gintsts; + + prefetch_range(usb, sizeof(*usb)); + + /* Update the frame counter */ + usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index)); + if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum) + usb->frame_number += 0x4000; + usb->frame_number &= ~0x3fffull; + usb->frame_number |= usbc_hfnum.s.frnum; + + /* Read the pending interrupts */ + usbc_gintsts.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_GINTSTS(usb->index)); + + /* Clear the interrupts now that we know about them */ + cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index), + usbc_gintsts.u32); + + if (usbc_gintsts.s.rxflvl) { + /* + * RxFIFO Non-Empty (RxFLvl) + * Indicates that there is at least one packet pending to be + * read from the RxFIFO. + * + * In DMA mode this is handled by hardware + */ + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) + cvmx_usb_poll_rx_fifo(usb); + } + if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) { + /* Fill the Tx FIFOs when not in DMA mode */ + if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) + cvmx_usb_poll_tx_fifo(usb); + } + if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) { + union cvmx_usbcx_hprt usbc_hprt; + /* + * Disconnect Detected Interrupt (DisconnInt) + * Asserted when a device disconnect is detected. + * + * Host Port Interrupt (PrtInt) + * The core sets this bit to indicate a change in port status of + * one of the O2P USB core ports in Host mode. The application + * must read the Host Port Control and Status (HPRT) register to + * determine the exact event that caused this interrupt. The + * application must clear the appropriate status bit in the Host + * Port Control and Status register to clear this bit. + * + * Call the user's port callback + */ + octeon_usb_port_callback(usb); + /* Clear the port change bits */ + usbc_hprt.u32 = + cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index)); + usbc_hprt.s.prtena = 0; + cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index), + usbc_hprt.u32); + } + if (usbc_gintsts.s.hchint) { + /* + * Host Channels Interrupt (HChInt) + * The core sets this bit to indicate that an interrupt is + * pending on one of the channels of the core (in Host mode). + * The application must read the Host All Channels Interrupt + * (HAINT) register to determine the exact number of the channel + * on which the interrupt occurred, and then read the + * corresponding Host Channel-n Interrupt (HCINTn) register to + * determine the exact cause of the interrupt. The application + * must clear the appropriate status bit in the HCINTn register + * to clear this bit. + */ + union cvmx_usbcx_haint usbc_haint; + + usbc_haint.u32 = cvmx_usb_read_csr32(usb, + CVMX_USBCX_HAINT(usb->index)); + while (usbc_haint.u32) { + int channel; + + channel = __fls(usbc_haint.u32); + cvmx_usb_poll_channel(usb, channel); + usbc_haint.u32 ^= 1 << channel; + } + } + + cvmx_usb_schedule(usb, usbc_gintsts.s.sof); + + return 0; +} + +/* convert between an HCD pointer and the corresponding struct octeon_hcd */ +static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd) +{ + return (struct octeon_hcd *)(hcd->hcd_priv); +} + +static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd) +{ + struct octeon_hcd *usb = hcd_to_octeon(hcd); + unsigned long flags; + + spin_lock_irqsave(&usb->lock, flags); + cvmx_usb_poll(usb); + spin_unlock_irqrestore(&usb->lock, flags); + return IRQ_HANDLED; +} + +static int octeon_usb_start(struct usb_hcd *hcd) +{ + hcd->state = HC_STATE_RUNNING; + return 0; +} + +static void octeon_usb_stop(struct usb_hcd *hcd) +{ + hcd->state = HC_STATE_HALT; +} + +static int octeon_usb_get_frame_number(struct usb_hcd *hcd) +{ + struct octeon_hcd *usb = hcd_to_octeon(hcd); + + return cvmx_usb_get_frame_number(usb); +} + +static int octeon_usb_urb_enqueue(struct usb_hcd *hcd, + struct urb *urb, + gfp_t mem_flags) +{ + struct octeon_hcd *usb = hcd_to_octeon(hcd); + struct device *dev = hcd->self.controller; + struct cvmx_usb_transaction *transaction = NULL; + struct cvmx_usb_pipe *pipe; + unsigned long flags; + struct cvmx_usb_iso_packet *iso_packet; + struct usb_host_endpoint *ep = urb->ep; + int rc; + + urb->status = 0; + spin_lock_irqsave(&usb->lock, flags); + + rc = usb_hcd_link_urb_to_ep(hcd, urb); + if (rc) { + spin_unlock_irqrestore(&usb->lock, flags); + return rc; + } + + if (!ep->hcpriv) { + enum cvmx_usb_transfer transfer_type; + enum cvmx_usb_speed speed; + int split_device = 0; + int split_port = 0; + + switch (usb_pipetype(urb->pipe)) { + case PIPE_ISOCHRONOUS: + transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS; + break; + case PIPE_INTERRUPT: + transfer_type = CVMX_USB_TRANSFER_INTERRUPT; + break; + case PIPE_CONTROL: + transfer_type = CVMX_USB_TRANSFER_CONTROL; + break; + default: + transfer_type = CVMX_USB_TRANSFER_BULK; + break; + } + switch (urb->dev->speed) { + case USB_SPEED_LOW: + speed = CVMX_USB_SPEED_LOW; + break; + case USB_SPEED_FULL: + speed = CVMX_USB_SPEED_FULL; + break; + default: + speed = CVMX_USB_SPEED_HIGH; + break; + } + /* + * For slow devices on high speed ports we need to find the hub + * that does the speed translation so we know where to send the + * split transactions. + */ + if (speed != CVMX_USB_SPEED_HIGH) { + /* + * Start at this device and work our way up the usb + * tree. + */ + struct usb_device *dev = urb->dev; + + while (dev->parent) { + /* + * If our parent is high speed then he'll + * receive the splits. + */ + if (dev->parent->speed == USB_SPEED_HIGH) { + split_device = dev->parent->devnum; + split_port = dev->portnum; + break; + } + /* + * Move up the tree one level. If we make it all + * the way up the tree, then the port must not + * be in high speed mode and we don't need a + * split. + */ + dev = dev->parent; + } + } + pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe), speed, + le16_to_cpu(ep->desc.wMaxPacketSize) + & 0x7ff, + transfer_type, + usb_pipein(urb->pipe) ? + CVMX_USB_DIRECTION_IN : + CVMX_USB_DIRECTION_OUT, + urb->interval, + (le16_to_cpu(ep->desc.wMaxPacketSize) + >> 11) & 0x3, + split_device, split_port); + if (!pipe) { + usb_hcd_unlink_urb_from_ep(hcd, urb); + spin_unlock_irqrestore(&usb->lock, flags); + dev_dbg(dev, "Failed to create pipe\n"); + return -ENOMEM; + } + ep->hcpriv = pipe; + } else { + pipe = ep->hcpriv; + } + + switch (usb_pipetype(urb->pipe)) { + case PIPE_ISOCHRONOUS: + dev_dbg(dev, "Submit isochronous to %d.%d\n", + usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe)); + /* + * Allocate a structure to use for our private list of + * isochronous packets. + */ + iso_packet = kmalloc_array(urb->number_of_packets, + sizeof(struct cvmx_usb_iso_packet), + GFP_ATOMIC); + if (iso_packet) { + int i; + /* Fill the list with the data from the URB */ + for (i = 0; i < urb->number_of_packets; i++) { + iso_packet[i].offset = + urb->iso_frame_desc[i].offset; + iso_packet[i].length = + urb->iso_frame_desc[i].length; + iso_packet[i].status = CVMX_USB_STATUS_ERROR; + } + /* + * Store a pointer to the list in the URB setup_packet + * field. We know this currently isn't being used and + * this saves us a bunch of logic. + */ + urb->setup_packet = (char *)iso_packet; + transaction = cvmx_usb_submit_isochronous(usb, + pipe, urb); + /* + * If submit failed we need to free our private packet + * list. + */ + if (!transaction) { + urb->setup_packet = NULL; + kfree(iso_packet); + } + } + break; + case PIPE_INTERRUPT: + dev_dbg(dev, "Submit interrupt to %d.%d\n", + usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe)); + transaction = cvmx_usb_submit_interrupt(usb, pipe, urb); + break; + case PIPE_CONTROL: + dev_dbg(dev, "Submit control to %d.%d\n", + usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe)); + transaction = cvmx_usb_submit_control(usb, pipe, urb); + break; + case PIPE_BULK: + dev_dbg(dev, "Submit bulk to %d.%d\n", + usb_pipedevice(urb->pipe), + usb_pipeendpoint(urb->pipe)); + transaction = cvmx_usb_submit_bulk(usb, pipe, urb); + break; + } + if (!transaction) { + usb_hcd_unlink_urb_from_ep(hcd, urb); + spin_unlock_irqrestore(&usb->lock, flags); + dev_dbg(dev, "Failed to submit\n"); + return -ENOMEM; + } + urb->hcpriv = transaction; + spin_unlock_irqrestore(&usb->lock, flags); + return 0; +} + +static int octeon_usb_urb_dequeue(struct usb_hcd *hcd, + struct urb *urb, + int status) +{ + struct octeon_hcd *usb = hcd_to_octeon(hcd); + unsigned long flags; + int rc; + + if (!urb->dev) + return -EINVAL; + + spin_lock_irqsave(&usb->lock, flags); + + rc = usb_hcd_check_unlink_urb(hcd, urb, status); + if (rc) + goto out; + + urb->status = status; + cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv); + +out: + spin_unlock_irqrestore(&usb->lock, flags); + + return rc; +} + +static void octeon_usb_endpoint_disable(struct usb_hcd *hcd, + struct usb_host_endpoint *ep) +{ + struct device *dev = hcd->self.controller; + + if (ep->hcpriv) { + struct octeon_hcd *usb = hcd_to_octeon(hcd); + struct cvmx_usb_pipe *pipe = ep->hcpriv; + unsigned long flags; + + spin_lock_irqsave(&usb->lock, flags); + cvmx_usb_cancel_all(usb, pipe); + if (cvmx_usb_close_pipe(usb, pipe)) + dev_dbg(dev, "Closing pipe %p failed\n", pipe); + spin_unlock_irqrestore(&usb->lock, flags); + ep->hcpriv = NULL; + } +} + +static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf) +{ + struct octeon_hcd *usb = hcd_to_octeon(hcd); + struct cvmx_usb_port_status port_status; + unsigned long flags; + + spin_lock_irqsave(&usb->lock, flags); + port_status = cvmx_usb_get_status(usb); + spin_unlock_irqrestore(&usb->lock, flags); + buf[0] = port_status.connect_change << 1; + + return buf[0] != 0; +} + +static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, + u16 wIndex, char *buf, u16 wLength) +{ + struct octeon_hcd *usb = hcd_to_octeon(hcd); + struct device *dev = hcd->self.controller; + struct cvmx_usb_port_status usb_port_status; + int port_status; + struct usb_hub_descriptor *desc; + unsigned long flags; + + switch (typeReq) { + case ClearHubFeature: + dev_dbg(dev, "ClearHubFeature\n"); + switch (wValue) { + case C_HUB_LOCAL_POWER: + case C_HUB_OVER_CURRENT: + /* Nothing required here */ + break; + default: + return -EINVAL; + } + break; + case ClearPortFeature: + dev_dbg(dev, "ClearPortFeature\n"); + if (wIndex != 1) { + dev_dbg(dev, " INVALID\n"); + return -EINVAL; + } + + switch (wValue) { + case USB_PORT_FEAT_ENABLE: + dev_dbg(dev, " ENABLE\n"); + spin_lock_irqsave(&usb->lock, flags); + cvmx_usb_disable(usb); + spin_unlock_irqrestore(&usb->lock, flags); + break; + case USB_PORT_FEAT_SUSPEND: + dev_dbg(dev, " SUSPEND\n"); + /* Not supported on Octeon */ + break; + case USB_PORT_FEAT_POWER: + dev_dbg(dev, " POWER\n"); + /* Not supported on Octeon */ + break; + case USB_PORT_FEAT_INDICATOR: + dev_dbg(dev, " INDICATOR\n"); + /* Port inidicator not supported */ + break; + case USB_PORT_FEAT_C_CONNECTION: + dev_dbg(dev, " C_CONNECTION\n"); + /* Clears drivers internal connect status change flag */ + spin_lock_irqsave(&usb->lock, flags); + usb->port_status = cvmx_usb_get_status(usb); + spin_unlock_irqrestore(&usb->lock, flags); + break; + case USB_PORT_FEAT_C_RESET: + dev_dbg(dev, " C_RESET\n"); + /* + * Clears the driver's internal Port Reset Change flag. + */ + spin_lock_irqsave(&usb->lock, flags); + usb->port_status = cvmx_usb_get_status(usb); + spin_unlock_irqrestore(&usb->lock, flags); + break; + case USB_PORT_FEAT_C_ENABLE: + dev_dbg(dev, " C_ENABLE\n"); + /* + * Clears the driver's internal Port Enable/Disable + * Change flag. + */ + spin_lock_irqsave(&usb->lock, flags); + usb->port_status = cvmx_usb_get_status(usb); + spin_unlock_irqrestore(&usb->lock, flags); + break; + case USB_PORT_FEAT_C_SUSPEND: + dev_dbg(dev, " C_SUSPEND\n"); + /* + * Clears the driver's internal Port Suspend Change + * flag, which is set when resume signaling