[PATCH 2/2] mtd: nand: Add support for Arasan Nand Flash Controller

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Added the basic driver for Arasan Nand Flash Controller used in
Zynq UltraScale+ MPSoC. It supports only Hw Ecc and upto 24bit
correction.

Signed-off-by: Punnaiah Choudary Kalluri <punnaia@xxxxxxxxxx>
---
 drivers/mtd/nand/Kconfig      |    7 +
 drivers/mtd/nand/Makefile     |    1 +
 drivers/mtd/nand/arasan_nfc.c |  861 +++++++++++++++++++++++++++++++++++++++++
 3 files changed, 869 insertions(+), 0 deletions(-)
 create mode 100644 drivers/mtd/nand/arasan_nfc.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index 5897d8d..64e497c 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -530,4 +530,11 @@ config MTD_NAND_HISI504
 	help
 	  Enables support for NAND controller on Hisilicon SoC Hip04.
 
+config MTD_NAND_ARASAN
+	tristate "Support for Arasan Nand Flash controller"
+	depends on MTD_NAND
+	help
+	  Enables the driver for the Arasan Nand Flash controller on
+	  Zynq UltraScale+ MPSoC.
+
 endif # MTD_NAND
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index 582bbd05..fd863ea 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY)		+= xway_nand.o
 obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH)	+= bcm47xxnflash/
 obj-$(CONFIG_MTD_NAND_SUNXI)		+= sunxi_nand.o
 obj-$(CONFIG_MTD_NAND_HISI504)	        += hisi504_nand.o
+obj-$(CONFIG_MTD_NAND_ARASAN)		+= arasan_nfc.o
 
 nand-objs := nand_base.o nand_bbt.o nand_timings.o
diff --git a/drivers/mtd/nand/arasan_nfc.c b/drivers/mtd/nand/arasan_nfc.c
new file mode 100644
index 0000000..a4b407b
--- /dev/null
+++ b/drivers/mtd/nand/arasan_nfc.c
@@ -0,0 +1,861 @@
+/*
+ * Arasan Nand Flash Controller Driver
+ *
+ * Copyright (C) 2014 - 2015 Xilinx, Inc.
+ *
+ * This program is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU General Public License version 2 as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ */
+
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/of_mtd.h>
+#include <linux/platform_device.h>
+
+#define DRIVER_NAME			"arasan_nfc"
+#define EVNT_TIMEOUT			1000
+#define STATUS_TIMEOUT			2000
+
+#define PKT_OFST			0x00
+#define MEM_ADDR1_OFST			0x04
+#define MEM_ADDR2_OFST			0x08
+#define CMD_OFST			0x0C
+#define PROG_OFST			0x10
+#define INTR_STS_EN_OFST		0x14
+#define INTR_SIG_EN_OFST		0x18
+#define INTR_STS_OFST			0x1C
+#define READY_STS_OFST			0x20
+#define DMA_ADDR1_OFST			0x24
+#define FLASH_STS_OFST			0x28
+#define DATA_PORT_OFST			0x30
+#define ECC_OFST			0x34
+#define ECC_ERR_CNT_OFST		0x38
+#define ECC_SPR_CMD_OFST		0x3C
+#define ECC_ERR_CNT_1BIT_OFST		0x40
+#define ECC_ERR_CNT_2BIT_OFST		0x44
+#define DMA_ADDR0_OFST			0x50
+
+#define PKT_CNT_SHIFT			12
+
+#define ECC_ENABLE			BIT(31)
+#define DMA_EN_MASK			GENMASK(27, 26)
+#define DMA_ENABLE			0x2
+#define DMA_EN_SHIFT			26
+#define PAGE_SIZE_MASK			GENMASK(25, 23)
+#define PAGE_SIZE_SHIFT			23
+#define PAGE_SIZE_512			0
+#define PAGE_SIZE_1K			5
