[PATCH net-next 5/6] net: wan: remove support for Z85230-based devices

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



Looks like all the changes to this driver had been automated
churn since git era begun. The driver is using virt_to_bus(),
it's just a maintenance burden unlikely to have any users.

Signed-off-by: Jakub Kicinski <kuba@xxxxxxxxxx>
---
CC: corbet@xxxxxxx
CC: linux-doc@xxxxxxxxxxxxxxx
CC: mkl@xxxxxxxxxxxxxx
CC: dario.binacchi@xxxxxxxxxxxxxxxxxxxx
CC: m.chetan.kumar@xxxxxxxxx
CC: arnd@xxxxxxxx
CC: juerg.haefliger@xxxxxxxxxxxxx
CC: linus.walleij@xxxxxxxxxx
CC: kilobyte@xxxxxxxxxx
CC: lipeng321@xxxxxxxxxx
CC: huangguangbin2@xxxxxxxxxx
CC: Alan Cox <alan@xxxxxxxxxxxxxxx>
---
 .../networking/device_drivers/index.rst       |    1 -
 .../networking/device_drivers/wan/index.rst   |   18 -
 .../device_drivers/wan/z8530book.rst          |  256 ---
 drivers/net/wan/Kconfig                       |   22 -
 drivers/net/wan/Makefile                      |    2 -
 drivers/net/wan/hostess_sv11.c                |  336 ----
 drivers/net/wan/sealevel.c                    |  352 ----
 drivers/net/wan/z85230.c                      | 1641 -----------------
 drivers/net/wan/z85230.h                      |  407 ----
 9 files changed, 3035 deletions(-)
 delete mode 100644 Documentation/networking/device_drivers/wan/index.rst
 delete mode 100644 Documentation/networking/device_drivers/wan/z8530book.rst
 delete mode 100644 drivers/net/wan/hostess_sv11.c
 delete mode 100644 drivers/net/wan/sealevel.c
 delete mode 100644 drivers/net/wan/z85230.c
 delete mode 100644 drivers/net/wan/z85230.h

diff --git a/Documentation/networking/device_drivers/index.rst b/Documentation/networking/device_drivers/index.rst
index 5f5cfdb2a300..601eacaf12f3 100644
--- a/Documentation/networking/device_drivers/index.rst
+++ b/Documentation/networking/device_drivers/index.rst
@@ -17,7 +17,6 @@ Hardware Device Drivers
    fddi/index
    hamradio/index
    qlogic/index
-   wan/index
    wifi/index
    wwan/index
 
diff --git a/Documentation/networking/device_drivers/wan/index.rst b/Documentation/networking/device_drivers/wan/index.rst
deleted file mode 100644
index 9d9ae94f00b4..000000000000
--- a/Documentation/networking/device_drivers/wan/index.rst
+++ /dev/null
@@ -1,18 +0,0 @@
-.. SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
-
-Classic WAN Device Drivers
-==========================
-
-Contents:
-
-.. toctree::
-   :maxdepth: 2
-
-   z8530book
-
-.. only::  subproject and html
-
-   Indices
-   =======
-
-   * :ref:`genindex`
diff --git a/Documentation/networking/device_drivers/wan/z8530book.rst b/Documentation/networking/device_drivers/wan/z8530book.rst
deleted file mode 100644
index fea2c40e7973..000000000000
--- a/Documentation/networking/device_drivers/wan/z8530book.rst
+++ /dev/null
@@ -1,256 +0,0 @@
-=======================
-Z8530 Programming Guide
-=======================
-
-:Author: Alan Cox
-
-Introduction
-============
-
-The Z85x30 family synchronous/asynchronous controller chips are used on
-a large number of cheap network interface cards. The kernel provides a
-core interface layer that is designed to make it easy to provide WAN
-services using this chip.
-
-The current driver only support synchronous operation. Merging the
-asynchronous driver support into this code to allow any Z85x30 device to
-be used as both a tty interface and as a synchronous controller is a
-project for Linux post the 2.4 release
-
-Driver Modes
-============
-
-The Z85230 driver layer can drive Z8530, Z85C30 and Z85230 devices in
-three different modes. Each mode can be applied to an individual channel
-on the chip (each chip has two channels).
-
-The PIO synchronous mode supports the most common Z8530 wiring. Here the
-chip is interface to the I/O and interrupt facilities of the host
-machine but not to the DMA subsystem. When running PIO the Z8530 has
-extremely tight timing requirements. Doing high speeds, even with a
-Z85230 will be tricky. Typically you should expect to achieve at best
-9600 baud with a Z8C530 and 64Kbits with a Z85230.
-
-The DMA mode supports the chip when it is configured to use dual DMA
-channels on an ISA bus. The better cards tend to support this mode of
-operation for a single channel. With DMA running the Z85230 tops out
-when it starts to hit ISA DMA constraints at about 512Kbits. It is worth
-noting here that many PC machines hang or crash when the chip is driven
-fast enough to hold the ISA bus solid.
-
-Transmit DMA mode uses a single DMA channel. The DMA channel is used for
-transmission as the transmit FIFO is smaller than the receive FIFO. it
-gives better performance than pure PIO mode but is nowhere near as ideal
-as pure DMA mode.
-
-Using the Z85230 driver
-=======================
-
-The Z85230 driver provides the back end interface to your board. To
-configure a Z8530 interface you need to detect the board and to identify
-its ports and interrupt resources. It is also your problem to verify the
-resources are available.
-
-Having identified the chip you need to fill in a struct z8530_dev,
-which describes each chip. This object must exist until you finally
-shutdown the board. Firstly zero the active field. This ensures nothing
-goes off without you intending it. The irq field should be set to the
-interrupt number of the chip. (Each chip has a single interrupt source
-rather than each channel). You are responsible for allocating the
-interrupt line. The interrupt handler should be set to
-:c:func:`z8530_interrupt()`. The device id should be set to the
-z8530_dev structure pointer. Whether the interrupt can be shared or not
-is board dependent, and up to you to initialise.
-
-The structure holds two channel structures. Initialise chanA.ctrlio and
-chanA.dataio with the address of the control and data ports. You can or
-this with Z8530_PORT_SLEEP to indicate your interface needs the 5uS
-delay for chip settling done in software. The PORT_SLEEP option is
-architecture specific. Other flags may become available on future
-platforms, eg for MMIO. Initialise the chanA.irqs to &z8530_nop to
-start the chip up as disabled and discarding interrupt events. This
-ensures that stray interrupts will be mopped up and not hang the bus.
-Set chanA.dev to point to the device structure itself. The private and
-name field you may use as you wish. The private field is unused by the
-Z85230 layer. The name is used for error reporting and it may thus make
-sense to make it match the network name.
-
-Repeat the same operation with the B channel if your chip has both
-channels wired to something useful. This isn't always the case. If it is
-not wired then the I/O values do not matter, but you must initialise
-chanB.dev.