on the host + * port is complete. + */ + break; + case USB_PORT_FEAT_C_OVER_CURRENT: + dev_dbg(dev, " C_OVER_CURRENT\n"); + /* Clears the driver's overcurrent Change flag */ + spin_lock_irqsave(&usb->lock, flags); + usb->port_status = cvmx_usb_get_status(usb); + spin_unlock_irqrestore(&usb->lock, flags); + break; + default: + dev_dbg(dev, " UNKNOWN\n"); + return -EINVAL; + } + break; + case GetHubDescriptor: + dev_dbg(dev, "GetHubDescriptor\n"); + desc = (struct usb_hub_descriptor *)buf; + desc->bDescLength = 9; + desc->bDescriptorType = 0x29; + desc->bNbrPorts = 1; + desc->wHubCharacteristics = cpu_to_le16(0x08); + desc->bPwrOn2PwrGood = 1; + desc->bHubContrCurrent = 0; + desc->u.hs.DeviceRemovable[0] = 0; + desc->u.hs.DeviceRemovable[1] = 0xff; + break; + case GetHubStatus: + dev_dbg(dev, "GetHubStatus\n"); + *(__le32 *)buf = 0; + break; + case GetPortStatus: + dev_dbg(dev, "GetPortStatus\n"); + if (wIndex != 1) { + dev_dbg(dev, " INVALID\n"); + return -EINVAL; + } + + spin_lock_irqsave(&usb->lock, flags); + usb_port_status = cvmx_usb_get_status(usb); + spin_unlock_irqrestore(&usb->lock, flags); + port_status = 0; + + if (usb_port_status.connect_change) { + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION); + dev_dbg(dev, " C_CONNECTION\n"); + } + + if (usb_port_status.port_enabled) { + port_status |= (1 << USB_PORT_FEAT_C_ENABLE); + dev_dbg(dev, " C_ENABLE\n"); + } + + if (usb_port_status.connected) { + port_status |= (1 << USB_PORT_FEAT_CONNECTION); + dev_dbg(dev, " CONNECTION\n"); + } + + if (usb_port_status.port_enabled) { + port_status |= (1 << USB_PORT_FEAT_ENABLE); + dev_dbg(dev, " ENABLE\n"); + } + + if (usb_port_status.port_over_current) { + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT); + dev_dbg(dev, " OVER_CURRENT\n"); + } + + if (usb_port_status.port_powered) { + port_status |= (1 << USB_PORT_FEAT_POWER); + dev_dbg(dev, " POWER\n"); + } + + if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) { + port_status |= USB_PORT_STAT_HIGH_SPEED; + dev_dbg(dev, " HIGHSPEED\n"); + } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) { + port_status |= (1 << USB_PORT_FEAT_LOWSPEED); + dev_dbg(dev, " LOWSPEED\n"); + } + + *((__le32 *)buf) = cpu_to_le32(port_status); + break; + case SetHubFeature: + dev_dbg(dev, "SetHubFeature\n"); + /* No HUB features supported */ + break; + case SetPortFeature: + dev_dbg(dev, "SetPortFeature\n"); + if (wIndex != 1) { + dev_dbg(dev, " INVALID\n"); + return -EINVAL; + } + + switch (wValue) { + case USB_PORT_FEAT_SUSPEND: + dev_dbg(dev, " SUSPEND\n"); + return -EINVAL; + case USB_PORT_FEAT_POWER: + dev_dbg(dev, " POWER\n"); + /* + * Program the port power bit to drive VBUS on the USB. + */ + spin_lock_irqsave(&usb->lock, flags); + USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), + cvmx_usbcx_hprt, prtpwr, 1); + spin_unlock_irqrestore(&usb->lock, flags); + return 0; + case USB_PORT_FEAT_RESET: + dev_dbg(dev, " RESET\n"); + spin_lock_irqsave(&usb->lock, flags); + cvmx_usb_reset_port(usb); + spin_unlock_irqrestore(&usb->lock, flags); + return 0; + case USB_PORT_FEAT_INDICATOR: + dev_dbg(dev, " INDICATOR\n"); + /* Not supported */ + break; + default: + dev_dbg(dev, " UNKNOWN\n"); + return -EINVAL; + } + break; + default: + dev_dbg(dev, "Unknown root hub request\n"); + return -EINVAL; + } + return 0; +} + +static const struct hc_driver octeon_hc_driver = { + .description = "Octeon USB", + .product_desc = "Octeon Host Controller", + .hcd_priv_size = sizeof(struct octeon_hcd), + .irq = octeon_usb_irq, + .flags = HCD_MEMORY | HCD_DMA | HCD_USB2, + .start = octeon_usb_start, + .stop = octeon_usb_stop, + .urb_enqueue = octeon_usb_urb_enqueue, + .urb_dequeue = octeon_usb_urb_dequeue, + .endpoint_disable = octeon_usb_endpoint_disable, + .get_frame_number = octeon_usb_get_frame_number, + .hub_status_data = octeon_usb_hub_status_data, + .hub_control = octeon_usb_hub_control, + .map_urb_for_dma = octeon_map_urb_for_dma, + .unmap_urb_for_dma = octeon_unmap_urb_for_dma, +}; + +static int octeon_usb_probe(struct platform_device *pdev) +{ + int status; + int initialize_flags; + int usb_num; + struct resource *res_mem; + struct device_node *usbn_node; + int irq = platform_get_irq(pdev, 0); + struct device *dev = &pdev->dev; + struct octeon_hcd *usb; + struct usb_hcd *hcd; + u32 clock_rate = 48000000; + bool is_crystal_clock = false; + const char *clock_type; + int i; + + if (!dev->of_node) { + dev_err(dev, "Error: empty of_node\n"); + return -ENXIO; + } + usbn_node = dev->of_node->parent; + + i = of_property_read_u32(usbn_node, + "clock-frequency", &clock_rate); + if (i) + i = of_property_read_u32(usbn_node, + "refclk-frequency", &clock_rate); + if (i) { + dev_err(dev, "No USBN \"clock-frequency\"\n"); + return -ENXIO; + } + switch (clock_rate) { + case 12000000: + initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ; + break; + case 24000000: + initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ; + break; + case 48000000: + initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ; + break; + default: + dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n", + clock_rate); + return -ENXIO; + } + + i = of_property_read_string(usbn_node, + "cavium,refclk-type", &clock_type); + if (i) + i = of_property_read_string(usbn_node, + "refclk-type", &clock_type); + + if (!i && strcmp("crystal", clock_type) == 0) + is_crystal_clock = true; + + if (is_crystal_clock) + initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI; + else + initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND; + + res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); + if (!res_mem) { + dev_err(dev, "found no memory resource\n"); + return -ENXIO; + } + usb_num = (res_mem->start >> 44) & 1; + + if (irq < 0) { + /* Defective device tree, but we know how to fix it. */ + irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56; + + irq = irq_create_mapping(NULL, hwirq); + } + + /* + * Set the DMA mask to 64bits so we get buffers already translated for + * DMA. + */ + i = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(64)); + if (i) + return i; + + /* + * Only cn52XX and cn56XX have DWC_OTG USB hardware and the + * IOB priority registers. Under heavy network load USB + * hardware can be starved by the IOB causing a crash. Give + * it a priority boost if it has been waiting more than 400 + * cycles to avoid this situation. + * + * Testing indicates that a cnt_val of 8192 is not sufficient, + * but no failures are seen with 4096. We choose a value of + * 400 to give a safety factor of 10. + */ + if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) { + union cvmx_iob_n2c_l2c_pri_cnt pri_cnt; + + pri_cnt.u64 = 0; + pri_cnt.s.cnt_enb = 1; + pri_cnt.s.cnt_val = 400; + cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64); + } + + hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev)); + if (!hcd) { + dev_dbg(dev, "Failed to allocate memory for HCD\n"); + return -1; + } + hcd->uses_new_polling = 1; + usb = (struct octeon_hcd *)hcd->hcd_priv; + + spin_lock_init(&usb->lock); + + usb->init_flags = initialize_flags; + + /* Initialize the USB state structure */ + usb->index = usb_num; + INIT_LIST_HEAD(&usb->idle_pipes); + for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++) + INIT_LIST_HEAD(&usb->active_pipes[i]); + + /* Due to an errata, CN31XX doesn't support DMA */ + if (OCTEON_IS_MODEL(OCTEON_CN31XX)) { + usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA; + /* Only use one channel with non DMA */ + usb->idle_hardware_channels = 0x1; + } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) { + /* CN5XXX have an errata with channel 3 */ + usb->idle_hardware_channels = 0xf7; + } else { + usb->idle_hardware_channels = 0xff; + } + + status = cvmx_usb_initialize(dev, usb); + if (status) { + dev_dbg(dev, "USB initialization failed with %d\n", status); + usb_put_hcd(hcd); + return -1; + } + + status = usb_add_hcd(hcd, irq, 0); + if (status) { + dev_dbg(dev, "USB add HCD failed with %d\n", status); + usb_put_hcd(hcd); + return -1; + } + device_wakeup_enable(hcd->self.controller); + + dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq); + + return 0; +} + +static int octeon_usb_remove(struct platform_device *pdev) +{ + int status; + struct device *dev = &pdev->dev; + struct usb_hcd *hcd = dev_get_drvdata(dev); + struct octeon_hcd *usb = hcd_to_octeon(hcd); + unsigned long flags; + + usb_remove_hcd(hcd); + spin_lock_irqsave(&usb->lock, flags); + status = cvmx_usb_shutdown(usb); + spin_unlock_irqrestore(&usb->lock, flags); + if (status) + dev_dbg(dev, "USB shutdown failed with %d\n", status); + + usb_put_hcd(hcd); + + return 0; +} + +static const struct of_device_id octeon_usb_match[] = { + { + .compatible = "cavium,octeon-5750-usbc", + }, + {}, +}; +MODULE_DEVICE_TABLE(of, octeon_usb_match); + +static struct platform_driver octeon_usb_driver = { + .driver = { + .name = "octeon-hcd", + .of_match_table = octeon_usb_match, + }, + .probe = octeon_usb_probe, + .remove = octeon_usb_remove, +}; + +static int __init octeon_usb_driver_init(void) +{ + if (usb_disabled()) + return 0; + + return platform_driver_register(&octeon_usb_driver); +} +module_init(octeon_usb_driver_init); + +static void __exit octeon_usb_driver_exit(void) +{ + if (usb_disabled()) + return; + + platform_driver_unregister(&octeon_usb_driver); +} +module_exit(octeon_usb_driver_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Cavium, Inc. <support@xxxxxxxxxx>"); +MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver."); diff --git a/drivers/staging/octeon-usb/octeon-hcd.h b/drivers/staging/octeon-usb/octeon-hcd.h new file mode 100644 index 000000000000..9ed619c93a4e --- /dev/null +++ b/drivers/staging/octeon-usb/octeon-hcd.h @@ -0,0 +1,1847 @@ +/* SPDX-License-Identifier: GPL-2.0 */ +/* + * Octeon HCD hardware register definitions. + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file "COPYING" in the main directory of this archive + * for more details. + * + * Some parts of the code were originally released under BSD license: + * + * Copyright (c) 2003-2010 Cavium Networks (support@xxxxxxxxxx). All rights + * reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * + * * Neither the name of Cavium Networks nor the names of + * its contributors may be used to endorse or promote products + * derived from this software without specific prior written + * permission. + * + * This Software, including technical data, may be subject to U.S. export + * control laws, including the U.S. Export Administration Act and its associated + * regulations, and may be subject to export or import regulations in other + * countries. + * + * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS" + * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR + * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO + * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION + * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM + * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE, + * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF + * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR + * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR + * PERFORMANCE OF THE SOFTWARE LIES WITH YOU. + */ + +#ifndef __OCTEON_HCD_H__ +#define __OCTEON_HCD_H__ + +#include <asm/bitfield.h> + +#define CVMX_USBCXBASE 0x00016F0010000000ull +#define CVMX_USBCXREG1(reg, bid) \ + (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \ + ((bid) & 1) * 0x100000000000ull) +#define CVMX_USBCXREG2(reg, bid, off) \ + (CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \ + (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32) + +#define CVMX_USBCX_GAHBCFG(bid) CVMX_USBCXREG1(0x008, bid) +#define CVMX_USBCX_GHWCFG3(bid) CVMX_USBCXREG1(0x04c, bid) +#define CVMX_USBCX_GINTMSK(bid) CVMX_USBCXREG1(0x018, bid) +#define