On Mon, Sep 7, 2020 at 3:41 PM Marco Elver <elver@xxxxxxxxxx> wrote: > + meta->addr = metadata_to_pageaddr(meta); > + /* Unprotect if we're reusing this page. */ > + if (meta->state == KFENCE_OBJECT_FREED) > + kfence_unprotect(meta->addr); > + > + /* Calculate address for this allocation. */ > + if (right) > + meta->addr += PAGE_SIZE - size; > + meta->addr = ALIGN_DOWN(meta->addr, cache->align); I would move this ALIGN_DOWN under the (right) if. Do I understand it correctly that it will work, but we expect it to do nothing for !right? If cache align is >PAGE_SIZE, nothing good will happen anyway, right? The previous 2 lines look like part of the same calculation -- "figure out the addr for the right case". > + /* Update remaining metadata. */ > + metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); > + /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ > + WRITE_ONCE(meta->cache, cache); > + meta->size = right ? -size : size; > + for_each_canary(meta, set_canary_byte); > + virt_to_page(meta->addr)->slab_cache = cache; > + > + raw_spin_unlock_irqrestore(&meta->lock, flags); > + > + /* Memory initialization. */ > + > + /* > + * We check slab_want_init_on_alloc() ourselves, rather than letting > + * SL*B do the initialization, as otherwise we might overwrite KFENCE's > + * redzone. > + */ > + addr = (void *)meta->addr; > + if (unlikely(slab_want_init_on_alloc(gfp, cache))) > + memzero_explicit(addr, size); > + if (cache->ctor) > + cache->ctor(addr); > + > + if (CONFIG_KFENCE_FAULT_INJECTION && !prandom_u32_max(CONFIG_KFENCE_FAULT_INJECTION)) > + kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ > + > + atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); > + atomic_long_inc(&counters-F[KFENCE_COUNTER_ALLOCS]); > + return addr; > +} > + > +static void kfence_guarded_free(void *addr, struct kfence_metadata *meta) > +{ > + struct kcsan_scoped_access assert_page_exclusive; > + unsigned long flags; > + > + raw_spin_lock_irqsave(&meta->lock, flags); > + > + if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { > + /* Invalid or double-free, bail out. */ > + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); > + kfence_report_error((unsigned long)addr, meta, KFENCE_ERROR_INVALID_FREE); > + raw_spin_unlock_irqrestore(&meta->lock, flags); > + return; > + } > + > + /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ > + kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, > + KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, > + &assert_page_exclusive); > + > + if (CONFIG_KFENCE_FAULT_INJECTION) > + kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ > + > + /* Restore page protection if there was an OOB access. */ > + if (meta->unprotected_page) { > + kfence_protect(meta->unprotected_page); > + meta->unprotected_page = 0; > + } > + > + /* Check canary bytes for memory corruption. */ > + for_each_canary(meta, check_canary_byte); > + > + /* > + * Clear memory if init-on-free is set. While we protect the page, the > + * data is still there, and after a use-after-free is detected, we > + * unprotect the page, so the data is still accessible. > + */ > + if (unlikely(slab_want_init_on_free(meta->cache))) > + memzero_explicit(addr, abs(meta->size)); > + > + /* Mark the object as freed. */ > + metadata_update_state(meta, KFENCE_OBJECT_FREED); > + > + raw_spin_unlock_irqrestore(&meta->lock, flags); > + > + /* Protect to detect use-after-frees. */ > + kfence_protect((unsigned long)addr); > + > + /* Add it to the tail of the freelist for reuse. */ > + raw_spin_lock_irqsave(&kfence_freelist_lock, flags); > + KFENCE_WARN_ON(!list_empty(&meta->list)); > + list_add_tail(&meta->list, &kfence_freelist); > + kcsan_end_scoped_access(&assert_page_exclusive); > + raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); > + > + atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); > + atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); > +} > + > +static void rcu_guarded_free(struct rcu_head *h) > +{ > + struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); > + > + kfence_guarded_free((void *)meta->addr, meta); > +} > + > +static bool __init kfence_initialize_pool(void) > +{ > + unsigned long addr; > + struct page *pages; > + int i; > + > + if (!arch_kfence_initialize_pool()) > + return false; > + > + addr = (unsigned long)__kfence_pool; > + pages = virt_to_page(addr); > + > + /* > + * Set up non-redzone pages: they must have PG_slab set, to avoid > + * freeing these as real pages. > + * > + * We also want to avoid inserting kfence_free() in the kfree() > + * fast-path in SLUB, and therefore need to ensure kfree() correctly > + * enters __slab_free() slow-path. > + */ > + for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { > + if (!i || (i % 2)) > + continue; > + > + __SetPageSlab(&pages[i]); > + } > + > + /* > + * Protect the first 2 pages. The first page is mostly unnecessary, and > + * merely serves as an extended guard page. However, adding one > + * additional page in the beginning gives us an even number of pages, > + * which simplifies the mapping of address to metadata index. > + */ > + for (i = 0; i < 2; i++) { > + if (unlikely(!kfence_protect(addr))) > + return false; > + > + addr += PAGE_SIZE; > + } > + > + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { > + struct kfence_metadata *meta = &kfence_metadata[i]; > + > + /* Initialize metadata. */ > + INIT_LIST_HEAD(&meta->list); > + raw_spin_lock_init(&meta->lock); > + meta->state = KFENCE_OBJECT_UNUSED; > + meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ > + list_add_tail(&meta->list, &kfence_freelist); > + > + /* Protect the right redzone. */ > + if (unlikely(!kfence_protect(addr + PAGE_SIZE))) > + return false; > + > + addr += 2 * PAGE_SIZE; > + } > + > + return true; > +} > + > +/* === DebugFS Interface ==================================================== */ > + > +static int stats_show(struct seq_file *seq, void *v) > +{ > + int i; > + > + seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); > + for (i = 0; i < KFENCE_COUNTER_COUNT; i++) > + seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); > + > + return 0; > +} > +DEFINE_SHOW_ATTRIBUTE(stats); > + > +/* > + * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. > + * start_object() and next_object() return the object index + 1, because NULL is used > + * to stop iteration. > + */ > +static void *start_object(struct seq_file *seq, loff_t *pos) > +{ > + if (*pos < CONFIG_KFENCE_NUM_OBJECTS) > + return (void *)((long)*pos + 1); > + return NULL; > +} > + > +static void stop_object(struct seq_file *seq, void *v) > +{ > +} > + > +static void *next_object(struct seq_file *seq, void *v, loff_t *pos) > +{ > + ++*pos; > + if (*pos < CONFIG_KFENCE_NUM_OBJECTS) > + return (void *)((long)*pos + 1); > + return NULL; > +} > + > +static int show_object(struct seq_file *seq, void *v) > +{ > + struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; > + unsigned long flags; > + > + raw_spin_lock_irqsave(&meta->lock, flags); > + kfence_print_object(seq, meta); > + raw_spin_unlock_irqrestore(&meta->lock, flags); > + seq_puts(seq, "---------------------------------\n"); > + > + return 0; > +} > + > +static const struct seq_operations object_seqops = { > + .start = start_object, > + .next = next_object, > + .stop = stop_object, > + .show = show_object, > +}; > + > +static