-
-If your board has DMA facilities then initialise the txdma and rxdma
-fields for the relevant channels. You must also allocate the ISA DMA
-channels and do any necessary board level initialisation to configure
-them. The low level driver will do the Z8530 and DMA controller
-programming but not board specific magic.
-
-Having initialised the device you can then call
-:c:func:`z8530_init()`. This will probe the chip and reset it into
-a known state. An identification sequence is then run to identify the
-chip type. If the checks fail to pass the function returns a non zero
-error code. Typically this indicates that the port given is not valid.
-After this call the type field of the z8530_dev structure is
-initialised to either Z8530, Z85C30 or Z85230 according to the chip
-found.
-
-Once you have called z8530_init you can also make use of the utility
-function :c:func:`z8530_describe()`. This provides a consistent
-reporting format for the Z8530 devices, and allows all the drivers to
-provide consistent reporting.
-
-Attaching Network Interfaces
-============================
-
-If you wish to use the network interface facilities of the driver, then
-you need to attach a network device to each channel that is present and
-in use. In addition to use the generic HDLC you need to follow some
-additional plumbing rules. They may seem complex but a look at the
-example hostess_sv11 driver should reassure you.
-
-The network device used for each channel should be pointed to by the
-netdevice field of each channel. The hdlc-> priv field of the network
-device points to your private data - you will need to be able to find
-your private data from this.
-
-The way most drivers approach this particular problem is to create a
-structure holding the Z8530 device definition and put that into the
-private field of the network device. The network device fields of the
-channels then point back to the network devices.
-
-If you wish to use the generic HDLC then you need to register the HDLC
-device.
-
-Before you register your network device you will also need to provide
-suitable handlers for most of the network device callbacks. See the
-network device documentation for more details on this.
-
-Configuring And Activating The Port
-===================================
-
-The Z85230 driver provides helper functions and tables to load the port
-registers on the Z8530 chips. When programming the register settings for
-a channel be aware that the documentation recommends initialisation
-orders. Strange things happen when these are not followed.
-
-:c:func:`z8530_channel_load()` takes an array of pairs of
-initialisation values in an array of u8 type. The first value is the
-Z8530 register number. Add 16 to indicate the alternate register bank on
-the later chips. The array is terminated by a 255.
-
-The driver provides a pair of public tables. The z8530_hdlc_kilostream
-table is for the UK 'Kilostream' service and also happens to cover most
-other end host configurations. The z8530_hdlc_kilostream_85230 table
-is the same configuration using the enhancements of the 85230 chip. The
-configuration loaded is standard NRZ encoded synchronous data with HDLC
-bitstuffing. All of the timing is taken from the other end of the link.
-
-When writing your own tables be aware that the driver internally tracks
-register values. It may need to reload values. You should therefore be
-sure to set registers 1-7, 9-11, 14 and 15 in all configurations. Where
-the register settings depend on DMA selection the driver will update the
-bits itself when you open or close. Loading a new table with the
-interface open is not recommended.
-
-There are three standard configurations supported by the core code. In
-PIO mode the interface is programmed up to use interrupt driven PIO.
-This places high demands on the host processor to avoid latency. The
-driver is written to take account of latency issues but it cannot avoid
-latencies caused by other drivers, notably IDE in PIO mode. Because the
-drivers allocate buffers you must also prevent MTU changes while the
-port is open.
-
-Once the port is open it will call the rx_function of each channel
-whenever a completed packet arrived. This is invoked from interrupt
-context and passes you the channel and a network buffer (struct
-sk_buff) holding the data. The data includes the CRC bytes so most
-users will want to trim the last two bytes before processing the data.
-This function is very timing critical. When you wish to simply discard
-data the support code provides the function
-:c:func:`z8530_null_rx()` to discard the data.
-
-To active PIO mode sending and receiving the ``z8530_sync_open`` is called.
-This expects to be passed the network device and the channel. Typically
-this is called from your network device open callback. On a failure a
-non zero error status is returned.
-The :c:func:`z8530_sync_close()` function shuts down a PIO
-channel. This must be done before the channel is opened again and before
-the driver shuts down and unloads.
-
-The ideal mode of operation is dual channel DMA mode. Here the kernel
-driver will configure the board for DMA in both directions. The driver
-also handles ISA DMA issues such as controller programming and the
-memory range limit for you. This mode is activated by calling the
-:c:func:`z8530_sync_dma_open()` function. On failure a non zero
-error value is returned. Once this mode is activated it can be shut down
-by calling the :c:func:`z8530_sync_dma_close()`. You must call
-the close function matching the open mode you used.
-
-The final supported mode uses a single DMA channel to drive the transmit
-side. As the Z85C30 has a larger FIFO on the receive channel this tends
-to increase the maximum speed a little. This is activated by calling the
-``z8530_sync_txdma_open``. This returns a non zero error code on failure. The
-:c:func:`z8530_sync_txdma_close()` function closes down the Z8530
-interface from this mode.
-
-Network Layer Functions
-=======================
-
-The Z8530 layer provides functions to queue packets for transmission.
-The driver internally buffers the frame currently being transmitted and
-one further frame (in order to keep back to back transmission running).
-Any further buffering is up to the caller.
-
-The function :c:func:`z8530_queue_xmit()` takes a network buffer
-in sk_buff format and queues it for transmission. The caller must
-provide the entire packet with the exception of the bitstuffing and CRC.
-This is normally done by the caller via the generic HDLC interface
-layer. It returns 0 if the buffer has been queued and non zero values
-for queue full. If the function accepts the buffer it becomes property
-of the Z8530 layer and the caller should not free it.
-
-The function :c:func:`z8530_get_stats()` returns a pointer to an
-internally maintained per interface statistics block. This provides most
-of the interface code needed to implement the network layer get_stats
-callback.
-
-Porting The Z8530 Driver
-========================
-
-The Z8530 driver is written to be portable. In DMA mode it makes
-assumptions about the use of ISA DMA. These are probably warranted in
-most cases as the Z85230 in particular was designed to glue to PC type
-machines. The PIO mode makes no real assumptions.
-
-Should you need to retarget the Z8530 driver to another architecture the
-only code that should need changing are the port I/O functions. At the
-moment these assume PC I/O port accesses. This may not be appropriate
-for all platforms. Replacing :c:func:`z8530_read_port()` and
-``z8530_write_port`` is intended to be all that is required to port
-this driver layer.
-
-Known Bugs And Assumptions
-==========================
-
-Interrupt Locking
-    The locking in the driver is done via the global cli/sti lock. This
-    makes for relatively poor SMP performance. Switching this to use a
-    per device spin lock would probably materially improve performance.
-
-Occasional Failures
-    We have reports of occasional failures when run for very long
-    periods of time and the driver starts to receive junk frames. At the
-    moment the cause of this is not clear.