CVMX_USBCX_GINTSTS(bid) CVMX_USBCXREG1(0x014, bid) +#define CVMX_USBCX_GNPTXFSIZ(bid) CVMX_USBCXREG1(0x028, bid) +#define CVMX_USBCX_GNPTXSTS(bid) CVMX_USBCXREG1(0x02c, bid) +#define CVMX_USBCX_GOTGCTL(bid) CVMX_USBCXREG1(0x000, bid) +#define CVMX_USBCX_GRSTCTL(bid) CVMX_USBCXREG1(0x010, bid) +#define CVMX_USBCX_GRXFSIZ(bid) CVMX_USBCXREG1(0x024, bid) +#define CVMX_USBCX_GRXSTSPH(bid) CVMX_USBCXREG1(0x020, bid) +#define CVMX_USBCX_GUSBCFG(bid) CVMX_USBCXREG1(0x00c, bid) +#define CVMX_USBCX_HAINT(bid) CVMX_USBCXREG1(0x414, bid) +#define CVMX_USBCX_HAINTMSK(bid) CVMX_USBCXREG1(0x418, bid) +#define CVMX_USBCX_HCCHARX(off, bid) CVMX_USBCXREG2(0x500, bid, off) +#define CVMX_USBCX_HCFG(bid) CVMX_USBCXREG1(0x400, bid) +#define CVMX_USBCX_HCINTMSKX(off, bid) CVMX_USBCXREG2(0x50c, bid, off) +#define CVMX_USBCX_HCINTX(off, bid) CVMX_USBCXREG2(0x508, bid, off) +#define CVMX_USBCX_HCSPLTX(off, bid) CVMX_USBCXREG2(0x504, bid, off) +#define CVMX_USBCX_HCTSIZX(off, bid) CVMX_USBCXREG2(0x510, bid, off) +#define CVMX_USBCX_HFIR(bid) CVMX_USBCXREG1(0x404, bid) +#define CVMX_USBCX_HFNUM(bid) CVMX_USBCXREG1(0x408, bid) +#define CVMX_USBCX_HPRT(bid) CVMX_USBCXREG1(0x440, bid) +#define CVMX_USBCX_HPTXFSIZ(bid) CVMX_USBCXREG1(0x100, bid) +#define CVMX_USBCX_HPTXSTS(bid) CVMX_USBCXREG1(0x410, bid) + +#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull) +#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull) + +#define CVMX_USBNXREG1(reg, bid) \ + (CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid)) +#define CVMX_USBNXREG2(reg, bid) \ + (CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid)) + +#define CVMX_USBNX_CLK_CTL(bid) CVMX_USBNXREG1(0x10, bid) +#define CVMX_USBNX_DMA0_INB_CHN0(bid) CVMX_USBNXREG2(0x818, bid) +#define CVMX_USBNX_DMA0_OUTB_CHN0(bid) CVMX_USBNXREG2(0x858, bid) +#define CVMX_USBNX_USBP_CTL_STATUS(bid) CVMX_USBNXREG1(0x18, bid) + +/** + * cvmx_usbc#_gahbcfg + * + * Core AHB Configuration Register (GAHBCFG) + * + * This register can be used to configure the core after power-on or a change in + * mode of operation. This register mainly contains AHB system-related + * configuration parameters. The AHB is the processor interface to the O2P USB + * core. In general, software need not know about this interface except to + * program the values as specified. + * + * The application must program this register as part of the O2P USB core + * initialization. Do not change this register after the initial programming. + */ +union cvmx_usbcx_gahbcfg { + u32 u32; + /** + * struct cvmx_usbcx_gahbcfg_s + * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl) + * Software should set this bit to 0x1. + * Indicates when the Periodic TxFIFO Empty Interrupt bit in the + * Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This + * bit is used only in Slave mode. + * * 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic + * TxFIFO is half empty + * * 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic + * TxFIFO is completely empty + * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl) + * Software should set this bit to 0x1. + * Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in + * the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered. + * This bit is used only in Slave mode. + * * 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non- + * Periodic TxFIFO is half empty + * * 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non- + * Periodic TxFIFO is completely empty + * @dmaen: DMA Enable (DMAEn) + * * 1'b0: Core operates in Slave mode + * * 1'b1: Core operates in a DMA mode + * @hbstlen: Burst Length/Type (HBstLen) + * This field has not effect and should be left as 0x0. + * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk) + * Software should set this field to 0x1. + * The application uses this bit to mask or unmask the interrupt + * line assertion to itself. Irrespective of this bit's setting, + * the interrupt status registers are updated by the core. + * * 1'b0: Mask the interrupt assertion to the application. + * * 1'b1: Unmask the interrupt assertion to the application. + */ + struct cvmx_usbcx_gahbcfg_s { + __BITFIELD_FIELD(u32 reserved_9_31 : 23, + __BITFIELD_FIELD(u32 ptxfemplvl : 1, + __BITFIELD_FIELD(u32 nptxfemplvl : 1, + __BITFIELD_FIELD(u32 reserved_6_6 : 1, + __BITFIELD_FIELD(u32 dmaen : 1, + __BITFIELD_FIELD(u32 hbstlen : 4, + __BITFIELD_FIELD(u32 glblintrmsk : 1, + ;))))))) + } s; +}; + +/** + * cvmx_usbc#_ghwcfg3 + * + * User HW Config3 Register (GHWCFG3) + * + * This register contains the configuration options of the O2P USB core. + */ +union cvmx_usbcx_ghwcfg3 { + u32 u32; + /** + * struct cvmx_usbcx_ghwcfg3_s + * @dfifodepth: DFIFO Depth (DfifoDepth) + * This value is in terms of 32-bit words. + * * Minimum value is 32 + * * Maximum value is 32768 + * @ahbphysync: AHB and PHY Synchronous (AhbPhySync) + * Indicates whether AHB and PHY clocks are synchronous to + * each other. + * * 1'b0: No + * * 1'b1: Yes + * This bit is tied to 1. + * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType) + * * 1'b0: Asynchronous reset is used in the core + * * 1'b1: Synchronous reset is used in the core + * @optfeature: Optional Features Removed (OptFeature) + * Indicates whether the User ID register, GPIO interface ports, + * and SOF toggle and counter ports were removed for gate count + * optimization. + * @vendor_control_interface_support: Vendor Control Interface Support + * * 1'b0: Vendor Control Interface is not available on the core. + * * 1'b1: Vendor Control Interface is available. + * @i2c_selection: I2C Selection + * * 1'b0: I2C Interface is not available on the core. + * * 1'b1: I2C Interface is available on the core. + * @otgen: OTG Function Enabled (OtgEn) + * The application uses this bit to indicate the O2P USB core's + * OTG capabilities. + * * 1'b0: Not OTG capable + * * 1'b1: OTG Capable + * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth) + * * 3'b000: 4 bits + * * 3'b001: 5 bits + * * 3'b010: 6 bits + * * 3'b011: 7 bits + * * 3'b100: 8 bits + * * 3'b101: 9 bits + * * 3'b110: 10 bits + * * Others: Reserved + * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth) + * * 4'b0000: 11 bits + * * 4'b0001: 12 bits + * - ... + * * 4'b1000: 19 bits + * * Others: Reserved + */ + struct cvmx_usbcx_ghwcfg3_s { + __BITFIELD_FIELD(u32 dfifodepth : 16, + __BITFIELD_FIELD(u32 reserved_13_15 : 3, + __BITFIELD_FIELD(u32 ahbphysync : 1, + __BITFIELD_FIELD(u32 rsttype : 1, + __BITFIELD_FIELD(u32 optfeature : 1, + __BITFIELD_FIELD(u32 vendor_control_interface_support : 1, + __BITFIELD_FIELD(u32 i2c_selection : 1, + __BITFIELD_FIELD(u32 otgen : 1, + __BITFIELD_FIELD(u32 pktsizewidth : 3, + __BITFIELD_FIELD(u32 xfersizewidth : 4, + ;)))))))))) + } s; +}; + +/** + * cvmx_usbc#_gintmsk + * + * Core Interrupt Mask Register (GINTMSK) + * + * This register works with the Core Interrupt register to interrupt the + * application. When an interrupt bit is masked, the interrupt associated with + * that bit will not be generated. However, the Core Interrupt (GINTSTS) + * register bit corresponding to that interrupt will still be set. + * Mask interrupt: 1'b0, Unmask interrupt: 1'b1 + */ +union cvmx_usbcx_gintmsk { + u32 u32; + /** + * struct cvmx_usbcx_gintmsk_s + * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask + * (WkUpIntMsk) + * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask + * (SessReqIntMsk) + * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk) + * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk) + * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk) + * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk) + * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk) + * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk) + * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk) + * Incomplete Isochronous OUT Transfer Mask + * (incompISOOUTMsk) + * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask + * (incompISOINMsk) + * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk) + * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk) + * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk) + * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk) + * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask + * (ISOOutDropMsk) + * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk) + * @usbrstmsk: USB Reset Mask (USBRstMsk) + * @usbsuspmsk: USB Suspend Mask (USBSuspMsk) + * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk) + * @i2cint: I2C Interrupt Mask (I2CINT) + * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk) + * I2C Carkit Interrupt Mask (I2CCKINTMsk) + * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk) + * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask + * (GINNakEffMsk) + * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk) + * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk) + * @sofmsk: Start of (micro)Frame Mask (SofMsk) + * @otgintmsk: OTG Interrupt Mask (OTGIntMsk) + * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk) + */ + struct cvmx_usbcx_gintmsk_s { + __BITFIELD_FIELD(u32 wkupintmsk : 1, + __BITFIELD_FIELD(u32 sessreqintmsk : 1, + __BITFIELD_FIELD(u32 disconnintmsk : 1, + __BITFIELD_FIELD(u32 conidstschngmsk : 1, + __BITFIELD_FIELD(u32 reserved_27_27 : 1, + __BITFIELD_FIELD(u32 ptxfempmsk : 1, + __BITFIELD_FIELD(u32 hchintmsk : 1, + __BITFIELD_FIELD(u32 prtintmsk : 1, + __BITFIELD_FIELD(u32 reserved_23_23 : 1, + __BITFIELD_FIELD(u32 fetsuspmsk : 1, + __BITFIELD_FIELD(u32 incomplpmsk : 1, + __BITFIELD_FIELD(u32 incompisoinmsk : 1, + __BITFIELD_FIELD(u32 oepintmsk : 1, + __BITFIELD_FIELD(u32 inepintmsk : 1, + __BITFIELD_FIELD(u32 epmismsk : 1, + __BITFIELD_FIELD(u32 reserved_16_16 : 1, + __BITFIELD_FIELD(u32 eopfmsk : 1, + __BITFIELD_FIELD(u32 isooutdropmsk : 1, + __BITFIELD_FIELD(u32 enumdonemsk : 1, + __BITFIELD_FIELD(u32 usbrstmsk : 1, + __BITFIELD_FIELD(u32 usbsuspmsk : 1, + __BITFIELD_FIELD(u32 erlysuspmsk : 1, + __BITFIELD_FIELD(u32 i2cint : 1, + __BITFIELD_FIELD(u32 ulpickintmsk : 1, + __BITFIELD_FIELD(u32 goutnakeffmsk : 1, + __BITFIELD_FIELD(u32 ginnakeffmsk : 1, + __BITFIELD_FIELD(u32 nptxfempmsk : 1, + __BITFIELD_FIELD(u32 rxflvlmsk : 1, + __BITFIELD_FIELD(u32 sofmsk : 1, + __BITFIELD_FIELD(u32 otgintmsk : 1, + __BITFIELD_FIELD(u32 modemismsk : 1, + __BITFIELD_FIELD(u32 reserved_0_0 : 1, + ;)))))))))))))))))))))))))))))))) + } s; +}; + +/** + * cvmx_usbc#_gintsts + * + * Core Interrupt Register (GINTSTS) + * + * This register interrupts the application for system-level events in the + * current mode of operation (Device mode or Host mode). It is shown in + * Interrupt. Some of the bits in this register are valid only in Host mode, + * while others are valid in Device mode only. This register also indicates the + * current mode of operation. In order to clear the interrupt status bits of + * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status + * interrupts are read only; once software reads from or writes to the FIFO + * while servicing these interrupts, FIFO interrupt conditions are cleared + * automatically. + */ +union cvmx_usbcx_gintsts { + u32 u32; + /** + * struct cvmx_usbcx_gintsts_s + * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt) + * In Device mode, this interrupt is asserted when a resume is + * detected on the USB. In Host mode, this interrupt is asserted + * when a remote wakeup is detected on the USB. + * For more information on how to use this interrupt, see "Partial + * Power-Down and Clock Gating Programming Model" on + * page 353. + * @sessreqint: Session Request/New Session Detected Interrupt + * (SessReqInt) + * In Host mode, this interrupt is asserted when a session request + * is detected from the device. In Device mode, this interrupt is + * asserted when the