Align the code samples and note sections inside kernel-doc comments with tabs. This way they can be properly parsed and rendered by Sphinx. It also makes the code samples easier to read from text editors. Signed-off-by: Ahmed S. Darwish <a.darwish@xxxxxxxxxxxxx> --- include/linux/seqlock.h | 82 +++++++++++++++++++++-------------------- 1 file changed, 43 insertions(+), 39 deletions(-) diff --git a/include/linux/seqlock.h b/include/linux/seqlock.h index e54ff48e87f8..d3bba59eb4df 100644 --- a/include/linux/seqlock.h +++ b/include/linux/seqlock.h @@ -256,7 +256,7 @@ static inline void raw_write_seqcount_end(seqcount_t *s) * * This can be used to provide an ordering guarantee instead of the * usual consistency guarantee. It is one wmb cheaper, because we can - * collapse the two back-to-back wmb()s. + * collapse the two back-to-back wmb()s:: * * Note that writes surrounding the barrier should be declared atomic (e.g. * via WRITE_ONCE): a) to ensure the writes become visible to other threads @@ -325,64 +325,68 @@ static inline int raw_read_seqcount_latch(seqcount_t *s) * Very simply put: we first modify one copy and then the other. This ensures * there is always one copy in a stable state, ready to give us an answer. * - * The basic form is a data structure like: + * The basic form is a data structure like:: * - * struct latch_struct { - * seqcount_t seq; - * struct data_struct data[2]; - * }; + * struct latch_struct { + * seqcount_t seq; + * struct data_struct data[2]; + * }; * * Where a modification, which is assumed to be externally serialized, does the - * following: + * following:: * - * void latch_modify(struct latch_struct *latch, ...) - * { - * smp_wmb(); <- Ensure that the last data[1] update is visible - * latch->seq++; - * smp_wmb(); <- Ensure that the seqcount update is visible + * void latch_modify(struct latch_struct *latch, ...) + * { + * smp_wmb(); // Ensure that the last data[1] update is visible + * latch->seq++; + * smp_wmb(); // Ensure that the seqcount update is visible * - * modify(latch->data[0], ...); + * modify(latch->data[0], ...); * - * smp_wmb(); <- Ensure that the data[0] update is visible - * latch->seq++; - * smp_wmb(); <- Ensure that the seqcount update is visible + * smp_wmb(); // Ensure that the data[0] update is visible + * latch->seq++; + * smp_wmb(); // Ensure that the seqcount update is visible * - * modify(latch->data[1], ...); - * } + * modify(latch->data[1], ...); + * } * - * The query will have a form like: + * The query will have a form like:: * - * struct entry *latch_query(struct latch_struct *latch, ...) - * { - * struct entry *entry; - * unsigned seq, idx; + * struct entry *latch_query(struct latch_struct *latch, ...) + * { + * struct entry *entry; + * unsigned seq, idx; * - * do { - * seq = raw_read_seqcount_latch(&latch->seq); + * do { + * seq = raw_read_seqcount_latch(&latch->seq); * - * idx = seq & 0x01; - * entry = data_query(latch->data[idx], ...); + * idx = seq & 0x01; + * entry = data_query(latch->data[idx], ...); * - * smp_rmb(); - * } while (seq != latch->seq); + * smp_rmb(); + * } while (seq != latch->seq); * - * return entry; - * } + * return entry; + * } * * So during the modification, queries are first redirected to data[1]. Then we * modify data[0]. When that is complete, we redirect queries back to data[0] * and we can modify data[1]. * - * NOTE: The non-requirement for atomic modifications does _NOT_ include - * the publishing of new entries in the case where data is a dynamic - * data structure. + * NOTE: * - * An iteration might start in data[0] and get suspended long enough - * to miss an entire modification sequence, once it resumes it might - * observe the new entry. + * The non-requirement for atomic modifications does _NOT_ include + * the publishing of new entries in the case where data is a dynamic + * data structure. * - * NOTE: When data is a dynamic data structure; one should use regular RCU - * patterns to manage the lifetimes of the objects within. + * An iteration might start in data[0] and get suspended long enough + * to miss an entire modification sequence, once it resumes it might + * observe the new entry. + * + * NOTE: + * + * When data is a dynamic data structure; one should use regular RCU + * patterns to manage the lifetimes of the objects within. */ static inline void raw_write_seqcount_latch(seqcount_t *s) { -- 2.20.1