int open_objects(struct inode *inode, struct file *file) > +{ > + return seq_open(file, &object_seqops); > +} > + > +static const struct file_operations objects_fops = { > + .open = open_objects, > + .read = seq_read, > + .llseek = seq_lseek, > +}; > + > +static int __init kfence_debugfs_init(void) > +{ > + struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); > + > + debugfs_create_file("stats", 0400, kfence_dir, NULL, &stats_fops); > + debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); > + return 0; > +} > + > +late_initcall(kfence_debugfs_init); > + > +/* === Allocation Gate Timer ================================================ */ > + > +/* > + * Set up delayed work, which will enable and disable the static key. We need to > + * use a work queue (rather than a simple timer), since enabling and disabling a > + * static key cannot be done from an interrupt. > + */ > +static struct delayed_work kfence_timer; > +static void toggle_allocation_gate(struct work_struct *work) > +{ > + if (!READ_ONCE(kfence_enabled)) > + return; > + > + /* Enable static key, and await allocation to happen. */ > + atomic_set(&allocation_gate, 0); > + static_branch_enable(&kfence_allocation_key); > + wait_event(allocation_wait, atomic_read(&allocation_gate) != 0); > + > + /* Disable static key and reset timer. */ > + static_branch_disable(&kfence_allocation_key); > + schedule_delayed_work(&kfence_timer, msecs_to_jiffies(kfence_sample_interval)); > +} > +static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); > + > +/* === Public interface ===================================================== */ > + > +void __init kfence_init(void) > +{ > + /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ > + if (!kfence_sample_interval) > + return; > + > + if (!kfence_initialize_pool()) { > + pr_err("%s failed\n", __func__); > + return; > + } > + > + schedule_delayed_work(&kfence_timer, 0); > + WRITE_ONCE(kfence_enabled, true); Can toggle_allocation_gate run before we set kfence_enabled? If yes, it can break. If not, it's still somewhat confusing. > + pr_info("initialized - using %zu bytes for %d objects", KFENCE_POOL_SIZE, > + CONFIG_KFENCE_NUM_OBJECTS); > + if (IS_ENABLED(CONFIG_DEBUG_KERNEL)) > + pr_cont(" at 0x%px-0x%px\n", (void *)__kfence_pool, > + (void *)(__kfence_pool + KFENCE_POOL_SIZE)); > + else > + pr_cont("\n"); > +} > + > +bool kfence_shutdown_cache(struct kmem_cache *s) > +{ > + unsigned long flags; > + struct kfence_metadata *meta; > + int i; > + > + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { > + bool in_use; > + > + meta = &kfence_metadata[i]; > + > + /* > + * If we observe some inconsistent cache and state pair where we > + * should have returned false here, cache destruction is racing > + * with either kmem_cache_alloc() or kmem_cache_free(). Taking > + * the lock will not help, as different critical section > + * serialization will have the same outcome. > + */ > + if (READ_ONCE(meta->cache) != s || > + READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) > + continue; > + > + raw_spin_lock_irqsave(&meta->lock, flags); > + in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; > + raw_spin_unlock_irqrestore(&meta->lock, flags); > + > + if (in_use) > + return false; > + } > + > + for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { > + meta = &kfence_metadata[i]; > + > + /* See above. */ > + if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) > + continue; > + > + raw_spin_lock_irqsave(&meta->lock, flags); > + if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) > + meta->cache = NULL; > + raw_spin_unlock_irqrestore(&meta->lock, flags); > + } > + > + return