utmiotg_bvalid signal goes high. + * For more information on how to use this interrupt, see "Partial + * Power-Down and Clock Gating Programming Model" on + * page 353. + * @disconnint: Disconnect Detected Interrupt (DisconnInt) + * Asserted when a device disconnect is detected. + * @conidstschng: Connector ID Status Change (ConIDStsChng) + * The core sets this bit when there is a change in connector ID + * status. + * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp) + * Asserted when the Periodic Transmit FIFO is either half or + * completely empty and there is space for at least one entry to be + * written in the Periodic Request Queue. The half or completely + * empty status is determined by the Periodic TxFIFO Empty Level + * bit in the Core AHB Configuration register + * (GAHBCFG.PTxFEmpLvl). + * @hchint: Host Channels Interrupt (HChInt) + * The core sets this bit to indicate that an interrupt is pending + * on one of the channels of the core (in Host mode). The + * application must read the Host All Channels Interrupt (HAINT) + * register to determine the exact number of the channel on which + * the interrupt occurred, and then read the corresponding Host + * Channel-n Interrupt (HCINTn) register to determine the exact + * cause of the interrupt. The application must clear the + * appropriate status bit in the HCINTn register to clear this bit. + * @prtint: Host Port Interrupt (PrtInt) + * The core sets this bit to indicate a change in port status of + * one of the O2P USB core ports in Host mode. The application must + * read the Host Port Control and Status (HPRT) register to + * determine the exact event that caused this interrupt. The + * application must clear the appropriate status bit in the Host + * Port Control and Status register to clear this bit. + * @fetsusp: Data Fetch Suspended (FetSusp) + * This interrupt is valid only in DMA mode. This interrupt + * indicates that the core has stopped fetching data for IN + * endpoints due to the unavailability of TxFIFO space or Request + * Queue space. This interrupt is used by the application for an + * endpoint mismatch algorithm. + * @incomplp: Incomplete Periodic Transfer (incomplP) + * In Host mode, the core sets this interrupt bit when there are + * incomplete periodic transactions still pending which are + * scheduled for the current microframe. + * Incomplete Isochronous OUT Transfer (incompISOOUT) + * The Device mode, the core sets this interrupt to indicate that + * there is at least one isochronous OUT endpoint on which the + * transfer is not completed in the current microframe. This + * interrupt is asserted along with the End of Periodic Frame + * Interrupt (EOPF) bit in this register. + * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN) + * The core sets this interrupt to indicate that there is at least + * one isochronous IN endpoint on which the transfer is not + * completed in the current microframe. This interrupt is asserted + * along with the End of Periodic Frame Interrupt (EOPF) bit in + * this register. + * @oepint: OUT Endpoints Interrupt (OEPInt) + * The core sets this bit to indicate that an interrupt is pending + * on one of the OUT endpoints of the core (in Device mode). The + * application must read the Device All Endpoints Interrupt + * (DAINT) register to determine the exact number of the OUT + * endpoint on which the interrupt occurred, and then read the + * corresponding Device OUT Endpoint-n Interrupt (DOEPINTn) + * register to determine the exact cause of the interrupt. The + * application must clear the appropriate status bit in the + * corresponding DOEPINTn register to clear this bit. + * @iepint: IN Endpoints Interrupt (IEPInt) + * The core sets this bit to indicate that an interrupt is pending + * on one of the IN endpoints of the core (in Device mode). The + * application must read the Device All Endpoints Interrupt + * (DAINT) register to determine the exact number of the IN + * endpoint on which the interrupt occurred, and then read the + * corresponding Device IN Endpoint-n Interrupt (DIEPINTn) + * register to determine the exact cause of the interrupt. The + * application must clear the appropriate status bit in the + * corresponding DIEPINTn register to clear this bit. + * @epmis: Endpoint Mismatch Interrupt (EPMis) + * Indicates that an IN token has been received for a non-periodic + * endpoint, but the data for another endpoint is present in the + * top of the Non-Periodic Transmit FIFO and the IN endpoint + * mismatch count programmed by the application has expired. + * @eopf: End of Periodic Frame Interrupt (EOPF) + * Indicates that the period specified in the Periodic Frame + * Interval field of the Device Configuration register + * (DCFG.PerFrInt) has been reached in the current microframe. + * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop) + * The core sets this bit when it fails to write an isochronous OUT + * packet into the RxFIFO because the RxFIFO doesn't have + * enough space to accommodate a maximum packet size packet + * for the isochronous OUT endpoint. + * @enumdone: Enumeration Done (EnumDone) + * The core sets this bit to indicate that speed enumeration is + * complete. The application must read the Device Status (DSTS) + * register to obtain the enumerated speed. + * @usbrst: USB Reset (USBRst) + * The core sets this bit to indicate that a reset is detected on + * the USB. + * @usbsusp: USB Suspend (USBSusp) + * The core sets this bit to indicate that a suspend was detected + * on the USB. The core enters the Suspended state when there + * is no activity on the phy_line_state_i signal for an extended + * period of time. + * @erlysusp: Early Suspend (ErlySusp) + * The core sets this bit to indicate that an Idle state has been + * detected on the USB for 3 ms. + * @i2cint: I2C Interrupt (I2CINT) + * This bit is always 0x0. + * @ulpickint: ULPI Carkit Interrupt (ULPICKINT) + * This bit is always 0x0. + * @goutnakeff: Global OUT NAK Effective (GOUTNakEff) + * Indicates that the Set Global OUT NAK bit in the Device Control + * register (DCTL.SGOUTNak), set by the application, has taken + * effect in the core. This bit can be cleared by writing the Clear + * Global OUT NAK bit in the Device Control register + * (DCTL.CGOUTNak). + * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff) + * Indicates that the Set Global Non-Periodic IN NAK bit in the + * Device Control register (DCTL.SGNPInNak), set by the + * application, has taken effect in the core. That is, the core has + * sampled the Global IN NAK bit set by the application. This bit + * can be cleared by clearing the Clear Global Non-Periodic IN + * NAK bit in the Device Control register (DCTL.CGNPInNak). + * This interrupt does not necessarily mean that a NAK handshake + * is sent out on the USB. The STALL bit takes precedence over + * the NAK bit. + * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp) + * This interrupt is asserted when the Non-Periodic TxFIFO is + * either half or completely empty, and there is space for at least + * one entry to be written to the Non-Periodic Transmit Request + * Queue. The half or completely empty status is determined by + * the Non-Periodic TxFIFO Empty Level bit in the Core AHB + * Configuration register (GAHBCFG.NPTxFEmpLvl). + * @rxflvl: RxFIFO Non-Empty (RxFLvl) + * Indicates that there is at least one packet pending to be read + * from the RxFIFO. + * @sof: Start of (micro)Frame (Sof) + * In Host mode, the core sets this bit to indicate that an SOF + * (FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the + * USB. The application must write a 1 to this bit to clear the + * interrupt. + * In Device mode, in the core sets this bit to indicate that an + * SOF token has been received on the USB. The application can read + * the Device Status register to get the current (micro)frame + * number. This interrupt is seen only when the core is operating + * at either HS or FS. + * @otgint: OTG Interrupt (OTGInt) + * The core sets this bit to indicate an OTG protocol event. The + * application must read the OTG Interrupt Status (GOTGINT) + * register to determine the exact event that caused this + * interrupt. The application must clear the appropriate status bit + * in the GOTGINT register to clear this bit. + * @modemis: Mode Mismatch Interrupt (ModeMis) + * The core sets this bit when the application is trying to access: + * * A Host mode register, when the core is operating in Device + * mode + * * A Device mode register, when the core is operating in Host + * mode + * The register access is completed on the AHB with an OKAY + * response, but is ignored by the core internally and doesn't + * affect the operation of the core. + * @curmod: Current Mode of Operation (CurMod) + * Indicates the current mode of operation. + * * 1'b0: Device mode + * * 1'b1: Host mode + */ + struct cvmx_usbcx_gintsts_s { + __BITFIELD_FIELD(u32 wkupint : 1, + __BITFIELD_FIELD(u32 sessreqint : 1, + __BITFIELD_FIELD(u32 disconnint : 1, + __BITFIELD_FIELD(u32 conidstschng : 1, + __BITFIELD_FIELD(u32 reserved_27_27 : 1, + __BITFIELD_FIELD(u32 ptxfemp : 1, + __BITFIELD_FIELD(u32 hchint : 1, + __BITFIELD_FIELD(u32 prtint : 1, + __BITFIELD_FIELD(u32 reserved_23_23 : 1, + __BITFIELD_FIELD(u32 fetsusp : 1, + __BITFIELD_FIELD(u32 incomplp : 1, + __BITFIELD_FIELD(u32 incompisoin : 1, + __BITFIELD_FIELD(u32 oepint : 1, + __BITFIELD_FIELD(u32 iepint : 1, + __BITFIELD_FIELD(u32 epmis : 1, + __BITFIELD_FIELD(u32 reserved_16_16 : 1, + __BITFIELD_FIELD(u32 eopf : 1, + __BITFIELD_FIELD(u32 isooutdrop : 1, + __BITFIELD_FIELD(u32 enumdone : 1, + __BITFIELD_FIELD(u32 usbrst : 1, + __BITFIELD_FIELD(u32 usbsusp : 1, + __BITFIELD_FIELD(u32 erlysusp : 1, + __BITFIELD_FIELD(u32 i2cint : 1, + __BITFIELD_FIELD(u32 ulpickint : 1, + __BITFIELD_FIELD(u32 goutnakeff : 1, + __BITFIELD_FIELD(u32 ginnakeff : 1, + __BITFIELD_FIELD(u32 nptxfemp : 1, + __BITFIELD_FIELD(u32 rxflvl : 1, + __BITFIELD_FIELD(u32 sof : 1, + __BITFIELD_FIELD(u32 otgint : 1, + __BITFIELD_FIELD(u32 modemis : 1, + __BITFIELD_FIELD(u32 curmod : 1, + ;)))))))))))))))))))))))))))))))) + } s; +}; + +/** + * cvmx_usbc#_gnptxfsiz + * + * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ) + * + * The application can program the RAM size and the memory start address for the + * Non-Periodic TxFIFO. + */ +union cvmx_usbcx_gnptxfsiz { + u32 u32; + /** + * struct cvmx_usbcx_gnptxfsiz_s + * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep) + * This value is in terms of 32-bit words. + * Minimum value is 16 + * Maximum value is 32768 + * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr) + * This field contains the memory start address for Non-Periodic + * Transmit FIFO RAM. + */ + struct cvmx_usbcx_gnptxfsiz_s { + __BITFIELD_FIELD(u32 nptxfdep : 16, + __BITFIELD_FIELD(u32 nptxfstaddr : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_gnptxsts + * + * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS) + * + * This read-only register contains the free space information for the + * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue. + */ +union cvmx_usbcx_gnptxsts { + u32 u32; + /** + * struct cvmx_usbcx_gnptxsts_s + * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop) + * Entry in the Non-Periodic Tx Request Queue that is currently + * being processed by the MAC. + * * Bits [30:27]: Channel/endpoint number + * * Bits [26:25]: + * - 2'b00: IN/OUT token + * - 2'b01: Zero-length transmit packet (device IN/host OUT) + * - 2'b10: PING/CSPLIT token + * - 2'b11: Channel halt command + * * Bit [24]: Terminate (last entry for selected channel/endpoint) + * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available + * (NPTxQSpcAvail) + * Indicates the amount of free space available in the Non- + * Periodic Transmit Request