-
-Public Functions Provided
-=========================
-
-.. kernel-doc:: drivers/net/wan/z85230.c
-   :export:
-
-Internal Functions
-==================
-
-.. kernel-doc:: drivers/net/wan/z85230.c
-   :internal:
diff --git a/drivers/net/wan/Kconfig b/drivers/net/wan/Kconfig
index 12c5b6c67ab2..dcb069dde66b 100644
--- a/drivers/net/wan/Kconfig
+++ b/drivers/net/wan/Kconfig
@@ -23,28 +23,6 @@ menuconfig WAN
 
 if WAN
 
-# There is no way to detect a comtrol sv11 - force it modular for now.
-config HOSTESS_SV11
-	tristate "Comtrol Hostess SV-11 support"
-	depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS
-	help
-	  Driver for Comtrol Hostess SV-11 network card which
-	  operates on low speed synchronous serial links at up to
-	  256Kbps, supporting PPP and Cisco HDLC.
-
-	  The driver will be compiled as a module: the
-	  module will be called hostess_sv11.
-
-# There is no way to detect a Sealevel board. Force it modular
-config SEALEVEL_4021
-	tristate "Sealevel Systems 4021 support"
-	depends on ISA && m && ISA_DMA_API && INET && HDLC && VIRT_TO_BUS
-	help
-	  This is a driver for the Sealevel Systems ACB 56 serial I/O adapter.
-
-	  The driver will be compiled as a module: the
-	  module will be called sealevel.
-
 # Generic HDLC
 config HDLC
 	tristate "Generic HDLC layer"
diff --git a/drivers/net/wan/Makefile b/drivers/net/wan/Makefile
index 901a094c061c..5bec8fae47f8 100644
--- a/drivers/net/wan/Makefile
+++ b/drivers/net/wan/Makefile
@@ -14,8 +14,6 @@ obj-$(CONFIG_HDLC_FR)		+= hdlc_fr.o
 obj-$(CONFIG_HDLC_PPP)		+= hdlc_ppp.o
 obj-$(CONFIG_HDLC_X25)		+= hdlc_x25.o
 
-obj-$(CONFIG_HOSTESS_SV11)	+= z85230.o	hostess_sv11.o
-obj-$(CONFIG_SEALEVEL_4021)	+= z85230.o	sealevel.o
 obj-$(CONFIG_FARSYNC)		+= farsync.o
 
 obj-$(CONFIG_LAPBETHER)		+= lapbether.o
diff --git a/drivers/net/wan/hostess_sv11.c b/drivers/net/wan/hostess_sv11.c
deleted file mode 100644
index e985e54ba75d..000000000000
--- a/drivers/net/wan/hostess_sv11.c
+++ /dev/null
@@ -1,336 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-only
-/*	Comtrol SV11 card driver
- *
- *	This is a slightly odd Z85230 synchronous driver. All you need to
- *	know basically is
- *
- *	Its a genuine Z85230
- *
- *	It supports DMA using two DMA channels in SYNC mode. The driver doesn't
- *	use these facilities
- *
- *	The control port is at io+1, the data at io+3 and turning off the DMA
- *	is done by writing 0 to io+4
- *
- *	The hardware does the bus handling to avoid the need for delays between
- *	touching control registers.
- *
- *	Port B isn't wired (why - beats me)
- *
- *	Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@xxxxxxxxx>
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/net.h>
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/if_arp.h>
-#include <linux/delay.h>
-#include <linux/hdlc.h>
-#include <linux/ioport.h>
-#include <linux/slab.h>
-#include <net/arp.h>
-
-#include <asm/irq.h>
-#include <asm/io.h>
-#include <asm/dma.h>
-#include <asm/byteorder.h>
-#include "z85230.h"
-
-static int dma;
-
-/*	Network driver support routines
- */
-
-static inline struct z8530_dev *dev_to_sv(struct net_device *dev)
-{
-	return (struct z8530_dev *)dev_to_hdlc(dev)->priv;
-}
-
-/*	Frame receive. Simple for our card as we do HDLC and there
- *	is no funny garbage involved
- */
-
-static void hostess_input(struct z8530_channel *c, struct sk_buff *skb)
-{
-	/* Drop the CRC - it's not a good idea to try and negotiate it ;) */
-	skb_trim(skb, skb->len - 2);
-	skb->protocol = hdlc_type_trans(skb, c->netdevice);
-	skb_reset_mac_header(skb);
-	skb->dev = c->netdevice;
-	/*	Send it to the PPP layer. We don't have time to process
-	 *	it right now.
-	 */
-	netif_rx(skb);
-}
-
-/*	We've been placed in the UP state
- */
-
-static int hostess_open(struct net_device *d)
-{
-	struct z8530_dev *sv11 = dev_to_sv(d);
-	int err = -1;
-
-	/*	Link layer up
-	 */
-	switch (dma) {
-	case 0:
-		err = z8530_sync_open(d, &sv11->chanA);
-		break;
-	case 1:
-		err = z8530_sync_dma_open(d, &sv11->chanA);
-		break;
-	case 2:
-		err = z8530_sync_txdma_open(d, &sv11->chanA);
-		break;
-	}
-
-	if (err)
-		return err;
-
-	err = hdlc_open(d);
-	if (err) {
-		switch (dma) {
-		case 0:
-			z8530_sync_close(d, &sv11->chanA);
-			break;
-		case 1:
-			z8530_sync_dma_close(d, &sv11->chanA);
-			break;
-		case 2:
-			z8530_sync_txdma_close(d, &sv11->chanA);
-			break;
-		}
-		return err;
-	}
-	sv11->chanA.rx_function = hostess_input;
-
-	/*
-	 *	Go go go
-	 */
-
-	netif_start_queue(d);
-	return 0;
-}
-
-static int hostess_close(struct net_device *d)
-{
-	struct z8530_dev *sv11 = dev_to_sv(d);
-	/*	Discard new frames
-	 */
-	sv11->chanA.rx_function = z8530_null_rx;
-
-	hdlc_close(d);
-	netif_stop_queue(d);
-
-	switch (dma) {
-	case 0:
-		z8530_sync_close(d, &sv11->chanA);
-		break;
-	case 1:
-		z8530_sync_dma_close(d, &sv11->chanA);
-		break;
-	case 2:
-		z8530_sync_txdma_close(d, &sv11->chanA);
-		break;
-	}
-	return 0;
-}
-
-/*	Passed network frames, fire them downwind.