+#define PAGE_SIZE_2K			1
+#define PAGE_SIZE_4K			2
+#define PAGE_SIZE_8K			3
+#define PAGE_SIZE_16K			4
+#define CMD2_SHIFT			8
+#define ADDR_CYCLES_SHIFT		28
+
+#define XFER_COMPLETE			BIT(2)
+#define READ_READY			BIT(1)
+#define WRITE_READY			BIT(0)
+#define MBIT_ERROR			BIT(3)
+#define ERR_INTRPT			BIT(4)
+
+#define PROG_PGRD			BIT(0)
+#define PROG_ERASE			BIT(2)
+#define PROG_STATUS			BIT(3)
+#define PROG_PGPROG			BIT(4)
+#define PROG_RDID			BIT(6)
+#define PROG_RDPARAM			BIT(7)
+#define PROG_RST			BIT(8)
+
+#define ONFI_STATUS_FAIL		BIT(0)
+#define ONFI_STATUS_READY		BIT(6)
+
+#define PG_ADDR_SHIFT			16
+#define BCH_MODE_SHIFT			25
+#define BCH_EN_SHIFT			27
+#define ECC_SIZE_SHIFT			16
+
+#define MEM_ADDR_MASK			GENMASK(7, 0)
+#define BCH_MODE_MASK			GENMASK(27, 25)
+
+#define CS_MASK				GENMASK(31, 30)
+#define CS_SHIFT			30
+
+#define PAGE_ERR_CNT_MASK		GENMASK(16, 8)
+#define PKT_ERR_CNT_MASK		GENMASK(7, 0)
+
+#define ONFI_ID_LEN			8
+#define TEMP_BUF_SIZE			512
+
+/**
+ * struct anfc_ecc_matrix - Defines ecc information storage format
+ * @pagesize:		Page size in bytes.
+ * @codeword_size:	Code word size information.
+ * @eccbits:		Number of ecc bits.
+ * @bch:		Bch / Hamming mode enable/disable.
+ * @eccsize:		Ecc size information.
+ */
+struct anfc_ecc_matrix {
+	u32 pagesize;
+	u32 codeword_size;
+	u8 eccbits;
+	u8 bch;
+	u16 eccsize;
+};
+
+static const struct anfc_ecc_matrix ecc_matrix[] = {
+	{512,	512,	1,	0,	0x3},
+	{512,	512,	4,	1,	0x7},
+	{512,	512,	8,	1,	0xD},
+	/* 2K byte page */
+	{2048,	512,	1,	0,	0xC},
+	{2048,	512,	4,	1,	0x1A},
+	{2048,	512,	8,	1,	0x34},
+	{2048,	512,	12,	1,	0x4E},
+	{2048,	1024,	24,	1,	0x54},
+	/* 4K byte page */
+	{4096,	512,	1,	0,	0x18},
+	{4096,	512,	4,	1,	0x34},
+	{4096,	512,	8,	1,	0x68},
+	{4096,	512,	12,	1,	0x9C},
+	{4096,	1024,	4,	1,	0xA8},
+	/* 8K byte page */
+	{8192,	512,	1,	0,	0x30},
+	{8192,	512,	4,	1,	0x68},
+	{8192,	512,	8,	1,	0xD0},
+	{8192,	512,	12,	1,	0x138},
+	{8192,	1024,	24,	1,	0x150},
+	/* 16K byte page */
+	{16384,	512,	1,	0,	0x60},
+	{16384,	512,	4,	1,	0xD0},
+	{16384,	512,	8,	1,	0x1A0},
+	{16384,	512,	12,	1,	0x270},
+	{16384,	1024,	24,	1,	0x2A0}
+};
+
+/**
+ * struct anfc - Defines the Arasan NAND flash driver instance
+ * @chip:		NAND chip information structure.
+ * @mtd:		MTD information structure.
+ * @parts:		Pointer to the mtd_partition structure.
+ * @dev:		Pointer to the device structure.
+ * @base:		Virtual address of the NAND flash device.
+ * @curr_cmd:		Current command issued.
+ * @dma:		Dma enable/disable.
+ * @bch:		Bch / Hamming mode enable/disable.
+ * @err:		Error identifier.
+ * @iswriteoob:		Identifies if oob write operation is required.
+ * @buf:		Buffer used for read/write byte operations.
+ * @raddr_cycles:	Row address cycle information.
+ * @caddr_cycles:	Column address cycle information.
+ * @irq:		irq number
+ * @page:		Page address to be use for write oob operations.
+ * @pktsize:		Packet size for read / write operation.