Queue. This queue holds both IN + * and OUT requests in Host mode. Device mode has only IN + * requests. + * * 8'h0: Non-Periodic Transmit Request Queue is full + * * 8'h1: 1 location available + * * 8'h2: 2 locations available + * * n: n locations available (0..8) + * * Others: Reserved + * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail) + * Indicates the amount of free space available in the Non- + * Periodic TxFIFO. + * Values are in terms of 32-bit words. + * * 16'h0: Non-Periodic TxFIFO is full + * * 16'h1: 1 word available + * * 16'h2: 2 words available + * * 16'hn: n words available (where 0..32768) + * * 16'h8000: 32768 words available + * * Others: Reserved + */ + struct cvmx_usbcx_gnptxsts_s { + __BITFIELD_FIELD(u32 reserved_31_31 : 1, + __BITFIELD_FIELD(u32 nptxqtop : 7, + __BITFIELD_FIELD(u32 nptxqspcavail : 8, + __BITFIELD_FIELD(u32 nptxfspcavail : 16, + ;)))) + } s; +}; + +/** + * cvmx_usbc#_grstctl + * + * Core Reset Register (GRSTCTL) + * + * The application uses this register to reset various hardware features inside + * the core. + */ +union cvmx_usbcx_grstctl { + u32 u32; + /** + * struct cvmx_usbcx_grstctl_s + * @ahbidle: AHB Master Idle (AHBIdle) + * Indicates that the AHB Master State Machine is in the IDLE + * condition. + * @dmareq: DMA Request Signal (DMAReq) + * Indicates that the DMA request is in progress. Used for debug. + * @txfnum: TxFIFO Number (TxFNum) + * This is the FIFO number that must be flushed using the TxFIFO + * Flush bit. This field must not be changed until the core clears + * the TxFIFO Flush bit. + * * 5'h0: Non-Periodic TxFIFO flush + * * 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic + * TxFIFO flush in Host mode + * * 5'h2: Periodic TxFIFO 2 flush in Device mode + * - ... + * * 5'hF: Periodic TxFIFO 15 flush in Device mode + * * 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the + * core + * @txfflsh: TxFIFO Flush (TxFFlsh) + * This bit selectively flushes a single or all transmit FIFOs, but + * cannot do so if the core is in the midst of a transaction. + * The application must only write this bit after checking that the + * core is neither writing to the TxFIFO nor reading from the + * TxFIFO. + * The application must wait until the core clears this bit before + * performing any operations. This bit takes 8 clocks (of phy_clk + * or hclk, whichever is slower) to clear. + * @rxfflsh: RxFIFO Flush (RxFFlsh) + * The application can flush the entire RxFIFO using this bit, but + * must first ensure that the core is not in the middle of a + * transaction. + * The application must only write to this bit after checking that + * the core is neither reading from the RxFIFO nor writing to the + * RxFIFO. + * The application must wait until the bit is cleared before + * performing any other operations. This bit will take 8 clocks + * (slowest of PHY or AHB clock) to clear. + * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh) + * The application writes this bit to flush the IN Token Sequence + * Learning Queue. + * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst) + * The application writes this bit to reset the (micro)frame number + * counter inside the core. When the (micro)frame counter is reset, + * the subsequent SOF sent out by the core will have a + * (micro)frame number of 0. + * @hsftrst: HClk Soft Reset (HSftRst) + * The application uses this bit to flush the control logic in the + * AHB Clock domain. Only AHB Clock Domain pipelines are reset. + * * FIFOs are not flushed with this bit. + * * All state machines in the AHB clock domain are reset to the + * Idle state after terminating the transactions on the AHB, + * following the protocol. + * * CSR control bits used by the AHB clock domain state + * machines are cleared. + * * To clear this interrupt, status mask bits that control the + * interrupt status and are generated by the AHB clock domain + * state machine are cleared. + * * Because interrupt status bits are not cleared, the application + * can get the status of any core events that occurred after it set + * this bit. + * This is a self-clearing bit that the core clears after all + * necessary logic is reset in the core. This may take several + * clocks, depending on the core's current state. + * @csftrst: Core Soft Reset (CSftRst) + * Resets the hclk and phy_clock domains as follows: + * * Clears the interrupts and all the CSR registers except the + * following register bits: + * - PCGCCTL.RstPdwnModule + * - PCGCCTL.GateHclk + * - PCGCCTL.PwrClmp + * - PCGCCTL.StopPPhyLPwrClkSelclk + * - GUSBCFG.PhyLPwrClkSel + * - GUSBCFG.DDRSel + * - GUSBCFG.PHYSel + * - GUSBCFG.FSIntf + * - GUSBCFG.ULPI_UTMI_Sel + * - GUSBCFG.PHYIf + * - HCFG.FSLSPclkSel + * - DCFG.DevSpd + * * All module state machines (except the AHB Slave Unit) are + * reset to the IDLE state, and all the transmit FIFOs and the + * receive FIFO are flushed. + * * Any transactions on the AHB Master are terminated as soon + * as possible, after gracefully completing the last data phase of + * an AHB transfer. Any transactions on the USB are terminated + * immediately. + * The application can write to this bit any time it wants to reset + * the core. This is a self-clearing bit and the core clears this + * bit after all the necessary logic is reset in the core, which + * may take several clocks, depending on the current state of the + * core. Once this bit is cleared software should wait at least 3 + * PHY clocks before doing any access to the PHY domain + * (synchronization delay). Software should also should check that + * bit 31 of this register is 1 (AHB Master is IDLE) before + * starting any operation. + * Typically software reset is used during software development + * and also when you dynamically change the PHY selection bits + * in the USB configuration registers listed above. When you + * change the PHY, the corresponding clock for the PHY is + * selected and used in the PHY domain. Once a new clock is + * selected, the PHY domain has to be reset for proper operation. + */ + struct cvmx_usbcx_grstctl_s { + __BITFIELD_FIELD(u32 ahbidle : 1, + __BITFIELD_FIELD(u32 dmareq : 1, + __BITFIELD_FIELD(u32 reserved_11_29 : 19, + __BITFIELD_FIELD(u32 txfnum : 5, + __BITFIELD_FIELD(u32 txfflsh : 1, + __BITFIELD_FIELD(u32 rxfflsh : 1, + __BITFIELD_FIELD(u32 intknqflsh : 1, + __BITFIELD_FIELD(u32 frmcntrrst : 1, + __BITFIELD_FIELD(u32 hsftrst : 1, + __BITFIELD_FIELD(u32 csftrst : 1, + ;)))))))))) + } s; +}; + +/** + * cvmx_usbc#_grxfsiz + * + * Receive FIFO Size Register (GRXFSIZ) + * + * The application can program the RAM size that must be allocated to the + * RxFIFO. + */ +union cvmx_usbcx_grxfsiz { + u32 u32; + /** + * struct cvmx_usbcx_grxfsiz_s + * @rxfdep: RxFIFO Depth (RxFDep) + * This value is in terms of 32-bit words. + * * Minimum value is 16 + * * Maximum value is 32768 + */ + struct cvmx_usbcx_grxfsiz_s { + __BITFIELD_FIELD(u32 reserved_16_31 : 16, + __BITFIELD_FIELD(u32 rxfdep : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_grxstsph + * + * Receive Status Read and Pop Register, Host Mode (GRXSTSPH) + * + * A read to the Receive Status Read and Pop register returns and additionally + * pops the top data entry out of the RxFIFO. + * This Description is only valid when the core is in Host Mode. For Device Mode + * use USBC_GRXSTSPD instead. + * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the + * same offset in the O2P USB core. The offset difference shown in this + * document is for software clarity and is actually ignored by the + * hardware. + */ +union cvmx_usbcx_grxstsph { + u32 u32; + /** + * struct cvmx_usbcx_grxstsph_s + * @pktsts: Packet Status (PktSts) + * Indicates the status of the received packet + * * 4'b0010: IN data packet received + * * 4'b0011: IN transfer completed (triggers an interrupt) + * * 4'b0101: Data toggle error (triggers an interrupt) + * * 4'b0111: Channel halted (triggers an interrupt) + * * Others: Reserved + * @dpid: Data PID (DPID) + * * 2'b00: DATA0 + * * 2'b10: DATA1 + * * 2'b01: DATA2 + * * 2'b11: MDATA + * @bcnt: Byte Count (BCnt) + * Indicates the byte count of the received IN data packet + * @chnum: Channel Number (ChNum) + * Indicates the channel number to which the current received + * packet belongs. + */ + struct cvmx_usbcx_grxstsph_s { + __BITFIELD_FIELD(u32 reserved_21_31 : 11, + __BITFIELD_FIELD(u32 pktsts : 4, + __BITFIELD_FIELD(u32 dpid : 2, + __BITFIELD_FIELD(u32 bcnt : 11, + __BITFIELD_FIELD(u32 chnum : 4, + ;))))) + } s; +}; + +/** + * cvmx_usbc#_gusbcfg + * + * Core USB Configuration Register (GUSBCFG) + * + * This register can be used to configure the core after power-on or a changing + * to Host mode or Device mode. It contains USB and USB-PHY related + * configuration parameters. The application must program this register before + * starting any transactions on either the AHB or the USB. Do not make changes + * to this register after the initial programming. + */ +union cvmx_usbcx_gusbcfg { + u32 u32; + /** + * struct cvmx_usbcx_gusbcfg_s + * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel) + * This bit is always 0x0. + * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel) + * Software should set this bit to 0x0. + * Selects either 480-MHz or 48-MHz (low-power) PHY mode. In + * FS and LS modes, the PHY can usually operate on a 48-MHz + * clock to save power. + * * 1'b0: 480-MHz Internal PLL clock + * * 1'b1: 48-MHz External Clock + * In 480 MHz mode, the UTMI interface operates at either 60 or + * 30-MHz, depending upon whether 8- or 16-bit data width is + * selected. In 48-MHz mode, the UTMI interface operates at 48 + * MHz in FS mode and at either 48 or 6 MHz in LS mode + * (depending on the PHY vendor). + * This bit drives the utmi_fsls_low_power core output signal, and + * is valid only for UTMI+ PHYs. + * @usbtrdtim: USB Turnaround Time (USBTrdTim) + * Sets the turnaround time in PHY clocks. + * Specifies the response time for a MAC request to the Packet + * FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM). + * This must be programmed to 0x5. + * @hnpcap: HNP-Capable (HNPCap) + * This bit is always 0x0. + * @srpcap: SRP-Capable (SRPCap) + * This bit is always 0x0. + * @ddrsel: ULPI DDR Select (DDRSel) + * Software should set this bit to 0x0. + * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial + * Software should set this bit to 0x0. + * @fsintf: Full-Speed Serial Interface Select (FSIntf) + * Software should set this bit to 0x0. + * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel) + * This bit is always 0x0. + * @phyif: PHY Interface (PHYIf) + * This bit is always 0x1. + * @toutcal: HS/FS Timeout Calibration (TOutCal) + * The number of PHY clocks that the application programs in this + * field is added to the high-speed/full-speed interpacket timeout + * duration in the core to account for any additional delays + * introduced by the PHY. This may be required, since the delay + * introduced by the PHY in generating the linestate condition may + * vary from one PHY to another. + * The USB standard timeout value for high-speed operation is + * 736 to 816 (inclusive) bit times. The USB standard timeout + * value for full-speed operation is 16 to 18 (inclusive) bit + * times. The application must program this field based on the + * speed of enumeration. The number of bit times added per PHY + * clock are: + * High-speed operation: + * * One 30-MHz PHY clock = 16 bit times + * * One 60-MHz PHY clock = 8 bit times + * Full-speed operation: + * * One 30-MHz PHY clock = 0.4 bit times + * * One 60-MHz PHY clock = 0.2 bit times + * * One 48-MHz PHY clock = 0.25 bit times + */ + struct cvmx_usbcx_gusbcfg_s { + __BITFIELD_FIELD(u32 reserved_17_31 : 15, + __BITFIELD_FIELD(u32 otgi2csel : 1, + __BITFIELD_FIELD(u32 phylpwrclksel : 1, + __BITFIELD_FIELD(u32 