- */
-
-static netdev_tx_t hostess_queue_xmit(struct sk_buff *skb,
-				      struct net_device *d)
-{
-	return z8530_queue_xmit(&dev_to_sv(d)->chanA, skb);
-}
-
-static int hostess_attach(struct net_device *dev, unsigned short encoding,
-			  unsigned short parity)
-{
-	if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT)
-		return 0;
-	return -EINVAL;
-}
-
-/*	Description block for a Comtrol Hostess SV11 card
- */
-
-static const struct net_device_ops hostess_ops = {
-	.ndo_open       = hostess_open,
-	.ndo_stop       = hostess_close,
-	.ndo_start_xmit = hdlc_start_xmit,
-	.ndo_siocwandev = hdlc_ioctl,
-};
-
-static struct z8530_dev *sv11_init(int iobase, int irq)
-{
-	struct z8530_dev *sv;
-	struct net_device *netdev;
-	/*	Get the needed I/O space
-	 */
-
-	if (!request_region(iobase, 8, "Comtrol SV11")) {
-		pr_warn("I/O 0x%X already in use\n", iobase);
-		return NULL;
-	}
-
-	sv = kzalloc(sizeof(struct z8530_dev), GFP_KERNEL);
-	if (!sv)
-		goto err_kzalloc;
-
-	/*	Stuff in the I/O addressing
-	 */
-
-	sv->active = 0;
-
-	sv->chanA.ctrlio = iobase + 1;
-	sv->chanA.dataio = iobase + 3;
-	sv->chanB.ctrlio = -1;
-	sv->chanB.dataio = -1;
-	sv->chanA.irqs = &z8530_nop;
-	sv->chanB.irqs = &z8530_nop;
-
-	outb(0, iobase + 4);		/* DMA off */
-
-	/* We want a fast IRQ for this device. Actually we'd like an even faster
-	 * IRQ ;) - This is one driver RtLinux is made for
-	 */
-
-	if (request_irq(irq, z8530_interrupt, 0,
-			"Hostess SV11", sv) < 0) {
-		pr_warn("IRQ %d already in use\n", irq);
-		goto err_irq;
-	}
-
-	sv->irq = irq;
-	sv->chanA.private = sv;
-	sv->chanA.dev = sv;
-	sv->chanB.dev = sv;
-
-	if (dma) {
-		/*	You can have DMA off or 1 and 3 thats the lot
-		 *	on the Comtrol.
-		 */
-		sv->chanA.txdma = 3;
-		sv->chanA.rxdma = 1;
-		outb(0x03 | 0x08, iobase + 4);		/* DMA on */
-		if (request_dma(sv->chanA.txdma, "Hostess SV/11 (TX)"))
-			goto err_txdma;
-
-		if (dma == 1)
-			if (request_dma(sv->chanA.rxdma, "Hostess SV/11 (RX)"))
-				goto err_rxdma;
-	}
-
-	/* Kill our private IRQ line the hostess can end up chattering
-	 * until the configuration is set
-	 */
-	disable_irq(irq);
-
-	/*	Begin normal initialise
-	 */
-
-	if (z8530_init(sv)) {
-		pr_err("Z8530 series device not found\n");
-		enable_irq(irq);
-		goto free_dma;
-	}
-	z8530_channel_load(&sv->chanB, z8530_dead_port);
-	if (sv->type == Z85C30)
-		z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream);
-	else
-		z8530_channel_load(&sv->chanA, z8530_hdlc_kilostream_85230);
-
-	enable_irq(irq);
-
-	/*	Now we can take the IRQ
-	 */
-
-	sv->chanA.netdevice = netdev = alloc_hdlcdev(sv);
-	if (!netdev)
-		goto free_dma;
-
-	dev_to_hdlc(netdev)->attach = hostess_attach;
-	dev_to_hdlc(netdev)->xmit = hostess_queue_xmit;
-	netdev->netdev_ops = &hostess_ops;
-	netdev->base_addr = iobase;
-	netdev->irq = irq;
-
-	if (register_hdlc_device(netdev)) {
-		pr_err("unable to register HDLC device\n");
-		free_netdev(netdev);
-		goto free_dma;
-	}
-
-	z8530_describe(sv, "I/O", iobase);
-	sv->active = 1;
-	return sv;
-
-free_dma:
-	if (dma == 1)
-		free_dma(sv->chanA.rxdma);
-err_rxdma:
-	if (dma)
-		free_dma(sv->chanA.txdma);
-err_txdma:
-	free_irq(irq, sv);
-err_irq:
-	kfree(sv);
-err_kzalloc:
-	release_region(iobase, 8);
-	return NULL;
-}
-
-static void sv11_shutdown(struct z8530_dev *dev)
-{
-	unregister_hdlc_device(dev->chanA.netdevice);
-	z8530_shutdown(dev);
-	free_irq(dev->irq, dev);
-	if (dma) {
-		if (dma == 1)
-			free_dma(dev->chanA.rxdma);
-		free_dma(dev->chanA.txdma);
-	}
-	release_region(dev->chanA.ctrlio - 1, 8);
-	free_netdev(dev->chanA.netdevice);
-	kfree(dev);
-}
-
-static int io = 0x200;
-static int irq = 9;
-
-module_param_hw(io, int, ioport, 0);
-MODULE_PARM_DESC(io, "The I/O base of the Comtrol Hostess SV11 card");
-module_param_hw(dma, int, dma, 0);
-MODULE_PARM_DESC(dma, "Set this to 1 to use DMA1/DMA3 for TX/RX");
-module_param_hw(irq, int, irq, 0);
-MODULE_PARM_DESC(irq, "The interrupt line setting for the Comtrol Hostess SV11 card");
-
-MODULE_AUTHOR("Alan Cox");
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("Modular driver for the Comtrol Hostess SV11");
-
-static struct z8530_dev *sv11_unit;
-
-static int sv11_module_init(void)
-{
-	sv11_unit = sv11_init(io, irq);
-	if (!sv11_unit)
-		return -ENODEV;
-	return 0;
-}
-module_init(sv11_module_init);
-
-static void sv11_module_cleanup(void)
-{
-	if (sv11_unit)
-		sv11_shutdown(sv11_unit);
-}
-module_exit(sv11_module_cleanup);
diff --git a/drivers/net/wan/sealevel.c b/drivers/net/wan/sealevel.c
deleted file mode 100644
index eddd20aab691..000000000000
--- a/drivers/net/wan/sealevel.c
+++ /dev/null
@@ -1,352 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*	Sealevel Systems 4021 driver.
- *
- *	(c) Copyright 1999, 2001 Alan Cox
- *	(c) Copyright 2001 Red Hat Inc.