+ * @bufshift:		Variable used for indexing buffer operation
+ * @rdintrmask:		Interrupt mask value for read operation.
+ * @bufrdy:		Completion event for buffer ready.
+ * @xfercomp:		Completion event for transfer complete.
+ * @ecclayout:		Ecc layout object
+ */
+struct anfc {
+	struct nand_chip chip;
+	struct mtd_info mtd;
+	struct mtd_partition *parts;
+	struct device *dev;
+
+	void __iomem *base;
+	int curr_cmd;
+
+	bool dma;
+	bool bch;
+	bool err;
+	bool iswriteoob;
+
+	u8 buf[TEMP_BUF_SIZE];
+
+	u16 raddr_cycles;
+	u16 caddr_cycles;
+
+	u32 irq;
+	u32 page;
+	u32 pktsize;
+	u32 bufshift;
+	u32 rdintrmask;
+
+	struct completion bufrdy;
+	struct completion xfercomp;
+	struct nand_ecclayout ecclayout;
+};
+
+static u8 anfc_page(u32 pagesize)
+{
+	switch (pagesize) {
+	case 512:
+		return PAGE_SIZE_512;
+	case 2048:
+		return PAGE_SIZE_2K;
+	case 4096:
+		return PAGE_SIZE_4K;
+	case 8192:
+		return PAGE_SIZE_8K;
+	case 16384:
+		return PAGE_SIZE_16K;
+	case 1024:
+		return PAGE_SIZE_1K;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+static inline void anfc_enable_intrs(struct anfc *nfc, u32 val)
+{
+	writel(val, nfc->base + INTR_STS_EN_OFST);
+	writel(val, nfc->base + INTR_SIG_EN_OFST);
+}
+
+static int anfc_wait_for_event(struct anfc *nfc, u32 event)
+{
+	struct completion *comp;
+	int ret;
+
+	if (event == XFER_COMPLETE)
+		comp = &nfc->xfercomp;
+	else
+		comp = &nfc->bufrdy;
+
+	ret = wait_for_completion_timeout(comp, msecs_to_jiffies(EVNT_TIMEOUT));
+
+	return ret;
+}
+
+static inline void anfc_setpktszcnt(struct anfc *nfc, u32 pktsize,
+				    u32 pktcount)
+{
+	writel(pktsize | (pktcount << PKT_CNT_SHIFT), nfc->base + PKT_OFST);
+}
+
+static inline void anfc_set_eccsparecmd(struct anfc *nfc, u8 cmd1, u8 cmd2)
+{
+	writel(cmd1 | (cmd2 << CMD2_SHIFT) |
+	       (nfc->caddr_cycles << ADDR_CYCLES_SHIFT),
+	       nfc->base + ECC_SPR_CMD_OFST);
+}
+
+static void anfc_setpagecoladdr(struct anfc *nfc, u32 page, u16 col)
+{
+	u32 val;
+
+	writel(col | (page << PG_ADDR_SHIFT), nfc->base + MEM_ADDR1_OFST);
+
+	val = readl(nfc->base + MEM_ADDR2_OFST);
+	val = (val & ~MEM_ADDR_MASK) |
+	      ((page >> PG_ADDR_SHIFT) & MEM_ADDR_MASK);
+	writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static void anfc_prepare_cmd(struct anfc *nfc, u8 cmd1, u8 cmd2,
+			     u8 dmamode, u32 pagesize, u8 addrcycles)
+{
+	u32 regval;
+
+	regval = cmd1 | (cmd2 << CMD2_SHIFT);
+	if (dmamode && nfc->dma)
+		regval |= DMA_ENABLE << DMA_EN_SHIFT;
+	if (addrcycles)
+		regval |= addrcycles << ADDR_CYCLES_SHIFT;
+	if (pagesize)
+		regval |= anfc_page(pagesize) << PAGE_SIZE_SHIFT;
+	writel(regval, nfc->base + CMD_OFST);
+}
+
+static int anfc_device_ready(struct mtd_info *mtd,
+			     struct nand_chip *chip)
+{
+	u8 status;
+	u32 timeout = STATUS_TIMEOUT;
+
+	while (timeout--) {
+		chip->cmdfunc(mtd, NAND_CMD_STATUS, 0, 0);
+		status = chip->read_byte(mtd);
+		if (status & ONFI_STATUS_READY) {
+			if (status & ONFI_STATUS_FAIL)
+				return NAND_STATUS_FAIL;
+			return 0;
+		}
+	}
+
+	pr_err("%s timed out\n", __func__);