true; > +} > + > +void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) > +{ > + /* > + * allocation_gate only needs to become non-zero, so it doesn't make > + * sense to continue writing to it and pay the associated contention > + * cost, in case we have a large number of concurrent allocations. > + */ > + if (atomic_read(&allocation_gate) || atomic_inc_return(&allocation_gate) > 1) > + return NULL; > + wake_up(&allocation_wait); > + > + if (!READ_ONCE(kfence_enabled)) > + return NULL; > + > + if (size > PAGE_SIZE) > + return NULL; > + > + return kfence_guarded_alloc(s, size, flags); > +} > + > +size_t kfence_ksize(const void *addr) > +{ > + const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); > + > + /* > + * Read locklessly -- if there is a race with __kfence_alloc(), this > + * most certainly is either a use-after-free, or invalid access. > + */ > + return meta ? abs(meta->size) : 0; > +} > + > +void *kfence_object_start(const void *addr) > +{ > + const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); > + > + /* > + * Read locklessly -- if there is a race with __kfence_alloc(), this > + * most certainly is either a use-after-free, or invalid access. > + */ > + return meta ? (void *)meta->addr : NULL; > +} > + > +void __kfence_free(void *addr) > +{ > + struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); > + > + if (unlikely(meta->cache->flags & SLAB_TYPESAFE_BY_RCU)) This may deserve a comment as to why we apply rcu on object level whereas SLAB_TYPESAFE_BY_RCU means slab level only. > + call_rcu(&meta->rcu_head, rcu_guarded_free); > + else > + kfence_guarded_free(addr, meta); > +} > + > +bool kfence_handle_page_fault(unsigned long addr) > +{ > + const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; > + struct kfence_metadata *to_report = NULL; > + enum kfence_error_type error_type; > + unsigned long flags; > + > + if (!is_kfence_address((void *)addr)) > + return false; > + > + if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ > + return kfence_unprotect(addr); /* ... unprotect and proceed. */ > + > + atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); > + > + if (page_index % 2) { > + /* This is a redzone, report a buffer overflow. */ > + struct kfence_metadata *meta = NULL; > + int distance = 0; > + > + meta = addr_to_metadata(addr - PAGE_SIZE); > + if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { > + to_report = meta; > + /* Data race ok; distance calculation approximate. */ > + distance = addr - data_race(meta->addr + abs(meta->size)); > + } > + > + meta = addr_to_metadata(addr + PAGE_SIZE); > + if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { > + /* Data race ok; distance calculation approximate. */ > + if (!to_report || distance > data_race(meta->addr) - addr) > + to_report = meta; > + } > + > + if (!to_report) > + goto out; > + > + raw_spin_lock_irqsave(&to_report->lock, flags); > + to_report->unprotected_page = addr; > + error_type = KFENCE_ERROR_OOB; > + > + /* > + * If the object was freed before we took the look we can still > + * report this as an OOB -- the report will simply show the > + * stacktrace of the free as well. > + */ > + } else { > + to_report = addr_to_metadata(addr); > + if (!to_report) > + goto out; > + > + raw_spin_lock_irqsave(&to_report->lock, flags); > + error_type = KFENCE_ERROR_UAF; > + /* > + * We may race with __kfence_alloc(), and it is possible that a > + * freed object may be reallocated. We simply report this as a > + * use-after-free, with the stack trace showing the place where > + * the object was re-allocated. > + */ > + } > + > +out: > + if (to_report) { > + kfence_report_error(addr, to_report, error_type); > + raw_spin_unlock_irqrestore(&to_report->lock, flags); > + } else { > + /* This may be a UAF or OOB access, but we can't be sure. */ > + kfence_report_error(addr, NULL, KFENCE_ERROR_INVALID); > + } > + > + return kfence_unprotect(addr); /* Unprotect and let access proceed. */ > +} > diff --git a/mm/kfence/kfence.h b/mm/kfence/kfence.h > new file mode 100644 > index 000000000000..25ce2c0dc092 > --- /dev/null > +++ b/mm/kfence/kfence.h > @@ -0,0 +1,104 @@ > +/* SPDX-License-Identifier: GPL-2.0 */ > + > +#ifndef MM_KFENCE_KFENCE_H > +#define MM_KFENCE_KFENCE_H > + > +#include <linux/mm.h> > +#include <linux/slab.h> > +#include <linux/spinlock.h> > +#include <linux/types.h> > + > +#include "../slab.h" /* for struct kmem_cache */ > + > +/* For non-debug builds, avoid leaking kernel pointers into dmesg. */ > +#ifdef CONFIG_DEBUG_KERNEL > +#define PTR_FMT "%px" > +#else > +#define PTR_FMT "%p" > +#endif > + > +/* > + * Get the canary byte pattern for @addr. Use a pattern that varies based on the > + * lower 3 bits of the address, to detect memory corruptions with higher > + * probability, where similar constants are used. > + */ > +#define KFENCE_CANARY_PATTERN(addr) ((u8)0xaa ^ (u8)((unsigned long)addr & 0x7)) > + > +/* Maximum stack depth for reports. */ > +#define KFENCE_STACK_DEPTH 64 > + > +/* KFENCE object states. */ > +enum kfence_object_state { > + KFENCE_OBJECT_UNUSED, /* Object is unused. */ > + KFENCE_OBJECT_ALLOCATED, /* Object is currently allocated. */ > + KFENCE_OBJECT_FREED, /* Object was allocated, and then freed. */ > +}; > + > +/* KFENCE metadata per guarded allocation. */ > +struct kfence_metadata { > + struct list_head list; /* Freelist node; access under kfence_freelist_lock. */ > + struct rcu_head rcu_head; /* For delayed freeing. */ > + > + /* > + * Lock protecting below data; to ensure consistency of the below data, > + * since the following may execute concurrently: __kfence_alloc(), > + * __kfence_free(), kfence_handle_page_fault(). However, note that we > + * cannot grab the same metadata off the freelist twice, and multiple > + * __kfence_alloc() cannot run concurrently on the same metadata. > + */ > + raw_spinlock_t lock; > + > + /* The current state of the object; see above. */ > + enum kfence_object_state state; > + > + /* > + * Allocated object address; cannot be calculated from size, because of > + * alignment requirements. > + * > + * Invariant: ALIGN_DOWN(addr, PAGE_SIZE) is constant. > + */ > + unsigned long addr; > + > + /* > + * The size of the original allocation: > + * size > 0: left page alignment > + * size < 0: right page alignment > + */ > + int size; > + > + /* > + * The kmem_cache cache of the last allocation; NULL if never allocated > + * or the cache has already been destroyed. > + */ > + struct kmem_cache *cache; > + > + /* > + * In case of an invalid access, the page that was unprotected; we > + * optimistically only store address. > + */ > + unsigned long unprotected_page; > + > + /* Allocation and free stack information. */ > + int num_alloc_stack; > + int num_free_stack; > + unsigned long alloc_stack[KFENCE_STACK_DEPTH]; > + unsigned long free_stack[KFENCE_STACK_DEPTH]; > +}; > + > +extern struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; > + > +/* KFENCE error types for report generation. */ > +enum kfence_error_type { > + KFENCE_ERROR_OOB, /* Detected a out-of-bounds access. */ > + KFENCE_ERROR_UAF, /* Detected a use-after-free access. */ > + KFENCE_ERROR_CORRUPTION, /* Detected a memory corruption on free. */ > + KFENCE_ERROR_INVALID, /* Invalid access of unknown type. */ > + KFENCE_ERROR_INVALID_FREE, /* Invalid free. */ > +}; > + > +void