Kernel-doc requires that a kernel-doc markup to be immediatly below the function prototype, as otherwise it will rename it. So, move sys_sched_yield() markup to the right place. Also fix the cpu_util() markup: Kernel-doc markups should use this format: identifier - description Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@xxxxxxxxxx> --- kernel/sched/core.c | 16 ++++++++-------- kernel/sched/fair.c | 2 +- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 02076e6d3792..9d41378ae8f3 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -6560,65 +6560,65 @@ SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len, if (len & (sizeof(unsigned long)-1)) return -EINVAL; if (!alloc_cpumask_var(&mask, GFP_KERNEL)) return -ENOMEM; ret = sched_getaffinity(pid, mask); if (ret == 0) { unsigned int retlen = min(len, cpumask_size()); if (copy_to_user(user_mask_ptr, mask, retlen)) ret = -EFAULT; else ret = retlen; } free_cpumask_var(mask); return ret; } -/** - * sys_sched_yield - yield the current processor to other threads. - * - * This function yields the current CPU to other tasks. If there are no - * other threads running on this CPU then this function will return. - * - * Return: 0. - */ static void do_sched_yield(void) { struct rq_flags rf; struct rq *rq; rq = this_rq_lock_irq(&rf); schedstat_inc(rq->yld_count); current->sched_class->yield_task(rq); preempt_disable(); rq_unlock_irq(rq, &rf); sched_preempt_enable_no_resched(); schedule(); } +/** + * sys_sched_yield - yield the current processor to other threads. + * + * This function yields the current CPU to other tasks. If there are no + * other threads running on this CPU then this function will return. + * + * Return: 0. + */ SYSCALL_DEFINE0(sched_yield) { do_sched_yield(); return 0; } #ifndef CONFIG_PREEMPTION int __sched _cond_resched(void) { if (should_resched(0)) { preempt_schedule_common(); return 1; } rcu_all_qs(); return 0; } EXPORT_SYMBOL(_cond_resched); #endif /* diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index 27536f37ba1a..cb7cd7d8a28f 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -6310,41 +6310,41 @@ static int select_idle_sibling(struct task_struct *p, int prev, int target) sd = rcu_dereference(per_cpu(sd_llc, target)); if (!sd) return target; i = select_idle_core(p, sd, target); if ((unsigned)i < nr_cpumask_bits) return i; i = select_idle_cpu(p, sd, target); if ((unsigned)i < nr_cpumask_bits) return i; i = select_idle_smt(p, sd, target); if ((unsigned)i < nr_cpumask_bits) return i; return target; } /** - * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks + * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks. * @cpu: the CPU to get the utilization of * * The unit of the return value must be the one of capacity so we can compare * the utilization with the capacity of the CPU that is available for CFS task * (ie cpu_capacity). * * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the * recent utilization of currently non-runnable tasks on a CPU. It represents * the amount of utilization of a CPU in the range [0..capacity_orig] where * capacity_orig is the cpu_capacity available at the highest frequency * (arch_scale_freq_capacity()). * The utilization of a CPU converges towards a sum equal to or less than the * current capacity (capacity_curr <= capacity_orig) of the CPU because it is * the running time on this CPU scaled by capacity_curr. * * The estimated utilization of a CPU is defined to be the maximum between its * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks * currently RUNNABLE on that CPU. * This allows to properly represent the expected utilization of a CPU which * has just got a big task running since a long sleep period. At the same time -- 2.28.0