+	return -ETIMEDOUT;
+}
+
+static int anfc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			 int page)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
+	if (nfc->dma)
+		nfc->rdintrmask = XFER_COMPLETE;
+	else
+		nfc->rdintrmask = READ_READY;
+	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
+
+	return 0;
+}
+
+static int anfc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			  int page)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	nfc->iswriteoob = true;
+	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
+	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
+	nfc->iswriteoob = false;
+
+	return 0;
+}
+
+static void anfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	u32 i, pktcount, buf_rd_cnt = 0, pktsize;
+	u32 *bufptr = (u32 *)buf;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	dma_addr_t paddr = 0;
+
+	if (nfc->curr_cmd == NAND_CMD_READ0) {
+		pktsize = nfc->pktsize;
+		if (mtd->writesize % pktsize)
+			pktcount = mtd->writesize / pktsize + 1;
+		else
+			pktcount = mtd->writesize / pktsize;
+	} else {
+		pktsize = len;
+		pktcount = 1;
+	}
+
+	anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+	if (nfc->dma) {
+		paddr = dma_map_single(nfc->dev, buf, len, DMA_FROM_DEVICE);
+		if (dma_mapping_error(nfc->dev, paddr)) {
+			dev_err(nfc->dev, "Read buffer mapping error");
+			return;
+		}
+		writel(paddr, nfc->base + DMA_ADDR0_OFST);
+		writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
+		anfc_enable_intrs(nfc, nfc->rdintrmask);
+		writel(PROG_PGRD, nfc->base + PROG_OFST);
+		anfc_wait_for_event(nfc, XFER_COMPLETE);
+		dma_unmap_single(nfc->dev, paddr, len, DMA_FROM_DEVICE);
+		return;
+	}
+
+	anfc_enable_intrs(nfc, nfc->rdintrmask);
+	writel(PROG_PGRD, nfc->base + PROG_OFST);
+
+	while (buf_rd_cnt < pktcount) {
+
+		anfc_wait_for_event(nfc, READ_READY);
+		buf_rd_cnt++;
+
+		if (buf_rd_cnt == pktcount)
+			anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+		for (i = 0; i < pktsize / 4; i++)
+			bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
+
+		bufptr += (pktsize / 4);
+
+		if (buf_rd_cnt < pktcount)
+			anfc_enable_intrs(nfc, nfc->rdintrmask);
+	}
+
+	anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static void anfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
+{
+	u32 buf_wr_cnt = 0, pktcount = 1, i, pktsize;
+	u32 *bufptr = (u32 *)buf;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	dma_addr_t paddr = 0;
+
+	if (nfc->iswriteoob) {
+		pktsize = len;
+		pktcount = 1;
+	} else {
+		pktsize = nfc->pktsize;
+		pktcount = mtd->writesize / pktsize;
+	}
+
+	anfc_setpktszcnt(nfc, pktsize, pktcount);
+
+	if (nfc->dma) {
+		paddr = dma_map_single(nfc->dev, (void *)buf, len,
+				       DMA_TO_DEVICE);
+		if (dma_mapping_error(nfc->dev, paddr)) {
+			dev_err(nfc->dev, "Write buffer mapping error");
+			return;
+		}
+		writel(paddr, nfc->base + DMA_ADDR0_OFST);
+		writel(paddr >> 32, nfc->base + DMA_ADDR1_OFST);
+		anfc_enable_intrs(nfc, XFER_COMPLETE);
+		writel(PROG_PGPROG, nfc->base + PROG_OFST);
