Add sections for advanced features of DAMOS including quotas, prioritization, watermarks, and filters of DAMOS on the design document. Signed-off-by: SeongJae Park <sj@xxxxxxxxxx> --- Documentation/mm/damon/design.rst | 86 +++++++++++++++++++++++++++++++ 1 file changed, 86 insertions(+) diff --git a/Documentation/mm/damon/design.rst b/Documentation/mm/damon/design.rst index 9f9253529c3d..706dbc17c6cb 100644 --- a/Documentation/mm/damon/design.rst +++ b/Documentation/mm/damon/design.rst @@ -272,3 +272,89 @@ the access frequency, and the age. Users can describe their access pattern of interest by setting minimum and maximum values of the three properties. If a region's three properties are in the ranges, DAMOS classifies it as one of the regions that the scheme is having an interest in. + + +Quotas +~~~~~~ + +DAMOS upper-bound overhead control feature. DAMOS could incur high overhead if +the target access pattern is not properly tuned. For example, if a huge memory +region having the access pattern of interest is found, applying the scheme's +action to all pages of the huge region could consume unacceptably large system +resources. Preventing such issues by tuning the access pattern could be +challenging, especially if the access patterns of the workloads are highly +dynamic. + +To mitigate that situation, DAMOS provides an upper-bound overhead control +feature called quotas. It lets users specify an upper limit of time that DAMOS +can use for applying the action, and/or a maximum bytes of memory regions that +the action can be applied within a user-specified time duration. + + +Prioritization +^^^^^^^^^^^^^^ + +A mechanism for making a good decision under the quotas. When the action +cannot be applied to all regions of interest due to the quotas, DAMOS +prioritizes regions and applies the action to only regions having high enough +priorities so that it will not exceed the quotas. + +The prioritization mechanism should be different for each action. For example, +rarely accessed (colder) memory regions would be prioritized for page-out +scheme action. In contrast, the colder regions would be deprioritized for huge +page collapse scheme action. Hence, the prioritization mechanisms for each +action are implemented in each DAMON operations set, together with the actions. + +Though the implementation is up to the DAMON operations set, it would be common +to calculate the priority using the access pattern properties of the regions. +Some users would want the mechanisms to be personalized for their specific +case. For example, some users would want the mechanism to weigh the recency +(``age``) more than the access frequency (``nr_accesses``). DAMOS allows users +to specify the weight of each access pattern property and passes the +information to the underlying mechanism. Nevertheless, how and even whether +the weight will be respected are up to the underlying prioritization mechanism +implementation. + + +Watermarks +~~~~~~~~~~ + +Conditional DAMOS (de)activation automation. Users might want DAMOS to run +only under certain situations. For example, when a sufficient amount of free +memory is guaranteed, running a scheme for proactive reclamation would only +consume unnecessary system resources. To avoid such consumption, the user would +need to manually monitor some metrics such as free memory ratio, and turn +DAMON/DAMOS on or off. + +DAMOS allows users to offload such works using three watermarks. It allows the +users to configure the metric of their interest, and three watermark values, +namely high, middle, and low. If the value of the metric becomes above the +high watermark or below the low watermark, the scheme is deactivated. If the +metric becomes below the mid watermark but above the low watermark, the scheme +is activated. If all schemes are deactivated by the watermarks, the monitoring +is also deactivated. In this case, the DAMON worker thread only periodically +checks the watermarks and therefore incurs nearly zero overhead. + + +Filters +~~~~~~~ + +Non-access pattern-based target memory regions filtering. If users run +self-written programs or have good profiling tools, they could know something +more than the kernel, such as future access patterns or some special +requirements for specific types of memory. For example, some users may know +only anonymous pages can impact their program's performance. They can also +have a list of latency-critical processes. + +To let users optimize DAMOS schemes with such special knowledge, DAMOS provides +a feature called DAMOS filters. The feature allows users to set an arbitrary +number of filters for each scheme. Each filter specifies the type of target +memory, and whether it should exclude the memory of the type (filter-out), or +all except the memory of the type (filter-in). + +As of this writing, anonymous page type and memory cgroup type are supported by +the feature. Some filter target types can require additional arguments. For +example, the memory cgroup filter type asks users to specify the file path of +the memory cgroup for the filter. Hence, users can apply specific schemes to +only anonymous pages, non-anonymous pages, pages of specific cgroups, all pages +excluding those of specific cgroups, and any combination of those. -- 2.25.1