Introduce an overview of the min heap API, detailing its usage and functionality. The documentation aims to provide developers with a clear understanding of how to implement and utilize min heaps within the Linux kernel, enhancing the overall accessibility of this data structure. Signed-off-by: Kuan-Wei Chiu <visitorckw@xxxxxxxxx> --- Changes in v2: - Wrapped lines at 80 columns. - Updated Example Usage. - Added documentation for the ability to pass NULL to the swp in min_heap_callbacks to use the builtin swap. Documentation/core-api/index.rst | 1 + Documentation/core-api/min_heap.rst | 300 ++++++++++++++++++++++++++++ 2 files changed, 301 insertions(+) create mode 100644 Documentation/core-api/min_heap.rst diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index 6a875743dd4b..563b8fc0002f 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -52,6 +52,7 @@ Library functionality that is used throughout the kernel. wrappers/atomic_bitops floating-point union_find + min_heap Low level entry and exit ======================== diff --git a/Documentation/core-api/min_heap.rst b/Documentation/core-api/min_heap.rst new file mode 100644 index 000000000000..0c636c8b7aa5 --- /dev/null +++ b/Documentation/core-api/min_heap.rst @@ -0,0 +1,300 @@ +.. SPDX-License-Identifier: GPL-2.0 + +============ +Min Heap API +============ + +Introduction +============ + +The Min Heap API provides a set of functions and macros for managing min-heaps +in the Linux kernel. A min-heap is a binary tree structure where the value of +each node is less than or equal to the values of its children, ensuring that +the smallest element is always at the root. + +This document provides a guide to the Min Heap API, detailing how to define and +use min-heaps. Users should not directly call functions with **__min_heap_*()** +prefixes, but should instead use the provided macro wrappers. + +In addition to the standard version of the functions, the API also includes a +set of inline versions for performance-critical scenarios. These inline +functions have the same names as their non-inline counterparts but include an +**_inline** suffix. For example, **__min_heap_init_inline** and its +corresponding macro wrapper **min_heap_init_inline**. The inline versions allow +custom comparison and swap functions to be called directly, rather than through +indirect function calls. This can significantly reduce overhead, especially +when CONFIG_MITIGATION_RETPOLINE is enabled, as indirect function calls become +more expensive. As with the non-inline versions, it is important to use the +macro wrappers for inline functions instead of directly calling the functions +themselves. + +Data Structures +=============== + +Min-Heap Definition +------------------- + +The core data structure for representing a min-heap is defined using the +**MIN_HEAP_PREALLOCATED** and **DEFINE_MIN_HEAP** macros. These macros allow +you to define a min-heap with a preallocated buffer or dynamically allocated +memory. + +Example: + +.. code-block:: c + + #define MIN_HEAP_PREALLOCATED(_type, _name, _nr) + struct _name { + int nr; /* Number of elements in the heap */ + int size; /* Maximum number of elements that can be held */ + _type *data; /* Pointer to the heap data */ + _type preallocated[_nr]; /* Static preallocated array */ + } + + #define DEFINE_MIN_HEAP(_type, _name) MIN_HEAP_PREALLOCATED(_type, _name, 0) + +A typical heap structure will include a counter for the number of elements +(`nr`), the maximum capacity of the heap (`size`), and a pointer to an array of +elements (`data`). Optionally, you can specify a static array for preallocated +heap storage using **MIN_HEAP_PREALLOCATED**. + +Min Heap Callbacks +------------------ + +The **struct min_heap_callbacks** provides customization options for ordering +elements in the heap and swapping them. It contains two function pointers: + +.. code-block:: c + + struct min_heap_callbacks { + bool (*less)(const void *lhs, const void *rhs, void *args); + void (*swp)(void *lhs, void *rhs, void *args); + }; + +- **less** is the comparison function used to establish the order of elements. +- **swp** is a function for swapping elements in the heap. If swp is set to + NULL, the default swap function will be used, which swaps the elements based on their size + +Macro Wrappers +============== + +The following macro wrappers are provided for interacting with the heap in a +user-friendly manner. Each macro corresponds to a function that operates on the +heap, and they abstract away direct calls to internal functions. + +Each macro accepts various parameters that are detailed below. + +Heap Initialization +-------------------- + +.. code-block:: c + + min_heap_init(heap, data, size); + +- **heap**: A pointer to the min-heap structure to be initialized. +- **data**: A pointer to the buffer where the heap elements will be stored. If + `NULL`, the preallocated buffer within the heap structure will be used. +- **size**: The maximum number of elements the heap can hold. + +This macro initializes the heap, setting its initial state. If `data` is +`NULL`, the preallocated memory inside the heap structure will be used for +storage. Otherwise, the user-provided buffer is used. The operation is **O(1)**. + +**Inline Version:** min_heap_init_inline(heap, data, size) + +Accessing the Top Element +------------------------- + +.. code-block:: c + + element = min_heap_peek(heap); + +- **heap**: A pointer to the min-heap from which to retrieve the smallest + element. + +This macro returns a pointer to the smallest element (the root) of the heap, or +`NULL` if the heap is empty. The operation is **O(1)**. + +**Inline Version:** min_heap_peek_inline(heap) + +Heap Insertion +-------------- + +.. code-block:: c + + success = min_heap_push(heap, element, callbacks, args); + +- **heap**: A pointer to the min-heap into which the element should be inserted. +- **element**: A pointer to the element to be inserted into the heap. +- **callbacks**: A pointer to a `struct min_heap_callbacks` providing the + `less` and `swp` functions. +- **args**: Optional arguments passed to the `less` and `swp` functions. + +This macro inserts an element into the heap. It returns `true` if the insertion +was successful and `false` if the heap is full. The operation is **O(log n)**. + +**Inline Version:** min_heap_push_inline(heap, element, callbacks, args) + +Heap Removal +------------ + +.. code-block:: c + + success = min_heap_pop(heap, callbacks, args); + +- **heap**: A pointer to the min-heap from which to remove the smallest element. +- **callbacks**: A pointer to a `struct min_heap_callbacks` providing the + `less` and `swp` functions. +- **args**: Optional arguments passed to the `less` and `swp` functions. + +This macro removes the smallest element (the root) from the heap. It returns +`true` if the element was successfully removed, or `false` if the heap is +empty. The operation is **O(log n)**. + +**Inline Version:** min_heap_pop_inline(heap, callbacks, args) + +Heap Maintenance +---------------- + +You can use the following macros to maintain the heap's structure: + +.. code-block:: c + + min_heap_sift_down(heap, pos, callbacks, args); + +- **heap**: A pointer to the min-heap. +- **pos**: The index from which to start sifting down. +- **callbacks**: A pointer to a `struct min_heap_callbacks` providing the + `less` and `swp` functions. +- **args**: Optional arguments passed to the `less` and `swp` functions. + +This macro restores the heap property by moving the element at the specified +index (`pos`) down the heap until it is in the correct position. The operation +is **O(log n)**. + +**Inline Version:** min_heap_sift_down_inline(heap, pos, callbacks, args) + +.. code-block:: c + + min_heap_sift_up(heap, idx, callbacks, args); + +- **heap**: A pointer to the min-heap. +- **idx**: The index of the element to sift up. +- **callbacks**: A pointer to a `struct min_heap_callbacks` providing the + `less` and `swp` functions. +- **args**: Optional arguments passed to the `less` and `swp` functions. + +This macro restores the heap property by moving the element at the specified +index (`idx`) up the heap. The operation is **O(log n)**. + +**Inline Version:** min_heap_sift_up_inline(heap, idx, callbacks, args) + +.. code-block:: c + + min_heapify_all(heap, callbacks, args); + +- **heap**: A pointer to the min-heap. +- **callbacks**: A pointer to a `struct min_heap_callbacks` providing the + `less` and `swp` functions. +- **args**: Optional arguments passed to the `less` and `swp` functions. + +This macro ensures that the entire heap satisfies the heap property. It is +called when the heap is built from scratch or after many modifications. The +operation is **O(n)**. + +**Inline Version:** min_heapify_all_inline(heap, callbacks, args) + +Removing Specific Elements +-------------------------- + +.. code-block:: c + + success = min_heap_del(heap, idx, callbacks, args); + +- **heap**: A pointer to the min-heap. +- **idx**: The index of the element to delete. +- **callbacks**: A pointer to a `struct min_heap_callbacks` providing the + `less` and `swp` functions. +- **args**: Optional arguments passed to the `less` and `swp` functions. + +This macro removes an element at the specified index (`idx`) from the heap and +restores the heap property. The operation is **O(log n)**. + +**Inline Version:** min_heap_del_inline(heap, idx, callbacks, args) + +Other Utilities +=============== + +- **min_heap_full(heap)**: Checks whether the heap is full. + Complexity: **O(1)**. + +.. code-block:: c + + bool full = min_heap_full(heap); + +- `heap`: A pointer to the min-heap to check. + +This macro returns `true` if the heap is full, otherwise `false`. + +**Inline Version:** min_heap_full_inline(heap) + +- **min_heap_empty(heap)**: Checks whether the heap is empty. + Complexity: **O(1)**. + +.. code-block:: c + + bool empty = min_heap_empty(heap); + +- `heap`: A pointer to the min-heap to check. + +This macro returns `true` if the heap is empty, otherwise `false`. + +**Inline Version:** min_heap_empty_inline(heap) + +Example Usage +============= + +An example usage of the min-heap API would involve defining a heap structure, +initializing it, and inserting and removing elements as needed. + +.. code-block:: c + + #include <linux/min_heap.h> + + int my_less_function(const void *lhs, const void *rhs, void *args) { + return (*(int *)lhs < *(int *)rhs); + } + + struct min_heap_callbacks heap_cb = { + .less = my_less_function, /* Comparison function for heap order */ + .swp = NULL, /* Use default swap function */ + }; + + void example_usage(void) { + /* Pre-populate the buffer with elements */ + int buffer[5] = {5, 2, 8, 1, 3}; + /* Declare a min-heap */ + DEFINE_MIN_HEAP(int, my_heap); + + /* Initialize the heap with preallocated buffer and size */ + min_heap_init(&my_heap, buffer, 5); + + /* Build the heap using min_heapify_all */ + my_heap.nr = 5; /* Set the number of elements in the heap */ + min_heapify_all(&my_heap, &heap_cb, NULL); + + /* Peek at the top element (should be 1 in this case) */ + int *top = min_heap_peek(&my_heap); + pr_info("Top element: %d\n", *top); + + /* Pop the top element (1) and get the new top (2) */ + min_heap_pop(&my_heap, &heap_cb, NULL); + top = min_heap_peek(&my_heap); + pr_info("New top element: %d\n", *top); + + /* Insert a new element (0) and recheck the top */ + int new_element = 0; + min_heap_push(&my_heap, &new_element, &heap_cb, NULL); + top = min_heap_peek(&my_heap); + pr_info("Top element after insertion: %d\n", *top); + } -- 2.34.1