+		anfc_wait_for_event(nfc, XFER_COMPLETE);
+		dma_unmap_single(nfc->dev, paddr, len, DMA_TO_DEVICE);
+		return;
+	}
+
+	anfc_enable_intrs(nfc, WRITE_READY);
+	writel(PROG_PGPROG, nfc->base + PROG_OFST);
+
+	while (buf_wr_cnt < pktcount) {
+		anfc_wait_for_event(nfc, WRITE_READY);
+
+		buf_wr_cnt++;
+		if (buf_wr_cnt == pktcount)
+			anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+		for (i = 0; i < (pktsize / 4); i++)
+			writel(bufptr[i], nfc->base + DATA_PORT_OFST);
+
+		bufptr += (pktsize / 4);
+
+		if (buf_wr_cnt < pktcount)
+			anfc_enable_intrs(nfc, WRITE_READY);
+	}
+
+	anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_read_page_hwecc(struct mtd_info *mtd,
+				struct nand_chip *chip, uint8_t *buf,
+				int oob_required, int page)
+{
+	u32 val;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	anfc_set_eccsparecmd(nfc, NAND_CMD_RNDOUT, NAND_CMD_RNDOUTSTART);
+
+	val = readl(nfc->base + CMD_OFST);
+	val = val | ECC_ENABLE;
+	writel(val, nfc->base + CMD_OFST);
+
+	if (nfc->dma)
+		nfc->rdintrmask = XFER_COMPLETE;
+	else
+		nfc->rdintrmask = READ_READY;
+
+	if (!nfc->bch)
+		nfc->rdintrmask = MBIT_ERROR;
+
+	chip->read_buf(mtd, buf, mtd->writesize);
+
+	val = readl(nfc->base + ECC_ERR_CNT_OFST);
+	if (nfc->bch) {
+		mtd->ecc_stats.corrected += val & PAGE_ERR_CNT_MASK;
+	} else {
+		val = readl(nfc->base + ECC_ERR_CNT_1BIT_OFST);
+		mtd->ecc_stats.corrected += val;
+		val = readl(nfc->base + ECC_ERR_CNT_2BIT_OFST);
+		mtd->ecc_stats.failed += val;
+		/* Clear ecc error count register 1Bit, 2Bit */
+		writel(0x0, nfc->base + ECC_ERR_CNT_1BIT_OFST);
+		writel(0x0, nfc->base + ECC_ERR_CNT_2BIT_OFST);
+	}
+	nfc->err = false;
+
+	if (oob_required)
+		chip->ecc.read_oob(mtd, chip, page);
+
+	return 0;
+}
+
+static int anfc_write_page_hwecc(struct mtd_info *mtd,
+				 struct nand_chip *chip, const uint8_t *buf,
+				 int oob_required)
+{
+	u32 val, i;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	uint8_t *ecc_calc = chip->buffers->ecccalc;
+	uint32_t *eccpos = chip->ecc.layout->eccpos;
+
+	anfc_set_eccsparecmd(nfc, NAND_CMD_RNDIN, 0);
+
+	val = readl(nfc->base + CMD_OFST);
+	val = val | ECC_ENABLE;
+	writel(val, nfc->base + CMD_OFST);
+
+	chip->write_buf(mtd, buf, mtd->writesize);
+
+	if (oob_required) {
+		anfc_device_ready(mtd, chip);
+		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, nfc->page);
+		if (nfc->dma)
+			nfc->rdintrmask = XFER_COMPLETE;
+		else
+			nfc->rdintrmask = READ_READY;
+		chip->read_buf(mtd, ecc_calc, mtd->oobsize);
+		for (i = 0; i < chip->ecc.total; i++)
+			chip->oob_poi[eccpos[i]] = ecc_calc[eccpos[i]];
+		chip->ecc.write_oob(mtd, chip, nfc->page);
+	}
+
+	return 0;
+}
+
+static u8 anfc_read_byte(struct mtd_info *mtd)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	return nfc->buf[nfc->bufshift++];
+}
+
+static void anfc_readfifo(struct anfc *nfc, u32 prog, u32 size)
+{
+	u32 i, *bufptr = (u32 *)&nfc->buf[0];
+
+	anfc_enable_intrs(nfc, READ_READY);
+
+	writel(prog, nfc->base + PROG_OFST);
+	anfc_wait_for_event(nfc, READ_READY);
+