- *	Generic HDLC port Copyright (C) 2008 Krzysztof Halasa <khc@xxxxxxxxx>
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/net.h>
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/if_arp.h>
-#include <linux/delay.h>
-#include <linux/hdlc.h>
-#include <linux/ioport.h>
-#include <linux/init.h>
-#include <linux/slab.h>
-#include <net/arp.h>
-
-#include <asm/irq.h>
-#include <asm/io.h>
-#include <asm/dma.h>
-#include <asm/byteorder.h>
-#include "z85230.h"
-
-struct slvl_device {
-	struct z8530_channel *chan;
-	int channel;
-};
-
-struct slvl_board {
-	struct slvl_device dev[2];
-	struct z8530_dev board;
-	int iobase;
-};
-
- /*	Network driver support routines */
-
-static inline struct slvl_device *dev_to_chan(struct net_device *dev)
-{
-	return (struct slvl_device *)dev_to_hdlc(dev)->priv;
-}
-
-/*	Frame receive. Simple for our card as we do HDLC and there
- *	is no funny garbage involved
- */
-
-static void sealevel_input(struct z8530_channel *c, struct sk_buff *skb)
-{
-	/* Drop the CRC - it's not a good idea to try and negotiate it ;) */
-	skb_trim(skb, skb->len - 2);
-	skb->protocol = hdlc_type_trans(skb, c->netdevice);
-	skb_reset_mac_header(skb);
-	skb->dev = c->netdevice;
-	netif_rx(skb);
-}
-
- /*	We've been placed in the UP state */
-
-static int sealevel_open(struct net_device *d)
-{
-	struct slvl_device *slvl = dev_to_chan(d);
-	int err = -1;
-	int unit = slvl->channel;
-
-	 /*	Link layer up. */
-
-	switch (unit) {
-	case 0:
-		err = z8530_sync_dma_open(d, slvl->chan);
-		break;
-	case 1:
-		err = z8530_sync_open(d, slvl->chan);
-		break;
-	}
-
-	if (err)
-		return err;
-
-	err = hdlc_open(d);
-	if (err) {
-		switch (unit) {
-		case 0:
-			z8530_sync_dma_close(d, slvl->chan);
-			break;
-		case 1:
-			z8530_sync_close(d, slvl->chan);
-			break;
-		}
-		return err;
-	}
-
-	slvl->chan->rx_function = sealevel_input;
-
-	netif_start_queue(d);
-	return 0;
-}
-
-static int sealevel_close(struct net_device *d)
-{
-	struct slvl_device *slvl = dev_to_chan(d);
-	int unit = slvl->channel;
-
-	/*	Discard new frames */
-
-	slvl->chan->rx_function = z8530_null_rx;
-
-	hdlc_close(d);
-	netif_stop_queue(d);
-
-	switch (unit) {
-	case 0:
-		z8530_sync_dma_close(d, slvl->chan);
-		break;
-	case 1:
-		z8530_sync_close(d, slvl->chan);
-		break;
-	}
-	return 0;
-}
-
-/*	Passed network frames, fire them downwind. */
-
-static netdev_tx_t sealevel_queue_xmit(struct sk_buff *skb,
-				       struct net_device *d)
-{
-	return z8530_queue_xmit(dev_to_chan(d)->chan, skb);
-}
-
-static int sealevel_attach(struct net_device *dev, unsigned short encoding,
-			   unsigned short parity)
-{
-	if (encoding == ENCODING_NRZ && parity == PARITY_CRC16_PR1_CCITT)
-		return 0;
-	return -EINVAL;
-}
-
-static const struct net_device_ops sealevel_ops = {
-	.ndo_open       = sealevel_open,
-	.ndo_stop       = sealevel_close,
-	.ndo_start_xmit = hdlc_start_xmit,
-	.ndo_siocwandev = hdlc_ioctl,
-};
-
-static int slvl_setup(struct slvl_device *sv, int iobase, int irq)
-{
-	struct net_device *dev = alloc_hdlcdev(sv);
-
-	if (!dev)
-		return -1;
-
-	dev_to_hdlc(dev)->attach = sealevel_attach;
-	dev_to_hdlc(dev)->xmit = sealevel_queue_xmit;
-	dev->netdev_ops = &sealevel_ops;
-	dev->base_addr = iobase;
-	dev->irq = irq;
-
-	if (register_hdlc_device(dev)) {
-		pr_err("unable to register HDLC device\n");
-		free_netdev(dev);
-		return -1;
-	}
-
-	sv->chan->netdevice = dev;
-	return 0;
-}
-
-/*	Allocate and setup Sealevel board. */
-
-static __init struct slvl_board *slvl_init(int iobase, int irq,
-					   int txdma, int rxdma, int slow)
-{
-	struct z8530_dev *dev;
-	struct slvl_board *b;
-
-	/*	Get the needed I/O space */
-
-	if (!request_region(iobase, 8, "Sealevel 4021")) {
-		pr_warn("I/O 0x%X already in use\n", iobase);
-		return NULL;
-	}
-
-	b = kzalloc(sizeof(struct slvl_board), GFP_KERNEL);
-	if (!b)
-		goto err_kzalloc;
-
-	b->dev[0].chan = &b->board.chanA;
-	b->dev[0].channel = 0;
-
-	b->dev[1].chan = &b->board.chanB;
-	b->dev[1].channel = 1;
-
-	dev = &b->board;
-
-	/*	Stuff in the I/O addressing */
-
-	dev->active = 0;
-
-	b->iobase = iobase;
-
-	/*	Select 8530 delays for the old board */
-
-	if (slow)
-		iobase |= Z8530_PORT_SLEEP;
-
-	dev->chanA.ctrlio = iobase + 1;
-	dev->chanA.dataio = iobase;
-	dev->chanB.ctrlio = iobase + 3;
-	dev->chanB.dataio = iobase + 2;
-
-	dev->chanA.irqs = &z8530_nop;
-	dev->chanB.irqs = &z8530_nop;
-
-	/*	Assert DTR enable DMA */
-
-	outb(3 | (1 << 7), b->iobase + 4);
-
-	/* We want a fast IRQ for this device. Actually we'd like an even faster
-	 * IRQ ;) - This is one driver RtLinux is made for
-	 */
-
-	if (request_irq(irq, z8530_interrupt, 0,
-			"SeaLevel", dev) < 0) {
-		pr_warn("IRQ %d already in use\n", irq);
-		goto err_request_irq;
-	}
-
-	dev->irq = irq;
-	dev->chanA.private = &b->dev[0];
-	dev->chanB.private = &b->dev[1];
-	dev->chanA.dev = dev;
-	dev->chanB.dev = dev;
-
-	dev->chanA.txdma = 3;
-	dev->chanA.rxdma = 1;
-	if (request_dma(dev->chanA.txdma, "SeaLevel (TX)"))
-		goto err_dma_tx;
-
-	if (request_dma(dev->chanA.rxdma, "SeaLevel (RX)"))
-		goto err_dma_rx;
-
-	disable_irq(irq);
-
-	/*	Begin normal initialise */
-
-	if (z8530_init(dev) != 0) {
-		pr_err("Z8530 series device not found\n");
-		enable_irq(irq);
-		goto free_hw;
-	}
-	if (dev->type == Z85C30) {
-		z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream);
-		z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream);
-	} else {
-		z8530_channel_load(&dev->chanA, z8530_hdlc_kilostream_85230);
-		z8530_channel_load(&dev->chanB, z8530_hdlc_kilostream_85230);
-	}
-
-	/*	Now we can take the IRQ */
-
-	enable_irq(irq);
-
-	if (slvl_setup(&b->dev[0], iobase, irq))
-		goto free_hw;
-	if (slvl_setup(&b->dev[1], iobase, irq))
-		goto free_netdev0;
-
-	z8530_describe(dev, "I/O", iobase);
-	dev->active = 1;
-	return b;
-
-free_netdev0:
-	unregister_hdlc_device(b->dev[0].chan->netdevice);
-	free_netdev(b->dev[0].chan->netdevice);
-free_hw:
-	free_dma(dev->chanA.rxdma);
-err_dma_rx:
-	free_dma(dev->chanA.txdma);