reserved_14_14 : 1, + __BITFIELD_FIELD(u32 usbtrdtim : 4, + __BITFIELD_FIELD(u32 hnpcap : 1, + __BITFIELD_FIELD(u32 srpcap : 1, + __BITFIELD_FIELD(u32 ddrsel : 1, + __BITFIELD_FIELD(u32 physel : 1, + __BITFIELD_FIELD(u32 fsintf : 1, + __BITFIELD_FIELD(u32 ulpi_utmi_sel : 1, + __BITFIELD_FIELD(u32 phyif : 1, + __BITFIELD_FIELD(u32 toutcal : 3, + ;))))))))))))) + } s; +}; + +/** + * cvmx_usbc#_haint + * + * Host All Channels Interrupt Register (HAINT) + * + * When a significant event occurs on a channel, the Host All Channels Interrupt + * register interrupts the application using the Host Channels Interrupt bit of + * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt. + * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in + * this register are set and cleared when the application sets and clears bits + * in the corresponding Host Channel-n Interrupt register. + */ +union cvmx_usbcx_haint { + u32 u32; + /** + * struct cvmx_usbcx_haint_s + * @haint: Channel Interrupts (HAINT) + * One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15 + */ + struct cvmx_usbcx_haint_s { + __BITFIELD_FIELD(u32 reserved_16_31 : 16, + __BITFIELD_FIELD(u32 haint : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_haintmsk + * + * Host All Channels Interrupt Mask Register (HAINTMSK) + * + * The Host All Channel Interrupt Mask register works with the Host All Channel + * Interrupt register to interrupt the application when an event occurs on a + * channel. There is one interrupt mask bit per channel, up to a maximum of 16 + * bits. + * Mask interrupt: 1'b0 Unmask interrupt: 1'b1 + */ +union cvmx_usbcx_haintmsk { + u32 u32; + /** + * struct cvmx_usbcx_haintmsk_s + * @haintmsk: Channel Interrupt Mask (HAINTMsk) + * One bit per channel: Bit 0 for channel 0, bit 15 for channel 15 + */ + struct cvmx_usbcx_haintmsk_s { + __BITFIELD_FIELD(u32 reserved_16_31 : 16, + __BITFIELD_FIELD(u32 haintmsk : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_hcchar# + * + * Host Channel-n Characteristics Register (HCCHAR) + * + */ +union cvmx_usbcx_hccharx { + u32 u32; + /** + * struct cvmx_usbcx_hccharx_s + * @chena: Channel Enable (ChEna) + * This field is set by the application and cleared by the OTG + * host. + * * 1'b0: Channel disabled + * * 1'b1: Channel enabled + * @chdis: Channel Disable (ChDis) + * The application sets this bit to stop transmitting/receiving + * data on a channel, even before the transfer for that channel is + * complete. The application must wait for the Channel Disabled + * interrupt before treating the channel as disabled. + * @oddfrm: Odd Frame (OddFrm) + * This field is set (reset) by the application to indicate that + * the OTG host must perform a transfer in an odd (micro)frame. + * This field is applicable for only periodic (isochronous and + * interrupt) transactions. + * * 1'b0: Even (micro)frame + * * 1'b1: Odd (micro)frame + * @devaddr: Device Address (DevAddr) + * This field selects the specific device serving as the data + * source or sink. + * @ec: Multi Count (MC) / Error Count (EC) + * When the Split Enable bit of the Host Channel-n Split Control + * register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates + * to the host the number of transactions that should be executed + * per microframe for this endpoint. + * * 2'b00: Reserved. This field yields undefined results. + * * 2'b01: 1 transaction + * * 2'b10: 2 transactions to be issued for this endpoint per + * microframe + * * 2'b11: 3 transactions to be issued for this endpoint per + * microframe + * When HCSPLTn.SpltEna is set (1'b1), this field indicates the + * number of immediate retries to be performed for a periodic split + * transactions on transaction errors. This field must be set to at + * least 2'b01. + * @eptype: Endpoint Type (EPType) + * Indicates the transfer type selected. + * * 2'b00: Control + * * 2'b01: Isochronous + * * 2'b10: Bulk + * * 2'b11: Interrupt + * @lspddev: Low-Speed Device (LSpdDev) + * This field is set by the application to indicate that this + * channel is communicating to a low-speed device. + * @epdir: Endpoint Direction (EPDir) + * Indicates whether the transaction is IN or OUT. + * * 1'b0: OUT + * * 1'b1: IN + * @epnum: Endpoint Number (EPNum) + * Indicates the endpoint number on the device serving as the + * data source or sink. + * @mps: Maximum Packet Size (MPS) + * Indicates the maximum packet size of the associated endpoint. + */ + struct cvmx_usbcx_hccharx_s { + __BITFIELD_FIELD(u32 chena : 1, + __BITFIELD_FIELD(u32 chdis : 1, + __BITFIELD_FIELD(u32 oddfrm : 1, + __BITFIELD_FIELD(u32 devaddr : 7, + __BITFIELD_FIELD(u32 ec : 2, + __BITFIELD_FIELD(u32 eptype : 2, + __BITFIELD_FIELD(u32 lspddev : 1, + __BITFIELD_FIELD(u32 reserved_16_16 : 1, + __BITFIELD_FIELD(u32 epdir : 1, + __BITFIELD_FIELD(u32 epnum : 4, + __BITFIELD_FIELD(u32 mps : 11, + ;))))))))))) + } s; +}; + +/** + * cvmx_usbc#_hcfg + * + * Host Configuration Register (HCFG) + * + * This register configures the core after power-on. Do not make changes to this + * register after initializing the host. + */ +union cvmx_usbcx_hcfg { + u32 u32; + /** + * struct cvmx_usbcx_hcfg_s + * @fslssupp: FS- and LS-Only Support (FSLSSupp) + * The application uses this bit to control the core's enumeration + * speed. Using this bit, the application can make the core + * enumerate as a FS host, even if the connected device supports + * HS traffic. Do not make changes to this field after initial + * programming. + * * 1'b0: HS/FS/LS, based on the maximum speed supported by + * the connected device + * * 1'b1: FS/LS-only, even if the connected device can support HS + * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel) + * When the core is in FS Host mode + * * 2'b00: PHY clock is running at 30/60 MHz + * * 2'b01: PHY clock is running at 48 MHz + * * Others: Reserved + * When the core is in LS Host mode + * * 2'b00: PHY clock is running at 30/60 MHz. When the + * UTMI+/ULPI PHY Low Power mode is not selected, use + * 30/60 MHz. + * * 2'b01: PHY clock is running at 48 MHz. When the UTMI+ + * PHY Low Power mode is selected, use 48MHz if the PHY + * supplies a 48 MHz clock during LS mode. + * * 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode, + * use 6 MHz when the UTMI+ PHY Low Power mode is + * selected and the PHY supplies a 6 MHz clock during LS + * mode. If you select a 6 MHz clock during LS mode, you must + * do a soft reset. + * * 2'b11: Reserved + */ + struct cvmx_usbcx_hcfg_s { + __BITFIELD_FIELD(u32 reserved_3_31 : 29, + __BITFIELD_FIELD(u32 fslssupp : 1, + __BITFIELD_FIELD(u32 fslspclksel : 2, + ;))) + } s; +}; + +/** + * cvmx_usbc#_hcint# + * + * Host Channel-n Interrupt Register (HCINT) + * + * This register indicates the status of a channel with respect to USB- and + * AHB-related events. The application must read this register when the Host + * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is + * set. Before the application can read this register, it must first read + * the Host All Channels Interrupt (HAINT) register to get the exact channel + * number for the Host Channel-n Interrupt register. The application must clear + * the appropriate bit in this register to clear the corresponding bits in the + * HAINT and GINTSTS registers. + */ +union cvmx_usbcx_hcintx { + u32 u32; + /** + * struct cvmx_usbcx_hcintx_s + * @datatglerr: Data Toggle Error (DataTglErr) + * @frmovrun: Frame Overrun (FrmOvrun) + * @bblerr: Babble Error (BblErr) + * @xacterr: Transaction Error (XactErr) + * @nyet: NYET Response Received Interrupt (NYET) + * @ack: ACK Response Received Interrupt (ACK) + * @nak: NAK Response Received Interrupt (NAK) + * @stall: STALL Response Received Interrupt (STALL) + * @ahberr: This bit is always 0x0. + * @chhltd: Channel Halted (ChHltd) + * Indicates the transfer completed abnormally either because of + * any USB transaction error or in response to disable request by + * the application. + * @xfercompl: Transfer Completed (XferCompl) + * Transfer completed normally without any errors. + */ + struct cvmx_usbcx_hcintx_s { + __BITFIELD_FIELD(u32 reserved_11_31 : 21, + __BITFIELD_FIELD(u32 datatglerr : 1, + __BITFIELD_FIELD(u32 frmovrun : 1, + __BITFIELD_FIELD(u32 bblerr : 1, + __BITFIELD_FIELD(u32 xacterr : 1, + __BITFIELD_FIELD(u32 nyet : 1, + __BITFIELD_FIELD(u32 ack : 1, + __BITFIELD_FIELD(u32 nak : 1, + __BITFIELD_FIELD(u32 stall : 1, + __BITFIELD_FIELD(u32 ahberr : 1, + __BITFIELD_FIELD(u32 chhltd : 1, + __BITFIELD_FIELD(u32 xfercompl : 1, + ;)))))))))))) + } s; +}; + +/** + * cvmx_usbc#_hcintmsk# + * + * Host Channel-n Interrupt Mask Register (HCINTMSKn) + * + * This register reflects the mask for each channel status described in the + * previous section. + * Mask interrupt: 1'b0 Unmask interrupt: 1'b1 + */ +union cvmx_usbcx_hcintmskx { + u32 u32; + /** + * struct cvmx_usbcx_hcintmskx_s + * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk) + * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk) + * @bblerrmsk: Babble Error Mask (BblErrMsk) + * @xacterrmsk: Transaction Error Mask (XactErrMsk) + * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk) + * @ackmsk: ACK Response Received Interrupt Mask (AckMsk) + * @nakmsk: NAK Response Received Interrupt Mask (NakMsk) + * @stallmsk: STALL Response Received Interrupt Mask (StallMsk) + * @ahberrmsk: AHB Error Mask (AHBErrMsk) + * @chhltdmsk: Channel Halted Mask (ChHltdMsk) + * @xfercomplmsk: Transfer Completed Mask (XferComplMsk) + */ + struct cvmx_usbcx_hcintmskx_s { + __BITFIELD_FIELD(u32 reserved_11_31 : 21, + __BITFIELD_FIELD(u32 datatglerrmsk : 1, + __BITFIELD_FIELD(u32 frmovrunmsk : 1, + __BITFIELD_FIELD(u32 bblerrmsk : 1, + __BITFIELD_FIELD(u32 xacterrmsk : 1, + __BITFIELD_FIELD(u32 nyetmsk : 1, + __BITFIELD_FIELD(u32 ackmsk : 1, + __BITFIELD_FIELD(u32 nakmsk : 1, + __BITFIELD_FIELD(u32 stallmsk : 1, + __BITFIELD_FIELD(u32 ahberrmsk : 1, + __BITFIELD_FIELD(u32 chhltdmsk : 1, + __BITFIELD_FIELD(u32 xfercomplmsk : 1, + ;)))))))))))) + } s; +}; + +/** + * cvmx_usbc#_hcsplt# + * + * Host Channel-n Split Control Register (HCSPLT) + * + */ +union cvmx_usbcx_hcspltx { + u32 u32; + /** + * struct cvmx_usbcx_hcspltx_s + * @spltena: Split Enable (SpltEna) + * The application sets this field to indicate that this channel is + * enabled to perform split transactions. + * @compsplt: Do Complete Split (CompSplt) + * The application sets this field to request the OTG host to + * perform a complete split transaction. + * @xactpos: Transaction Position (XactPos) + * This field is used to determine whether to send all, first, + * middle, or last payloads with each OUT transaction. + * * 2'b11: All. This is the entire data payload is of this + * transaction (which is less than or equal to 188 bytes). + * * 2'b10: Begin. This is the first data payload of this + * transaction (which is larger than 188 bytes). + * * 2'b00: Mid. This is the middle payload of this transaction + * (which is larger than 188 bytes). + * * 2'b01: End. This is the last payload of this transaction + * (which is larger than 188 bytes). + * @hubaddr: Hub Address (HubAddr) + * This field holds the device address of the transaction + * translator's hub. + * @prtaddr: Port Address (PrtAddr) + * This field is the port number of the recipient transaction + * translator. + */ + struct cvmx_usbcx_hcspltx_s { + __BITFIELD_FIELD(u32 spltena : 1, + __BITFIELD_FIELD(u32 reserved_17_30 : 14, + __BITFIELD_FIELD(u32 compsplt : 1, + __BITFIELD_FIELD(u32 xactpos : 2, + __BITFIELD_FIELD(u32 hubaddr : 7, + __BITFIELD_FIELD(u32 prtaddr : 7, + ;)))))) + } s; +}; + +/** + * cvmx_usbc#_hctsiz# + * + * Host Channel-n Transfer Size Register (HCTSIZ) + * + */ +union cvmx_usbcx_hctsizx { + u32 u32; + /** + * struct cvmx_usbcx_hctsizx_s + * @dopng: Do Ping (DoPng) + * Setting this field to 1 