+	anfc_enable_intrs(nfc, XFER_COMPLETE);
+
+	for (i = 0; i < size / 4; i++)
+		bufptr[i] = readl(nfc->base + DATA_PORT_OFST);
+
+	anfc_wait_for_event(nfc, XFER_COMPLETE);
+}
+
+static int anfc_ecc_init(struct mtd_info *mtd,
+			 struct nand_ecc_ctrl *ecc)
+{
+	u32 oob_index, i, ecc_addr, regval, bchmode = 0;
+	struct nand_chip *nand_chip = mtd->priv;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	int found = -1;
+
+	nand_chip->ecc.mode = NAND_ECC_HW;
+	nand_chip->ecc.read_page = anfc_read_page_hwecc;
+	nand_chip->ecc.write_page = anfc_write_page_hwecc;
+	nand_chip->ecc.write_oob = anfc_write_oob;
+	nand_chip->ecc.read_oob = anfc_read_oob;
+
+	for (i = 0; i < sizeof(ecc_matrix) / sizeof(struct anfc_ecc_matrix);
+	     i++) {
+		if ((ecc_matrix[i].pagesize == mtd->writesize) &&
+		    (ecc_matrix[i].codeword_size >= nand_chip->ecc_step_ds)) {
+			if (ecc_matrix[i].eccbits >=
+			    nand_chip->ecc_strength_ds) {
+				found = i;
+				break;
+			}
+			found = i;
+		}
+	}
+
+	if (found < 0) {
+		dev_err(nfc->dev, "ECC scheme not supported");
+		return 1;
+	}
+	if (ecc_matrix[found].bch) {
+		switch (ecc_matrix[found].eccbits) {
+		case 12:
+			bchmode = 0x1;
+			break;
+		case 8:
+			bchmode = 0x2;
+			break;
+		case 4:
+			bchmode = 0x3;
+			break;
+		case 24:
+			bchmode = 0x4;
+			break;
+		default:
+			bchmode = 0x0;
+		}
+	}
+
+	nand_chip->ecc.strength = ecc_matrix[found].eccbits;
+	nand_chip->ecc.size = ecc_matrix[found].codeword_size;
+	nand_chip->ecc.steps = ecc_matrix[found].pagesize /
+			       ecc_matrix[found].codeword_size;
+	nand_chip->ecc.bytes = ecc_matrix[found].eccsize /
+			       nand_chip->ecc.steps;
+	nfc->ecclayout.eccbytes = ecc_matrix[found].eccsize;
+	nfc->bch = ecc_matrix[found].bch;
+	oob_index = nand_chip->onfi_params.spare_bytes_per_page -
+		    nfc->ecclayout.eccbytes;
+	ecc_addr = mtd->writesize + oob_index;
+
+	for (i = 0; i < nand_chip->ecc.size; i++)
+		nfc->ecclayout.eccpos[i] = oob_index + i;
+
+	nfc->ecclayout.oobfree->offset = 2;
+	nfc->ecclayout.oobfree->length = oob_index -
+					 nfc->ecclayout.oobfree->offset;
+
+	nand_chip->ecc.layout = &(nfc->ecclayout);
+	regval = ecc_addr | (ecc_matrix[found].eccsize << ECC_SIZE_SHIFT) |
+		 (ecc_matrix[found].bch << BCH_EN_SHIFT);
+	writel(regval, nfc->base + ECC_OFST);
+
+	regval = readl(nfc->base + MEM_ADDR2_OFST);
+	regval = (regval & ~(BCH_MODE_MASK)) | (bchmode << BCH_MODE_SHIFT);
+	writel(regval, nfc->base + MEM_ADDR2_OFST);
+
+	if (nand_chip->ecc_step_ds >= 1024)
+		nfc->pktsize = 1024;
+	else
+		nfc->pktsize = 512;
+
+	return 0;
+}
+
+static void anfc_cmd_function(struct mtd_info *mtd,
+			      unsigned int cmd, int column, int page_addr)
+{
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+	bool wait = false, read = false;
+	u32 addrcycles, prog;
+	u32 *bufptr = (u32 *)&nfc->buf[0];
+
+	nfc->bufshift = 0;
+	nfc->curr_cmd = cmd;
+
+	if (page_addr == -1)
+		page_addr = 0;
+	if (column == -1)
+		column = 0;
+
+	switch (cmd) {
+	case NAND_CMD_RESET:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
+		prog = PROG_RST;