-err_dma_tx:
-	free_irq(irq, dev);
-err_request_irq:
-	kfree(b);
-err_kzalloc:
-	release_region(iobase, 8);
-	return NULL;
-}
-
-static void __exit slvl_shutdown(struct slvl_board *b)
-{
-	int u;
-
-	z8530_shutdown(&b->board);
-
-	for (u = 0; u < 2; u++) {
-		struct net_device *d = b->dev[u].chan->netdevice;
-
-		unregister_hdlc_device(d);
-		free_netdev(d);
-	}
-
-	free_irq(b->board.irq, &b->board);
-	free_dma(b->board.chanA.rxdma);
-	free_dma(b->board.chanA.txdma);
-	/* DMA off on the card, drop DTR */
-	outb(0, b->iobase);
-	release_region(b->iobase, 8);
-	kfree(b);
-}
-
-static int io = 0x238;
-static int txdma = 1;
-static int rxdma = 3;
-static int irq = 5;
-static bool slow;
-
-module_param_hw(io, int, ioport, 0);
-MODULE_PARM_DESC(io, "The I/O base of the Sealevel card");
-module_param_hw(txdma, int, dma, 0);
-MODULE_PARM_DESC(txdma, "Transmit DMA channel");
-module_param_hw(rxdma, int, dma, 0);
-MODULE_PARM_DESC(rxdma, "Receive DMA channel");
-module_param_hw(irq, int, irq, 0);
-MODULE_PARM_DESC(irq, "The interrupt line setting for the SeaLevel card");
-module_param(slow, bool, 0);
-MODULE_PARM_DESC(slow, "Set this for an older Sealevel card such as the 4012");
-
-MODULE_AUTHOR("Alan Cox");
-MODULE_LICENSE("GPL");
-MODULE_DESCRIPTION("Modular driver for the SeaLevel 4021");
-
-static struct slvl_board *slvl_unit;
-
-static int __init slvl_init_module(void)
-{
-	slvl_unit = slvl_init(io, irq, txdma, rxdma, slow);
-
-	return slvl_unit ? 0 : -ENODEV;
-}
-
-static void __exit slvl_cleanup_module(void)
-{
-	if (slvl_unit)
-		slvl_shutdown(slvl_unit);
-}
-
-module_init(slvl_init_module);
-module_exit(slvl_cleanup_module);
diff --git a/drivers/net/wan/z85230.c b/drivers/net/wan/z85230.c
deleted file mode 100644
index 982a03488a00..000000000000
--- a/drivers/net/wan/z85230.c
+++ /dev/null
@@ -1,1641 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0-or-later
-/*	(c) Copyright 1998 Alan Cox <alan@xxxxxxxxxxxxxxxxxxx>
- *	(c) Copyright 2000, 2001 Red Hat Inc
- *
- *	Development of this driver was funded by Equiinet Ltd
- *			http://www.equiinet.com
- *
- *	ChangeLog:
- *
- *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
- *	unification of all the Z85x30 asynchronous drivers for real.
- *
- *	DMA now uses get_free_page as kmalloc buffers may span a 64K
- *	boundary.
- *
- *	Modified for SMP safety and SMP locking by Alan Cox
- *					<alan@xxxxxxxxxxxxxxxxxxx>
- *
- *	Performance
- *
- *	Z85230:
- *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
- *	X.25 is not unrealistic on all machines. DMA mode can in theory
- *	handle T1/E1 quite nicely. In practice the limit seems to be about
- *	512Kbit->1Mbit depending on motherboard.
- *
- *	Z85C30:
- *	64K will take DMA, 9600 baud X.25 should be ok.
- *
- *	Z8530:
- *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
- */
-
-#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
-
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/net.h>
-#include <linux/skbuff.h>
-#include <linux/netdevice.h>
-#include <linux/if_arp.h>
-#include <linux/delay.h>
-#include <linux/hdlc.h>
-#include <linux/ioport.h>
-#include <linux/init.h>
-#include <linux/gfp.h>
-#include <asm/dma.h>
-#include <asm/io.h>
-#define RT_LOCK
-#define RT_UNLOCK
-#include <linux/spinlock.h>
-
-#include "z85230.h"
-
-/**
- *	z8530_read_port - Architecture specific interface function
- *	@p: port to read
- *
- *	Provided port access methods. The Comtrol SV11 requires no delays
- *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
- *
- *	In the longer term this should become an architecture specific
- *	section so that this can become a generic driver interface for all
- *	platforms. For now we only handle PC I/O ports with or without the
- *	dread 5uS sanity delay.
- *
- *	The caller must hold sufficient locks to avoid violating the horrible
- *	5uS delay rule.
- */
-
-static inline int z8530_read_port(unsigned long p)
-{
-	u8 r = inb(Z8530_PORT_OF(p));
-
-	if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
-		udelay(5);
-	return r;
-}
-
-/**
- *	z8530_write_port - Architecture specific interface function
- *	@p: port to write
- *	@d: value to write
- *
- *	Write a value to a port with delays if need be. Note that the
- *	caller must hold locks to avoid read/writes from other contexts
- *	violating the 5uS rule
- *
- *	In the longer term this should become an architecture specific
- *	section so that this can become a generic driver interface for all
- *	platforms. For now we only handle PC I/O ports with or without the
- *	dread 5uS sanity delay.
- */
-
-static inline void z8530_write_port(unsigned long p, u8 d)
-{
-	outb(d, Z8530_PORT_OF(p));
-	if (p & Z8530_PORT_SLEEP)
-		udelay(5);
-}
-
-static void z8530_rx_done(struct z8530_channel *c);
-static void z8530_tx_done(struct z8530_channel *c);
-
-/**
- *	read_zsreg - Read a register from a Z85230
- *	@c: Z8530 channel to read from (2 per chip)
- *	@reg: Register to read
- *	FIXME: Use a spinlock.
- *
- *	Most of the Z8530 registers are indexed off the control registers.
- *	A read is done by writing to the control register and reading the
- *	register back.  The caller must hold the lock
- */
-
-static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
-{
-	if (reg)
-		z8530_write_port(c->ctrlio, reg);
-	return z8530_read_port(c->ctrlio);
-}
-
-/**
- *	read_zsdata - Read the data port of a Z8530 channel
- *	@c: The Z8530 channel to read the data port from
- *
- *	The data port provides fast access to some things. We still
- *	have all the 5uS delays to worry about.
- */
-
-static inline u8 read_zsdata(struct z8530_channel *c)
-{
-	u8 r;
-
-	r = z8530_read_port(c->dataio);
-	return r;
-}
-
-/**
- *	write_zsreg - Write to a Z8530 channel register
- *	@c: The Z8530 channel
- *	@reg: Register number
- *	@val: Value to write
- *
- *	Write a value to an indexed register. The caller must hold the lock
- *	to honour the irritating delay rules. We know about register 0
- *	being fast to access.