kfence_report_error(unsigned long address, const struct kfence_metadata *meta, > + enum kfence_error_type type); > + > +void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta); > + > +#endif /* MM_KFENCE_KFENCE_H */ > diff --git a/mm/kfence/report.c b/mm/kfence/report.c > new file mode 100644 > index 000000000000..8c28200e7433 > --- /dev/null > +++ b/mm/kfence/report.c > @@ -0,0 +1,201 @@ > +// SPDX-License-Identifier: GPL-2.0 > + > +#include <stdarg.h> > + > +#include <linux/kernel.h> > +#include <linux/lockdep.h> > +#include <linux/printk.h> > +#include <linux/seq_file.h> > +#include <linux/stacktrace.h> > +#include <linux/string.h> > + > +#include <asm/kfence.h> > + > +#include "kfence.h" > + > +/* Helper function to either print to a seq_file or to console. */ > +static void seq_con_printf(struct seq_file *seq, const char *fmt, ...) > +{ > + va_list args; > + > + va_start(args, fmt); > + if (seq) > + seq_vprintf(seq, fmt, args); > + else > + vprintk(fmt, args); > + va_end(args); > +} > + > +/* Get the number of stack entries to skip get out of MM internals. */ > +static int get_stack_skipnr(const unsigned long stack_entries[], int num_entries, > + enum kfence_error_type type) > +{ > + char buf[64]; > + int skipnr, fallback = 0; > + > + for (skipnr = 0; skipnr < num_entries; skipnr++) { > + int len = scnprintf(buf, sizeof(buf), "%ps", (void *)stack_entries[skipnr]); > + > + /* Depending on error type, find different stack entries. */ > + switch (type) { > + case KFENCE_ERROR_UAF: > + case KFENCE_ERROR_OOB: > + case KFENCE_ERROR_INVALID: > + if (!strncmp(buf, KFENCE_SKIP_ARCH_FAULT_HANDLER, len)) > + goto found; > + break; > + case KFENCE_ERROR_CORRUPTION: > + case KFENCE_ERROR_INVALID_FREE: > + if (str_has_prefix(buf, "kfence_") || str_has_prefix(buf, "__kfence_")) > + fallback = skipnr + 1; /* In case kfree tail calls into kfence. */ > + > + /* Also the *_bulk() variants by only checking prefixes. */ > + if (str_has_prefix(buf, "kfree") || str_has_prefix(buf, "kmem_cache_free")) > + goto found; > + break; > + } > + } > + if (fallback < num_entries) > + return fallback; > +found: > + skipnr++; > + return skipnr < num_entries ? skipnr : 0; > +} > + > +static void kfence_print_stack(struct seq_file *seq, const struct kfence_metadata *meta, > + bool show_alloc) > +{ > + const unsigned long *entries = show_alloc ? meta->alloc_stack : meta->free_stack; > + const int nentries = show_alloc ? meta->num_alloc_stack : meta->num_free_stack; > + > + if (nentries) { > + int i; > + > + /* stack_trace_seq_print() does not exist; open code our own. */ > + for (i = 0; i < nentries; i++) > + seq_con_printf(seq, " %pS\n", entries[i]); > + } else { > + seq_con_printf(seq, " no %s stack\n", show_alloc ? "allocation" : "deallocation"); > + } > +} > + > +void kfence_print_object(struct seq_file *seq, const struct kfence_metadata *meta) > +{ > + const int size = abs(meta->size); This negative encoding is somewhat confusing. We do lots of abs, but do we even look at the sign anywhere? I can't find any use that is not abs. > + const unsigned long start = meta->addr; > + const struct kmem_cache *const cache = meta->cache; > + > + lockdep_assert_held(&meta->lock); > + > + if (meta->state == KFENCE_OBJECT_UNUSED) { > + seq_con_printf(seq, "kfence-#%zd unused\n", meta - kfence_metadata); > + return; > + } > + > + seq_con_printf(seq, > + "kfence-#%zd [0x" PTR_FMT "-0x" PTR_FMT > + ", size=%d, cache=%s] allocated in:\n", > + meta - kfence_metadata, (void *)start, (void *)(start + size - 1), size, > + (cache && cache->name) ? cache->name : "<destroyed>"); > + kfence_print_stack(seq, meta, true); > + > + if (meta->state == KFENCE_OBJECT_FREED) { > + seq_con_printf(seq, "freed in:\n"); > + kfence_print_stack(seq, meta, false); > + } > +} > + > +/* > + * Show bytes at @addr that are different from the expected canary values, up to > + * @max_bytes. > + */ > +static void print_diff_canary(const u8 *addr, size_t max_bytes) > +{ > + const u8 *max_addr = min((const u8 *)PAGE_ALIGN((unsigned long)addr), addr + max_bytes); > + > + pr_cont("["); > + for (; addr < max_addr; addr++) { > + if (*addr == KFENCE_CANARY_PATTERN(addr)) > + pr_cont(" ."); > + else if (IS_ENABLED(CONFIG_DEBUG_KERNEL)) > + pr_cont(" 0x%02x", *addr); > + else /* Do not leak kernel memory in non-debug builds. */ > + pr_cont(" !"); > + } > + pr_cont(" ]"); > +} > + > +void kfence_report_error(unsigned long address, const struct kfence_metadata *meta, > + enum kfence_error_type type) > +{ > + unsigned long stack_entries[KFENCE_STACK_DEPTH] = { 0 }; > + int num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 1); > + int skipnr = get_stack_skipnr(stack_entries, num_stack_entries, type); > + > + /* KFENCE_ERROR_OOB requires non-NULL meta; for the rest it's optional. */ > + if (WARN_ON(type == KFENCE_ERROR_OOB && !meta)) > + return; > + > + if (meta) > + lockdep_assert_held(&meta->lock); > + /* > + * Because we may generate reports in printk-unfriendly parts of the > + * kernel, such as scheduler code, the use of printk() could deadlock. > + * Until such time that all printing code here is safe in all parts of > + * the kernel, accept the risk, and just get our message out (given the > + * system might already behave unpredictably due to the memory error). > + * As such, also disable lockdep to hide warnings, and avoid disabling > + * lockdep for the rest of the kernel. > + */ > + lockdep_off(); > + > + pr_err("==================================================================\n"); > + /* Print report header. */ > + switch (type) { > + case KFENCE_ERROR_OOB: > + pr_err("BUG: KFENCE: out-of-bounds in %pS\n\n", (void *)stack_entries[skipnr]); > + pr_err("Out-of-bounds access at 0x" PTR_FMT " (%s of kfence-#%zd):\n", > + (void *)address, address < meta->addr ? "left" : "right", > + meta - kfence_metadata); > + break; > + case KFENCE_ERROR_UAF: > + pr_err("BUG: KFENCE: use-after-free in %pS\n\n", (void *)stack_entries[skipnr]); > + pr_err("Use-after-free access at 0x" PTR_FMT ":\n", (void *)address); > + break; > + case KFENCE_ERROR_CORRUPTION: > + pr_err("BUG: KFENCE: memory corruption in %pS\n\n", (void *)stack_entries[skipnr]); > + pr_err("Detected corrupted memory at 0x" PTR_FMT " ", (void *)address); > + print_diff_canary((u8 *)address, 16); > + pr_cont(":\n"); > + break; > + case KFENCE_ERROR_INVALID: > + pr_err("BUG: KFENCE: invalid access in %pS\n\n", (void *)stack_entries[skipnr]); > + pr_err("Invalid access at 0x" PTR_FMT ":\n", (void *)address); > + break; > + case KFENCE_ERROR_INVALID_FREE: > + pr_err("BUG: KFENCE: invalid free in %pS\n\n", (void *)stack_entries[skipnr]); > + pr_err("Invalid free of 0x" PTR_FMT ":\n", (void *)address); > + break; > + } > + > + /* Print stack trace and object info. */ > + stack_trace_print(stack_entries + skipnr, num_stack_entries - skipnr, 0); > + > + if (meta) { > + pr_err("\n"); > + kfence_print_object(NULL, meta); > + } > + > + /* Print report footer. */ > + pr_err("\n"); > + dump_stack_print_info(KERN_DEFAULT); > + pr_err("==================================================================\n"); > + > + lockdep_on(); > + > + if (panic_on_warn) > + panic("panic_on_warn set ...\n"); > + > + /* We encountered a memory unsafety error, taint the kernel! */ > + add_taint(TAINT_WARN, LOCKDEP_STILL_OK); > +} > -- > 2.28.0.526.ge36021eeef-goog >