From: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Explain how the GS/FS based addressing can be utilized in user space applications along with the differences between the generic prctl() based GS/FS base control and the FSGSBASE version available on newer CPUs. Originally-by: Andi Kleen <ak@xxxxxxxxxxxxxxx> Signed-off-by: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Signed-off-by: Chang S. Bae <chang.seok.bae@xxxxxxxxx> Reviewed-by: Tony Luck <tony.luck@xxxxxxxxx> Cc: Thomas Gleixner <tglx@xxxxxxxxxxxxx> Cc: Borislav Petkov <bp@xxxxxxxxx> Cc: Andy Lutomirski <luto@xxxxxxxxxx> Cc: H. Peter Anvin <hpa@xxxxxxxxx> Cc: Dave Hansen <dave.hansen@xxxxxxxxx> Cc: Tony Luck <tony.luck@xxxxxxxxx> Cc: Andi Kleen <ak@xxxxxxxxxxxxxxx> Cc: Randy Dunlap <rdunlap@xxxxxxxxxxxxx> Cc: Jonathan Corbet <corbet@xxxxxxx> Signed-off-by: Sasha Levin <sashal@xxxxxxxxxx> --- Documentation/x86/x86_64/fsgs.rst | 199 +++++++++++++++++++++++++++++ Documentation/x86/x86_64/index.rst | 1 + 2 files changed, 200 insertions(+) create mode 100644 Documentation/x86/x86_64/fsgs.rst diff --git a/Documentation/x86/x86_64/fsgs.rst b/Documentation/x86/x86_64/fsgs.rst new file mode 100644 index 000000000000..50960e09e1f6 --- /dev/null +++ b/Documentation/x86/x86_64/fsgs.rst @@ -0,0 +1,199 @@ +.. SPDX-License-Identifier: GPL-2.0 + +Using FS and GS segments in user space applications +=================================================== + +The x86 architecture supports segmentation. Instructions which access +memory can use segment register based addressing mode. The following +notation is used to address a byte within a segment: + + Segment-register:Byte-address + +The segment base address is added to the Byte-address to compute the +resulting virtual address which is accessed. This allows to access multiple +instances of data with the identical Byte-address, i.e. the same code. The +selection of a particular instance is purely based on the base-address in +the segment register. + +In 32-bit mode the CPU provides 6 segments, which also support segment +limits. The limits can be used to enforce address space protections. + +In 64-bit mode the CS/SS/DS/ES segments are ignored and the base address is +always 0 to provide a full 64bit address space. The FS and GS segments are +still functional in 64-bit mode. + +Common FS and GS usage +------------------------------ + +The FS segment is commonly used to address Thread Local Storage (TLS). FS +is usually managed by runtime code or a threading library. Variables +declared with the '__thread' storage class specifier are instantiated per +thread and the compiler emits the FS: address prefix for accesses to these +variables. Each thread has its own FS base address so common code can be +used without complex address offset calculations to access the per thread +instances. Applications should not use FS for other purposes when they use +runtimes or threading libraries which manage the per thread FS. + +The GS segment has no common use and can be used freely by +applications. GCC and Clang support GS based addressing via address space +identifiers. + +Reading and writing the FS/GS base address +------------------------------------------ + +There exist two mechanisms to read and write the FS/GS base address: + + - the arch_prctl() system call + + - the FSGSBASE instruction family + +Accessing FS/GS base with arch_prctl() +-------------------------------------- + + The arch_prctl(2) based mechanism is available on all 64-bit CPUs and all + kernel versions. + + Reading the base: + + arch_prctl(ARCH_GET_FS, &fsbase); + arch_prctl(ARCH_GET_GS, &gsbase); + + Writing the base: + + arch_prctl(ARCH_SET_FS, fsbase); + arch_prctl(ARCH_SET_GS, gsbase); + + The ARCH_SET_GS prctl may be disabled depending on kernel configuration + and security settings. + +Accessing FS/GS base with the FSGSBASE instructions +--------------------------------------------------- + + With the Ivy Bridge CPU generation Intel introduced a new set of + instructions to access the FS and GS base registers directly from user + space. These instructions are also supported on AMD Family 17H CPUs. The + following instructions are available: + + =============== =========================== + RDFSBASE %reg Read the FS base register + RDGSBASE %reg Read the GS base register + WRFSBASE %reg Write the FS base register + WRGSBASE %reg Write the GS base register + =============== =========================== + + The