- *
- *      Assumes c->lock is held.
- */
-static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
-{
-	if (reg)
-		z8530_write_port(c->ctrlio, reg);
-	z8530_write_port(c->ctrlio, val);
-}
-
-/**
- *	write_zsctrl - Write to a Z8530 control register
- *	@c: The Z8530 channel
- *	@val: Value to write
- *
- *	Write directly to the control register on the Z8530
- */
-
-static inline void write_zsctrl(struct z8530_channel *c, u8 val)
-{
-	z8530_write_port(c->ctrlio, val);
-}
-
-/**
- *	write_zsdata - Write to a Z8530 control register
- *	@c: The Z8530 channel
- *	@val: Value to write
- *
- *	Write directly to the data register on the Z8530
- */
-static inline void write_zsdata(struct z8530_channel *c, u8 val)
-{
-	z8530_write_port(c->dataio, val);
-}
-
-/*	Register loading parameters for a dead port
- */
-
-u8 z8530_dead_port[] = {
-	255
-};
-EXPORT_SYMBOL(z8530_dead_port);
-
-/*	Register loading parameters for currently supported circuit types
- */
-
-/*	Data clocked by telco end. This is the correct data for the UK
- *	"kilostream" service, and most other similar services.
- */
-
-u8 z8530_hdlc_kilostream[] = {
-	4,	SYNC_ENAB | SDLC | X1CLK,
-	2,	0,	/* No vector */
-	1,	0,
-	3,	ENT_HM | RxCRC_ENAB | Rx8,
-	5,	TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
-	9,	0,		/* Disable interrupts */
-	6,	0xFF,
-	7,	FLAG,
-	10,	ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/
-	11,	TCTRxCP,
-	14,	DISDPLL,
-	15,	DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
-	1,	EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
-	9,	NV | MIE | NORESET,
-	255
-};
-EXPORT_SYMBOL(z8530_hdlc_kilostream);
-
-/*	As above but for enhanced chips.
- */
-
-u8 z8530_hdlc_kilostream_85230[] = {
-	4,	SYNC_ENAB | SDLC | X1CLK,
-	2,	0,	/* No vector */
-	1,	0,
-	3,	ENT_HM | RxCRC_ENAB | Rx8,
-	5,	TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
-	9,	0,		/* Disable interrupts */
-	6,	0xFF,
-	7,	FLAG,
-	10,	ABUNDER | NRZ | CRCPS,	/* MARKIDLE?? */
-	11,	TCTRxCP,
-	14,	DISDPLL,
-	15,	DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
-	1,	EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
-	9,	NV | MIE | NORESET,
-	23,	3,		/* Extended mode AUTO TX and EOM*/
-
-	255
-};
-EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
-
-/**
- *	z8530_flush_fifo - Flush on chip RX FIFO
- *	@c: Channel to flush
- *
- *	Flush the receive FIFO. There is no specific option for this, we
- *	blindly read bytes and discard them. Reading when there is no data
- *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
- *
- *	All locking is handled for the caller. On return data may still be
- *	present if it arrived during the flush.
- */
-
-static void z8530_flush_fifo(struct z8530_channel *c)
-{
-	read_zsreg(c, R1);
-	read_zsreg(c, R1);
-	read_zsreg(c, R1);
-	read_zsreg(c, R1);
-	if (c->dev->type == Z85230) {
-		read_zsreg(c, R1);
-		read_zsreg(c, R1);
-		read_zsreg(c, R1);
-		read_zsreg(c, R1);
-	}
-}
-
-/**
- *	z8530_rtsdtr - Control the outgoing DTS/RTS line
- *	@c: The Z8530 channel to control;
- *	@set: 1 to set, 0 to clear
- *
- *	Sets or clears DTR/RTS on the requested line. All locking is handled
- *	by the caller. For now we assume all boards use the actual RTS/DTR
- *	on the chip. Apparently one or two don't. We'll scream about them
- *	later.
- */
-
-static void z8530_rtsdtr(struct z8530_channel *c, int set)
-{
-	if (set)
-		c->regs[5] |= (RTS | DTR);
-	else
-		c->regs[5] &= ~(RTS | DTR);
-	write_zsreg(c, R5, c->regs[5]);
-}
-
-/**
- *	z8530_rx - Handle a PIO receive event
- *	@c: Z8530 channel to process
- *
- *	Receive handler for receiving in PIO mode. This is much like the
- *	async one but not quite the same or as complex
- *
- *	Note: Its intended that this handler can easily be separated from
- *	the main code to run realtime. That'll be needed for some machines
- *	(eg to ever clock 64kbits on a sparc ;)).
- *
- *	The RT_LOCK macros don't do anything now. Keep the code covered
- *	by them as short as possible in all circumstances - clocks cost
- *	baud. The interrupt handler is assumed to be atomic w.r.t. to
- *	other code - this is true in the RT case too.
- *
- *	We only cover the sync cases for this. If you want 2Mbit async
- *	do it yourself but consider medical assistance first. This non DMA
- *	synchronous mode is portable code. The DMA mode assumes PCI like
- *	ISA DMA
- *
- *	Called with the device lock held
- */
-
-static void z8530_rx(struct z8530_channel *c)
-{
-	u8 ch, stat;
-
-	while (1) {
-		/* FIFO empty ? */
-		if (!(read_zsreg(c, R0) & 1))
-			break;
-		ch = read_zsdata(c);
-		stat = read_zsreg(c, R1);
-
-		/*	Overrun ?
-		 */
-		if (c->count < c->max) {
-			*c->dptr++ = ch;
-			c->count++;
-		}
-
-		if (stat & END_FR) {
-			/*	Error ?
-			 */
-			if (stat & (Rx_OVR | CRC_ERR)) {
-				/* Rewind the buffer and return */
-				if (c->skb)
-					c->dptr = c->skb->data;
-				c->count = 0;
-				if (stat & Rx_OVR) {
-					pr_warn("%s: overrun\n", c->dev->name);
-					c->rx_overrun++;
-				}
-				if (stat & CRC_ERR) {
-					c->rx_crc_err++;
-					/* printk("crc error\n"); */
-				}
-				/* Shove the frame upstream */
-			} else {
-				/*	Drop the lock for RX processing, or
-				 *	there are deadlocks
-				 */
-				z8530_rx_done(c);
-				write_zsctrl(c, RES_Rx_CRC);
-			}
-		}
-	}
-	/*	Clear irq
-	 */
-	write_zsctrl(c, ERR_RES);
-	write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- *	z8530_tx - Handle a PIO transmit event
- *	@c: Z8530 channel to process
- *
- *	Z8530 transmit interrupt handler for the PIO mode. The basic
- *	idea is to attempt to keep the FIFO fed. We fill as many bytes
- *	in as possible, its quite possible that we won't keep up with the
- *	data rate otherwise.