+		wait = true;
+		break;
+	case NAND_CMD_SEQIN:
+		addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
+		nfc->page = page_addr;
+		anfc_prepare_cmd(nfc, cmd, NAND_CMD_PAGEPROG, 1,
+				 mtd->writesize, addrcycles);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		break;
+	case NAND_CMD_READOOB:
+		column += mtd->writesize;
+	case NAND_CMD_READ0:
+	case NAND_CMD_READ1:
+		addrcycles = nfc->raddr_cycles + nfc->caddr_cycles;
+		anfc_prepare_cmd(nfc, NAND_CMD_READ0, NAND_CMD_READSTART, 1,
+				 mtd->writesize, addrcycles);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		break;
+	case NAND_CMD_RNDOUT:
+		anfc_prepare_cmd(nfc, cmd, NAND_CMD_RNDOUTSTART, 1,
+				 mtd->writesize, 2);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		if (nfc->dma)
+			nfc->rdintrmask = XFER_COMPLETE;
+		else
+			nfc->rdintrmask = READ_READY;
+		break;
+	case NAND_CMD_PARAM:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		anfc_setpktszcnt(nfc, sizeof(struct nand_onfi_params), 1);
+		anfc_readfifo(nfc, PROG_RDPARAM,
+				sizeof(struct nand_onfi_params));
+		break;
+	case NAND_CMD_READID:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 1);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		anfc_setpktszcnt(nfc, ONFI_ID_LEN, 1);
+		anfc_readfifo(nfc, PROG_RDID, ONFI_ID_LEN);
+		break;
+	case NAND_CMD_ERASE1:
+		addrcycles = nfc->raddr_cycles;
+		prog = PROG_ERASE;
+		anfc_prepare_cmd(nfc, cmd, NAND_CMD_ERASE2, 0, 0, addrcycles);
+		column = page_addr & 0xffff;
+		page_addr = (page_addr >> PG_ADDR_SHIFT) & 0xffff;
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		wait = true;
+		break;
+	case NAND_CMD_STATUS:
+		anfc_prepare_cmd(nfc, cmd, 0, 0, 0, 0);
+		anfc_setpktszcnt(nfc, 1, 1);
+		anfc_setpagecoladdr(nfc, page_addr, column);
+		prog = PROG_STATUS;
+		wait = read = true;
+		break;
+	default:
+		return;
+	}
+
+	if (wait) {
+		anfc_enable_intrs(nfc, XFER_COMPLETE);
+		writel(prog, nfc->base + PROG_OFST);
+		anfc_wait_for_event(nfc, XFER_COMPLETE);
+	}
+
+	if (read)
+		bufptr[0] = readl(nfc->base + FLASH_STS_OFST);
+}
+
+static void anfc_select_chip(struct mtd_info *mtd, int num)
+{
+	u32 val;
+	struct anfc *nfc = container_of(mtd, struct anfc, mtd);
+
+	if (num == -1)
+		return;
+
+	val = readl(nfc->base + MEM_ADDR2_OFST);
+	val = (val & ~(CS_MASK)) | (num << CS_SHIFT);
+	writel(val, nfc->base + MEM_ADDR2_OFST);
+}
+
+static irqreturn_t anfc_irq_handler(int irq, void *ptr)
+{
+	struct anfc *nfc = ptr;
+	u32 regval = 0, status;
+
+	status = readl(nfc->base + INTR_STS_OFST);
+	if (status & XFER_COMPLETE) {
+		complete(&nfc->xfercomp);
+		regval |= XFER_COMPLETE;
+	}
+
+	if (status & READ_READY) {
+		complete(&nfc->bufrdy);
+		regval |= READ_READY;
+	}
+
+	if (status & WRITE_READY) {
+		complete(&nfc->bufrdy);
+		regval |= WRITE_READY;
+	}
+
+	if (status & MBIT_ERROR) {
+		nfc->err = true;
+		complete(&nfc->bufrdy);
+		regval |= MBIT_ERROR;
+	}
+
+	if (regval) {
+		writel(regval, nfc->base + INTR_STS_OFST);
+		writel(0, nfc->base + INTR_STS_EN_OFST);
+		writel(0, nfc->base + INTR_SIG_EN_OFST);