instructions avoid the overhead of the arch_prctl() syscall and allow + more flexible usage of the FS/GS addressing modes in user space + applications. This does not prevent conflicts between threading libraries + and runtimes which utilize FS and applications which want to use it for + their own purpose. + +FSGSBASE instructions enablement +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + The instructions are enumerated in CPUID leaf 7, bit 0 of EBX. If + available /proc/cpuinfo shows 'fsgsbase' in the flag entry of the CPUs. + + The availability of the instructions does not enable them + automatically. The kernel has to enable them explicitly in CR4. The + reason for this is that older kernels make assumptions about the values in + the GS register and enforce them when GS base is set via + arch_prctl(). Allowing user space to write arbitrary values to GS base + would violate these assumptions and cause malfunction. + + On kernels which do not enable FSGSBASE the execution of the FSGSBASE + instructions will fault with a #UD exception. + + The kernel provides reliable information about the enabled state in the + ELF AUX vector. If the HWCAP2_FSGSBASE bit is set in the AUX vector, the + kernel has FSGSBASE instructions enabled and applications can use them. + The following code example shows how this detection works:: + + #include <sys/auxv.h> + #include <elf.h> + + /* Will be eventually in asm/hwcap.h */ + #ifndef HWCAP2_FSGSBASE + #define HWCAP2_FSGSBASE (1 << 1) + #endif + + .... + + unsigned val = getauxval(AT_HWCAP2); + + if (val & HWCAP2_FSGSBASE) + printf("FSGSBASE enabled\n"); + +FSGSBASE instructions compiler support +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +GCC version 4.6.4 and newer provide instrinsics for the FSGSBASE +instructions. Clang 5 supports them as well. + + =================== =========================== + _readfsbase_u64() Read the FS base register + _readfsbase_u64() Read the GS base register + _writefsbase_u64() Write the FS base register + _writegsbase_u64() Write the GS base register + =================== =========================== + +To utilize these instrinsics <immintrin.h> must be included in the source +code and the compiler option -mfsgsbase has to be added. + +Compiler support for FS/GS based addressing +------------------------------------------- + +GCC version 6 and newer provide support for FS/GS based addressing via +Named Address Spaces. GCC implements the following address space +identifiers for x86: + + ========= ==================================== + __seg_fs Variable is addressed relative to FS + __seg_gs Variable is addressed relative to GS + ========= ==================================== + +The preprocessor symbols __SEG_FS and __SEG_GS are defined when these +address spaces are supported. Code which implements fallback modes should +check whether these symbols are defined. Usage example:: + + #ifdef __SEG_GS + + long data0 = 0; + long data1 = 1; + + long __seg_gs *ptr; + + /* Check whether FSGSBASE is enabled by the kernel (HWCAP2_FSGSBASE) */ + .... + + /* Set GS base to point to data0 */ + _writegsbase_u64(&data0); + + /* Access offset 0 of GS */ + ptr = 0; + printf("data0 = %ld\n", *ptr); + + /* Set GS base to point to data1 */ + _writegsbase_u64(&data1); + /* ptr still addresses offset 0! */ + printf("data1 = %ld\n", *ptr); + + +Clang does not provide the GCC address space identifiers, but it provides +address spaces via an attribute based mechanism in Clang 2.6 and newer +versions: + + ==================================== ===================================== + __attribute__((address_space(256)) Variable is addressed relative to GS + __attribute__((address_space(257)) Variable is addressed relative to FS + ==================================== ===================================== + +FS/GS based addressing with inline assembly +------------------------------------------- + +In case the compiler does not support address spaces, inline assembly can +be used for FS/GS based addressing mode:: + + mov %fs:offset, %reg + mov %gs:offset, %reg + + mov %reg, %fs:offset + mov %reg, %gs:offset diff --git a/Documentation/x86/x86_64/index.rst b/Documentation/x86/x86_64/index.rst index d6eaaa5a35fc..a56070fc8e77 100644 --- a/Documentation/x86/x86_64/index.rst +++ b/Documentation/x86/x86_64/index.rst @@ -14,3 +14,4 @@ x86_64 Support fake-numa-for-cpusets cpu-hotplug-spec machinecheck + fsgs -- 2.25.1