directs the host to do PING protocol. + * @pid: PID (Pid) + * The application programs this field with the type of PID to use + * for the initial transaction. The host will maintain this field + * for the rest of the transfer. + * * 2'b00: DATA0 + * * 2'b01: DATA2 + * * 2'b10: DATA1 + * * 2'b11: MDATA (non-control)/SETUP (control) + * @pktcnt: Packet Count (PktCnt) + * This field is programmed by the application with the expected + * number of packets to be transmitted (OUT) or received (IN). + * The host decrements this count on every successful + * transmission or reception of an OUT/IN packet. Once this count + * reaches zero, the application is interrupted to indicate normal + * completion. + * @xfersize: Transfer Size (XferSize) + * For an OUT, this field is the number of data bytes the host will + * send during the transfer. + * For an IN, this field is the buffer size that the application + * has reserved for the transfer. The application is expected to + * program this field as an integer multiple of the maximum packet + * size for IN transactions (periodic and non-periodic). + */ + struct cvmx_usbcx_hctsizx_s { + __BITFIELD_FIELD(u32 dopng : 1, + __BITFIELD_FIELD(u32 pid : 2, + __BITFIELD_FIELD(u32 pktcnt : 10, + __BITFIELD_FIELD(u32 xfersize : 19, + ;)))) + } s; +}; + +/** + * cvmx_usbc#_hfir + * + * Host Frame Interval Register (HFIR) + * + * This register stores the frame interval information for the current speed to + * which the O2P USB core has enumerated. + */ +union cvmx_usbcx_hfir { + u32 u32; + /** + * struct cvmx_usbcx_hfir_s + * @frint: Frame Interval (FrInt) + * The value that the application programs to this field specifies + * the interval between two consecutive SOFs (FS) or micro- + * SOFs (HS) or Keep-Alive tokens (HS). This field contains the + * number of PHY clocks that constitute the required frame + * interval. The default value set in this field for a FS operation + * when the PHY clock frequency is 60 MHz. The application can + * write a value to this register only after the Port Enable bit of + * the Host Port Control and Status register (HPRT.PrtEnaPort) + * has been set. If no value is programmed, the core calculates + * the value based on the PHY clock specified in the FS/LS PHY + * Clock Select field of the Host Configuration register + * (HCFG.FSLSPclkSel). Do not change the value of this field + * after the initial configuration. + * * 125 us (PHY clock frequency for HS) + * * 1 ms (PHY clock frequency for FS/LS) + */ + struct cvmx_usbcx_hfir_s { + __BITFIELD_FIELD(u32 reserved_16_31 : 16, + __BITFIELD_FIELD(u32 frint : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_hfnum + * + * Host Frame Number/Frame Time Remaining Register (HFNUM) + * + * This register indicates the current frame number. + * It also indicates the time remaining (in terms of the number of PHY clocks) + * in the current (micro)frame. + */ +union cvmx_usbcx_hfnum { + u32 u32; + /** + * struct cvmx_usbcx_hfnum_s + * @frrem: Frame Time Remaining (FrRem) + * Indicates the amount of time remaining in the current + * microframe (HS) or frame (FS/LS), in terms of PHY clocks. + * This field decrements on each PHY clock. When it reaches + * zero, this field is reloaded with the value in the Frame + * Interval register and a new SOF is transmitted on the USB. + * @frnum: Frame Number (FrNum) + * This field increments when a new SOF is transmitted on the + * USB, and is reset to 0 when it reaches 16'h3FFF. + */ + struct cvmx_usbcx_hfnum_s { + __BITFIELD_FIELD(u32 frrem : 16, + __BITFIELD_FIELD(u32 frnum : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_hprt + * + * Host Port Control and Status Register (HPRT) + * + * This register is available in both Host and Device modes. + * Currently, the OTG Host supports only one port. + * A single register holds USB port-related information such as USB reset, + * enable, suspend, resume, connect status, and test mode for each port. The + * R_SS_WC bits in this register can trigger an interrupt to the application + * through the Host Port Interrupt bit of the Core Interrupt register + * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this + * register and clear the bit that caused the interrupt. For the R_SS_WC bits, + * the application must write a 1 to the bit to clear the interrupt. + */ +union cvmx_usbcx_hprt { + u32 u32; + /** + * struct cvmx_usbcx_hprt_s + * @prtspd: Port Speed (PrtSpd) + * Indicates the speed of the device attached to this port. + * * 2'b00: High speed + * * 2'b01: Full speed + * * 2'b10: Low speed + * * 2'b11: Reserved + * @prttstctl: Port Test Control (PrtTstCtl) + * The application writes a nonzero value to this field to put + * the port into a Test mode, and the corresponding pattern is + * signaled on the port. + * * 4'b0000: Test mode disabled + * * 4'b0001: Test_J mode + * * 4'b0010: Test_K mode + * * 4'b0011: Test_SE0_NAK mode + * * 4'b0100: Test_Packet mode + * * 4'b0101: Test_Force_Enable + * * Others: Reserved + * PrtSpd must be zero (i.e. the interface must be in high-speed + * mode) to use the PrtTstCtl test modes. + * @prtpwr: Port Power (PrtPwr) + * The application uses this field to control power to this port, + * and the core clears this bit on an overcurrent condition. + * * 1'b0: Power off + * * 1'b1: Power on + * @prtlnsts: Port Line Status (PrtLnSts) + * Indicates the current logic level USB data lines + * * Bit [10]: Logic level of D- + * * Bit [11]: Logic level of D+ + * @prtrst: Port Reset (PrtRst) + * When the application sets this bit, a reset sequence is + * started on this port. The application must time the reset + * period and clear this bit after the reset sequence is + * complete. + * * 1'b0: Port not in reset + * * 1'b1: Port in reset + * The application must leave this bit set for at least a + * minimum duration mentioned below to start a reset on the + * port. The application can leave it set for another 10 ms in + * addition to the required minimum duration, before clearing + * the bit, even though there is no maximum limit set by the + * USB standard. + * * High speed: 50 ms + * * Full speed/Low speed: 10 ms + * @prtsusp: Port Suspend (PrtSusp) + * The application sets this bit to put this port in Suspend + * mode. The core only stops sending SOFs when this is set. + * To stop the PHY clock, the application must set the Port + * Clock Stop bit, which will assert the suspend input pin of + * the PHY. + * The read value of this bit reflects the current suspend + * status of the port. This bit is cleared by the core after a + * remote wakeup signal is detected or the application sets + * the Port Reset bit or Port Resume bit in this register or the + * Resume/Remote Wakeup Detected Interrupt bit or + * Disconnect Detected Interrupt bit in the Core Interrupt + * register (GINTSTS.WkUpInt or GINTSTS.DisconnInt, + * respectively). + * * 1'b0: Port not in Suspend mode + * * 1'b1: Port in Suspend mode + * @prtres: Port Resume (PrtRes) + * The application sets this bit to drive resume signaling on + * the port. The core continues to drive the resume signal + * until the application clears this bit. + * If the core detects a USB remote wakeup sequence, as + * indicated by the Port Resume/Remote Wakeup Detected + * Interrupt bit of the Core Interrupt register + * (GINTSTS.WkUpInt), the core starts driving resume + * signaling without application intervention and clears this bit + * when it detects a disconnect condition. The read value of + * this bit indicates whether the core is currently driving + * resume signaling. + * * 1'b0: No resume driven + * * 1'b1: Resume driven + * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng) + * The core sets this bit when the status of the Port + * Overcurrent Active bit (bit 4) in this register changes. + * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct) + * Indicates the overcurrent condition of the port. + * * 1'b0: No overcurrent condition + * * 1'b1: Overcurrent condition + * @prtenchng: Port Enable/Disable Change (PrtEnChng) + * The core sets this bit when the status of the Port Enable bit + * [2] of this register changes. + * @prtena: Port Enable (PrtEna) + * A port is enabled only by the core after a reset sequence, + * and is disabled by an overcurrent condition, a disconnect + * condition, or by the application clearing this bit. The + * application cannot set this bit by a register write. It can only + * clear it to disable the port. This bit does not trigger any + * interrupt to the application. + * * 1'b0: Port disabled + * * 1'b1: Port enabled + * @prtconndet: Port Connect Detected (PrtConnDet) + * The core sets this bit when a device connection is detected + * to trigger an interrupt to the application using the Host Port + * Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt). + * The application must write a 1 to this bit to clear the + * interrupt. + * @prtconnsts: Port Connect Status (PrtConnSts) + * * 0: No device is attached to the port. + * * 1: A device is attached to the port. + */ + struct cvmx_usbcx_hprt_s { + __BITFIELD_FIELD(u32 reserved_19_31 : 13, + __BITFIELD_FIELD(u32 prtspd : 2, + __BITFIELD_FIELD(u32 prttstctl : 4, + __BITFIELD_FIELD(u32 prtpwr : 1, + __BITFIELD_FIELD(u32 prtlnsts : 2, + __BITFIELD_FIELD(u32 reserved_9_9 : 1, + __BITFIELD_FIELD(u32 prtrst : 1, + __BITFIELD_FIELD(u32 prtsusp : 1, + __BITFIELD_FIELD(u32 prtres : 1, + __BITFIELD_FIELD(u32 prtovrcurrchng : 1, + __BITFIELD_FIELD(u32 prtovrcurract : 1, + __BITFIELD_FIELD(u32 prtenchng : 1, + __BITFIELD_FIELD(u32 prtena : 1, + __BITFIELD_FIELD(u32 prtconndet : 1, + __BITFIELD_FIELD(u32 prtconnsts : 1, + ;))))))))))))))) + } s; +}; + +/** + * cvmx_usbc#_hptxfsiz + * + * Host Periodic Transmit FIFO Size Register (HPTXFSIZ) + * + * This register holds the size and the memory start address of the Periodic + * TxFIFO, as shown in Figures 310 and 311. + */ +union cvmx_usbcx_hptxfsiz { + u32 u32; + /** + * struct cvmx_usbcx_hptxfsiz_s + * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize) + * This value is in terms of 32-bit words. + * * Minimum value is 16 + * * Maximum value is 32768 + * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr) + */ + struct cvmx_usbcx_hptxfsiz_s { + __BITFIELD_FIELD(u32 ptxfsize : 16, + __BITFIELD_FIELD(u32 ptxfstaddr : 16, + ;)) + } s; +}; + +/** + * cvmx_usbc#_hptxsts + * + * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS) + * + * This read-only register contains the free space information for the Periodic + * TxFIFO and the Periodic Transmit Request Queue + */ +union cvmx_usbcx_hptxsts { + u32 u32; + /** + * struct cvmx_usbcx_hptxsts_s + * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop) + * This indicates the entry in the Periodic Tx Request Queue that + * is currently being processes by the MAC. + * This register is used for debugging. + * * Bit [31]: Odd/Even (micro)frame + * - 1'b0: send in even (micro)frame + * - 1'b1: send in odd (micro)frame + * * Bits [30:27]: Channel/endpoint number + * * Bits [26:25]: Type + * - 2'b00: IN/OUT + * - 2'b01: Zero-length packet + * - 2'b10: CSPLIT + * - 2'b11: Disable channel command + * * Bit [24]: Terminate (last entry for the selected + * channel/endpoint) + * @ptxqspcavail: Periodic Transmit Request Queue Space Available + * (PTxQSpcAvail) + * Indicates the number of free locations available to be written + * in the Periodic Transmit Request Queue. This queue holds both + * IN and OUT requests. + * * 8'h0: Periodic Transmit Request Queue is full + * * 8'h1: 1 location available + * * 8'h2: 2 locations available + * * n: n locations available (0..8) + * * Others: Reserved + * @ptxfspcavail: Periodic Transmit Data FIFO Space Available + * (PTxFSpcAvail) + * Indicates the number of free locations available to be written + * to in the Periodic