+
+		return IRQ_HANDLED;
+	}
+
+	return IRQ_NONE;
+}
+
+static int anfc_probe(struct platform_device *pdev)
+{
+	struct anfc *nfc;
+	struct mtd_info *mtd;
+	struct nand_chip *nand_chip;
+	struct resource *res;
+	struct mtd_part_parser_data ppdata;
+	int err;
+
+	nfc = devm_kzalloc(&pdev->dev, sizeof(*nfc), GFP_KERNEL);
+	if (!nfc)
+		return -ENOMEM;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	nfc->base = devm_ioremap_resource(&pdev->dev, res);
+	if (IS_ERR(nfc->base))
+		return PTR_ERR(nfc->base);
+
+	mtd = &nfc->mtd;
+	nand_chip = &nfc->chip;
+	nand_chip->priv = nfc;
+	mtd->priv = nand_chip;
+	mtd->owner = THIS_MODULE;
+	mtd->name = DRIVER_NAME;
+	nfc->dev = &pdev->dev;
+
+	nand_chip->cmdfunc = anfc_cmd_function;
+	nand_chip->waitfunc = anfc_device_ready;
+	nand_chip->chip_delay = 30;
+	nand_chip->read_buf = anfc_read_buf;
+	nand_chip->write_buf = anfc_write_buf;
+	nand_chip->read_byte = anfc_read_byte;
+	nand_chip->bbt_options = NAND_BBT_USE_FLASH;
+	nand_chip->select_chip = anfc_select_chip;
+	mtd->size = nand_chip->chipsize;
+	nfc->dma = of_property_read_bool(pdev->dev.of_node,
+					 "arasan,has-mdma");
+	platform_set_drvdata(pdev, nfc);
+	init_completion(&nfc->bufrdy);
+	init_completion(&nfc->xfercomp);
+	nfc->irq = platform_get_irq(pdev, 0);
+	err = devm_request_irq(&pdev->dev, nfc->irq, anfc_irq_handler,
+			       0, "arasannfc", nfc);
+	if (err)
+		return err;
+
+	if (nand_scan_ident(mtd, 1, NULL)) {
+		dev_err(&pdev->dev, "nand_scan_ident for NAND failed\n");
+		return -ENXIO;
+	}
+	nfc->raddr_cycles = nand_chip->onfi_params.addr_cycles & 0xF;
+	nfc->caddr_cycles = (nand_chip->onfi_params.addr_cycles >> 4) & 0xF;
+
+	if (anfc_ecc_init(mtd, &nand_chip->ecc))
+		return -ENXIO;
+
+	if (nand_scan_tail(mtd)) {
+		dev_err(&pdev->dev, "nand_scan_tail for NAND failed\n");
+		return -ENXIO;
+	}
+
+	ppdata.of_node = pdev->dev.of_node;
+
+	mtd_device_parse_register(&nfc->mtd, NULL, &ppdata, NULL, 0);
+	return 0;
+}
+
+static int anfc_remove(struct platform_device *pdev)
+{
+	struct anfc *nfc = platform_get_drvdata(pdev);
+
+	nand_release(&nfc->mtd);
+
+	return 0;
+}
+
+static const struct of_device_id anfc_ids[] = {
+	{ .compatible = "arasan,nfc-v3p10" },
+	{  }
+};
+MODULE_DEVICE_TABLE(of, anfc_ids);
+
+static struct platform_driver anfc_driver = {
+	.driver = {
+		.name = DRIVER_NAME,
+		.of_match_table = anfc_ids,
+	},
+	.probe = anfc_probe,
+	.remove = anfc_remove,
+};
+module_platform_driver(anfc_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Xilinx, Inc");
+MODULE_DESCRIPTION("Arasan NAND Flash Controller Driver");
-- 
1.7.4

--
To unsubscribe from this list: send the line "unsubscribe linux-doc" in
the body of a message to majordomo@xxxxxxxxxxxxxxx
More majordomo info at  http://vger.kernel.org/majordomo-info.html




[Index of Archives]     [Kernel Newbies]     [Security]     [Netfilter]     [Bugtraq]     [Linux FS]     [Yosemite Forum]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Video 4 Linux]     [Device Mapper]     [Linux Resources]

  Powered by Linux