TxFIFO. + * Values are in terms of 32-bit words + * * 16'h0: Periodic TxFIFO is full + * * 16'h1: 1 word available + * * 16'h2: 2 words available + * * 16'hn: n words available (where 0..32768) + * * 16'h8000: 32768 words available + * * Others: Reserved + */ + struct cvmx_usbcx_hptxsts_s { + __BITFIELD_FIELD(u32 ptxqtop : 8, + __BITFIELD_FIELD(u32 ptxqspcavail : 8, + __BITFIELD_FIELD(u32 ptxfspcavail : 16, + ;))) + } s; +}; + +/** + * cvmx_usbn#_clk_ctl + * + * USBN_CLK_CTL = USBN's Clock Control + * + * This register is used to control the frequency of the hclk and the + * hreset and phy_rst signals. + */ +union cvmx_usbnx_clk_ctl { + u64 u64; + /** + * struct cvmx_usbnx_clk_ctl_s + * @divide2: The 'hclk' used by the USB subsystem is derived + * from the eclk. + * Also see the field DIVIDE. DIVIDE2<1> must currently + * be zero because it is not implemented, so the maximum + * ratio of eclk/hclk is currently 16. + * The actual divide number for hclk is: + * (DIVIDE2 + 1) * (DIVIDE + 1) + * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to + * generate the hclk in the USB Subsystem is held + * in reset. This bit must be set to '0' before + * changing the value os DIVIDE in this register. + * The reset to the HCLK_DIVIDERis also asserted + * when core reset is asserted. + * @p_x_on: Force USB-PHY on during suspend. + * '1' USB-PHY XO block is powered-down during + * suspend. + * '0' USB-PHY XO block is powered-up during + * suspend. + * The value of this field must be set while POR is + * active. + * @p_rtype: PHY reference clock type + * On CN50XX/CN52XX/CN56XX the values are: + * '0' The USB-PHY uses a 12MHz crystal as a clock source + * at the USB_XO and USB_XI pins. + * '1' Reserved. + * '2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the + * USB_XO pin. USB_XI should be tied to ground in this + * case. + * '3' Reserved. + * On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are: + * '0' Reserved. + * '1' Reserved. + * '2' The PHY PLL uses the XO block output as a reference. + * The XO block uses an external clock supplied on the + * XO pin. USB_XI should be tied to ground for this + * usage. + * '3' The XO block uses the clock from a crystal. + * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to + * remain powered in Suspend Mode. + * '1' The USB-PHY XO Bias, Bandgap and PLL are + * powered down in suspend mode. + * The value of this field must be set while POR is + * active. + * @p_c_sel: Phy clock speed select. + * Selects the reference clock / crystal frequency. + * '11': Reserved + * '10': 48 MHz (reserved when a crystal is used) + * '01': 24 MHz (reserved when a crystal is used) + * '00': 12 MHz + * The value of this field must be set while POR is + * active. + * NOTE: if a crystal is used as a reference clock, + * this field must be set to 12 MHz. + * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV. + * @sd_mode: Scaledown mode for the USBC. Control timing events + * in the USBC, for normal operation this must be '0'. + * @s_bist: Starts bist on the hclk memories, during the '0' + * to '1' transition. + * @por: Power On Reset for the PHY. + * Resets all the PHYS registers and state machines. + * @enable: When '1' allows the generation of the hclk. When + * '0' the hclk will not be generated. SEE DIVIDE + * field of this register. + * @prst: When this field is '0' the reset associated with + * the phy_clk functionality in the USB Subsystem is + * help in reset. This bit should not be set to '1' + * until the time it takes 6 clocks (hclk or phy_clk, + * whichever is slower) has passed. Under normal + * operation once this bit is set to '1' it should not + * be set to '0'. + * @hrst: When this field is '0' the reset associated with + * the hclk functioanlity in the USB Subsystem is + * held in reset.This bit should not be set to '1' + * until 12ms after phy_clk is stable. Under normal + * operation, once this bit is set to '1' it should + * not be set to '0'. + * @divide: The frequency of 'hclk' used by the USB subsystem + * is the eclk frequency divided by the value of + * (DIVIDE2 + 1) * (DIVIDE + 1), also see the field + * DIVIDE2 of this register. + * The hclk frequency should be less than 125Mhz. + * After writing a value to this field the SW should + * read the field for the value written. + * The ENABLE field of this register should not be set + * until AFTER this field is set and then read. + */ + struct cvmx_usbnx_clk_ctl_s { + __BITFIELD_FIELD(u64 reserved_20_63 : 44, + __BITFIELD_FIELD(u64 divide2 : 2, + __BITFIELD_FIELD(u64 hclk_rst : 1, + __BITFIELD_FIELD(u64 p_x_on : 1, + __BITFIELD_FIELD(u64 p_rtype : 2, + __BITFIELD_FIELD(u64 p_com_on : 1, + __BITFIELD_FIELD(u64 p_c_sel : 2, + __BITFIELD_FIELD(u64 cdiv_byp : 1, + __BITFIELD_FIELD(u64 sd_mode : 2, + __BITFIELD_FIELD(u64 s_bist : 1, + __BITFIELD_FIELD(u64 por : 1, + __BITFIELD_FIELD(u64 enable : 1, + __BITFIELD_FIELD(u64 prst : 1, + __BITFIELD_FIELD(u64 hrst : 1, + __BITFIELD_FIELD(u64 divide : 3, + ;))))))))))))))) + } s; +}; + +/** + * cvmx_usbn#_usbp_ctl_status + * + * USBN_USBP_CTL_STATUS = USBP Control And Status Register + * + * Contains general control and status information for the USBN block. + */ +union cvmx_usbnx_usbp_ctl_status { + u64 u64; + /** + * struct cvmx_usbnx_usbp_ctl_status_s + * @txrisetune: HS Transmitter Rise/Fall Time Adjustment + * @txvreftune: HS DC Voltage Level Adjustment + * @txfslstune: FS/LS Source Impedance Adjustment + * @txhsxvtune: Transmitter High-Speed Crossover Adjustment + * @sqrxtune: Squelch Threshold Adjustment + * @compdistune: Disconnect Threshold Adjustment + * @otgtune: VBUS Valid Threshold Adjustment + * @otgdisable: OTG Block Disable + * @portreset: Per_Port Reset + * @drvvbus: Drive VBUS + * @lsbist: Low-Speed BIST Enable. + * @fsbist: Full-Speed BIST Enable. + * @hsbist: High-Speed BIST Enable. + * @bist_done: PHY Bist Done. + * Asserted at the end of the PHY BIST sequence. + * @bist_err: PHY Bist Error. + * Indicates an internal error was detected during + * the BIST sequence. + * @tdata_out: PHY Test Data Out. + * Presents either internally generated signals or + * test register contents, based upon the value of + * test_data_out_sel. + * @siddq: Drives the USBP (USB-PHY) SIDDQ input. + * Normally should be set to zero. + * When customers have no intent to use USB PHY + * interface, they should: + * - still provide 3.3V to USB_VDD33, and + * - tie USB_REXT to 3.3V supply, and + * - set USBN*_USBP_CTL_STATUS[SIDDQ]=1 + * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable + * @dma_bmode: When set to 1 the L2C DMA address will be updated + * with byte-counts between packets. When set to 0 + * the L2C DMA address is incremented to the next + * 4-byte aligned address after adding byte-count. + * @usbc_end: Bigendian input to the USB Core. This should be + * set to '0' for operation. + * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP. + * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP. + * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY. + * This signal enables the pull-down resistance on + * the D+ line. '1' pull down-resistance is connected + * to D+/ '0' pull down resistance is not connected + * to D+. When an A/B device is acting as a host + * (downstream-facing port), dp_pulldown and + * dm_pulldown are enabled. This must not toggle + * during normal operation. + * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY. + * This signal enables the pull-down resistance on + * the D- line. '1' pull down-resistance is connected + * to D-. '0' pull down resistance is not connected + * to D-. When an A/B device is acting as a host + * (downstream-facing port), dp_pulldown and + * dm_pulldown are enabled. This must not toggle + * during normal operation. + * @hst_mode: When '0' the USB is acting as HOST, when '1' + * USB is acting as device. This field needs to be + * set while the USB is in reset. + * @tuning: Transmitter Tuning for High-Speed Operation. + * Tunes the current supply and rise/fall output + * times for high-speed operation. + * [20:19] == 11: Current supply increased + * approximately 9% + * [20:19] == 10: Current supply increased + * approximately 4.5% + * [20:19] == 01: Design default. + * [20:19] == 00: Current supply decreased + * approximately 4.5% + * [22:21] == 11: Rise and fall times are increased. + * [22:21] == 10: Design default. + * [22:21] == 01: Rise and fall times are decreased. + * [22:21] == 00: Rise and fall times are decreased + * further as compared to the 01 setting. + * @tx_bs_enh: Transmit Bit Stuffing on [15:8]. + * Enables or disables bit stuffing on data[15:8] + * when bit-stuffing is enabled. + * @tx_bs_en: Transmit Bit Stuffing on [7:0]. + * Enables or disables bit stuffing on data[7:0] + * when bit-stuffing is enabled. + * @loop_enb: PHY Loopback Test Enable. + * '1': During data transmission the receive is + * enabled. + * '0': During data transmission the receive is + * disabled. + * Must be '0' for normal operation. + * @vtest_enb: Analog Test Pin Enable. + * '1' The PHY's analog_test pin is enabled for the + * input and output of applicable analog test signals. + * '0' THe analog_test pin is disabled. + * @bist_enb: Built-In Self Test Enable. + * Used to activate BIST in the PHY. + * @tdata_sel: Test Data Out Select. + * '1' test_data_out[3:0] (PHY) register contents + * are output. '0' internally generated signals are + * output. + * @taddr_in: Mode Address for Test Interface. + * Specifies the register address for writing to or + * reading from the PHY test interface register. + * @tdata_in: Internal Testing Register Input Data and Select + * This is a test bus. Data is present on [3:0], + * and its corresponding select (enable) is present + * on bits [7:4]. + * @ate_reset: Reset input from automatic test equipment. + * This is a test signal. When the USB Core is + * powered up (not in Susned Mode), an automatic + * tester can use this to disable phy_clock and + * free_clk, then re-enable them with an aligned + * phase. + * '1': The phy_clk and free_clk outputs are + * disabled. "0": The phy_clock and free_clk outputs + * are available within a specific period after the + * de-assertion. + */ + struct cvmx_usbnx_usbp_ctl_status_s { + __BITFIELD_FIELD(u64 txrisetune : 1, + __BITFIELD_FIELD(u64 txvreftune : 4, + __BITFIELD_FIELD(u64 txfslstune : 4, + __BITFIELD_FIELD(u64 txhsxvtune : 2, + __BITFIELD_FIELD(u64 sqrxtune : 3, + __BITFIELD_FIELD(u64 compdistune : 3, + __BITFIELD_FIELD(u64 otgtune : 3, + __BITFIELD_FIELD(u64 otgdisable : 1, + __BITFIELD_FIELD(u64 portreset : 1, + __BITFIELD_FIELD(u64 drvvbus : 1, + __BITFIELD_FIELD(u64 lsbist : 1, + __BITFIELD_FIELD(u64 fsbist : 1, + __BITFIELD_FIELD(u64 hsbist : 1, + __BITFIELD_FIELD(u64 bist_done : 1, + __BITFIELD_FIELD(u64 bist_err : 1, + __BITFIELD_FIELD(u64 tdata_out : 4, + __BITFIELD_FIELD(u64 siddq : 1, + __BITFIELD_FIELD(u64 txpreemphasistune : 1, + __BITFIELD_FIELD(u64 dma_bmode : 1, + __BITFIELD_FIELD(u64 usbc_end : 1, + __BITFIELD_FIELD(u64 usbp_bist : 1, + __BITFIELD_FIELD(u64 tclk : 1, + __BITFIELD_FIELD(u64 dp_pulld : 1, + __BITFIELD_FIELD(u64 dm_pulld : 1, + __BITFIELD_FIELD(u64 hst_mode : 1, + __BITFIELD_FIELD(u64 tuning : 4, + __BITFIELD_FIELD(u64 tx_bs_enh : 1, + __BITFIELD_FIELD(u64 tx_bs_en : 1, + __BITFIELD_FIELD(u64 loop_enb : 1, + __BITFIELD_FIELD(u64 vtest_enb : 1, + __BITFIELD_FIELD(u64 bist_enb : 1, + __BITFIELD_FIELD(u64 tdata_sel : 1, + __BITFIELD_FIELD(u64 taddr_in : 4, + __BITFIELD_FIELD(u64 tdata_in : 8, + __BITFIELD_FIELD(u64 ate_reset : 1, + ;))))))))))))))))))))))))))))))))))) + } s; +}; + +#endif /* __OCTEON_HCD_H__ */ -- 2.25.0 _______________________________________________ devel mailing list devel@xxxxxxxxxxxxxxxxxxxxxx http://driverdev.linuxdriverproject.org/mailman/listinfo/driverdev-devel