- */
-
-static void z8530_tx(struct z8530_channel *c)
-{
-	while (c->txcount) {
-		/* FIFO full ? */
-		if (!(read_zsreg(c, R0) & 4))
-			return;
-		c->txcount--;
-		/*	Shovel out the byte
-		 */
-		write_zsreg(c, R8, *c->tx_ptr++);
-		write_zsctrl(c, RES_H_IUS);
-		/* We are about to underflow */
-		if (c->txcount == 0) {
-			write_zsctrl(c, RES_EOM_L);
-			write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
-		}
-	}
-
-	/*	End of frame TX - fire another one
-	 */
-
-	write_zsctrl(c, RES_Tx_P);
-
-	z8530_tx_done(c);
-	write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- *	z8530_status - Handle a PIO status exception
- *	@chan: Z8530 channel to process
- *
- *	A status event occurred in PIO synchronous mode. There are several
- *	reasons the chip will bother us here. A transmit underrun means we
- *	failed to feed the chip fast enough and just broke a packet. A DCD
- *	change is a line up or down.
- */
-
-static void z8530_status(struct z8530_channel *chan)
-{
-	u8 status, altered;
-
-	status = read_zsreg(chan, R0);
-	altered = chan->status ^ status;
-
-	chan->status = status;
-
-	if (status & TxEOM) {
-/*		printk("%s: Tx underrun.\n", chan->dev->name); */
-		chan->netdevice->stats.tx_fifo_errors++;
-		write_zsctrl(chan, ERR_RES);
-		z8530_tx_done(chan);
-	}
-
-	if (altered & chan->dcdcheck) {
-		if (status & chan->dcdcheck) {
-			pr_info("%s: DCD raised\n", chan->dev->name);
-			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
-			if (chan->netdevice)
-				netif_carrier_on(chan->netdevice);
-		} else {
-			pr_info("%s: DCD lost\n", chan->dev->name);
-			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
-			z8530_flush_fifo(chan);
-			if (chan->netdevice)
-				netif_carrier_off(chan->netdevice);
-		}
-	}
-	write_zsctrl(chan, RES_EXT_INT);
-	write_zsctrl(chan, RES_H_IUS);
-}
-
-struct z8530_irqhandler z8530_sync = {
-	.rx = z8530_rx,
-	.tx = z8530_tx,
-	.status = z8530_status,
-};
-EXPORT_SYMBOL(z8530_sync);
-
-/**
- *	z8530_dma_rx - Handle a DMA RX event
- *	@chan: Channel to handle
- *
- *	Non bus mastering DMA interfaces for the Z8x30 devices. This
- *	is really pretty PC specific. The DMA mode means that most receive
- *	events are handled by the DMA hardware. We get a kick here only if
- *	a frame ended.
- */
-
-static void z8530_dma_rx(struct z8530_channel *chan)
-{
-	if (chan->rxdma_on) {
-		/* Special condition check only */
-		u8 status;
-
-		read_zsreg(chan, R7);
-		read_zsreg(chan, R6);
-
-		status = read_zsreg(chan, R1);
-
-		if (status & END_FR)
-			z8530_rx_done(chan);	/* Fire up the next one */
-
-		write_zsctrl(chan, ERR_RES);
-		write_zsctrl(chan, RES_H_IUS);
-	} else {
-		/* DMA is off right now, drain the slow way */
-		z8530_rx(chan);
-	}
-}
-
-/**
- *	z8530_dma_tx - Handle a DMA TX event
- *	@chan:	The Z8530 channel to handle
- *
- *	We have received an interrupt while doing DMA transmissions. It
- *	shouldn't happen. Scream loudly if it does.
- */
-static void z8530_dma_tx(struct z8530_channel *chan)
-{
-	if (!chan->dma_tx) {
-		pr_warn("Hey who turned the DMA off?\n");
-		z8530_tx(chan);
-		return;
-	}
-	/* This shouldn't occur in DMA mode */
-	pr_err("DMA tx - bogus event!\n");
-	z8530_tx(chan);
-}
-
-/**
- *	z8530_dma_status - Handle a DMA status exception
- *	@chan: Z8530 channel to process
- *
- *	A status event occurred on the Z8530. We receive these for two reasons
- *	when in DMA mode. Firstly if we finished a packet transfer we get one
- *	and kick the next packet out. Secondly we may see a DCD change.
- *
- */
-static void z8530_dma_status(struct z8530_channel *chan)
-{
-	u8 status, altered;
-
-	status = read_zsreg(chan, R0);
-	altered = chan->status ^ status;
-
-	chan->status = status;
-
-	if (chan->dma_tx) {
-		if (status & TxEOM) {
-			unsigned long flags;
-
-			flags = claim_dma_lock();
-			disable_dma(chan->txdma);
-			clear_dma_ff(chan->txdma);
-			chan->txdma_on = 0;
-			release_dma_lock(flags);
-			z8530_tx_done(chan);
-		}
-	}
-
-	if (altered & chan->dcdcheck) {
-		if (status & chan->dcdcheck) {
-			pr_info("%s: DCD raised\n", chan->dev->name);
-			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
-			if (chan->netdevice)
-				netif_carrier_on(chan->netdevice);
-		} else {
-			pr_info("%s: DCD lost\n", chan->dev->name);
-			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
-			z8530_flush_fifo(chan);
-			if (chan->netdevice)
-				netif_carrier_off(chan->netdevice);
-		}
-	}
-
-	write_zsctrl(chan, RES_EXT_INT);
-	write_zsctrl(chan, RES_H_IUS);
-}
-
-static struct z8530_irqhandler z8530_dma_sync = {
-	.rx = z8530_dma_rx,
-	.tx = z8530_dma_tx,
-	.status = z8530_dma_status,
-};
-
-static struct z8530_irqhandler z8530_txdma_sync = {
-	.rx = z8530_rx,
-	.tx = z8530_dma_tx,
-	.status = z8530_dma_status,
-};
-
-/**
- *	z8530_rx_clear - Handle RX events from a stopped chip
- *	@c: Z8530 channel to shut up
- *
- *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
- *	For machines with PCI Z85x30 cards, or level triggered interrupts
- *	(eg the MacII) we must clear the interrupt cause or die.
- */
-
-static void z8530_rx_clear(struct z8530_channel *c)
-{
-	/*	Data and status bytes
-	 */
-	u8 stat;
-
-	read_zsdata(c);
-	stat = read_zsreg(c, R1);
-
-	if (stat & END_FR)
-		write_zsctrl(c, RES_Rx_CRC);
-	/*	Clear irq
-	 */
-	write_zsctrl(c, ERR_RES);
-	write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- *	z8530_tx_clear - Handle TX events from a stopped chip
- *	@c: Z8530 channel to shut up
- *
- *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
- *	For machines with PCI Z85x30 cards, or level triggered interrupts
- *	(eg the MacII) we must clear the interrupt cause or die.
- */
-
-static void z8530_tx_clear(struct z8530_channel *c)
-{
-	write_zsctrl(c, RES_Tx_P);
-	write_zsctrl(c, RES_H_IUS);
-}
-
-/**
- *	z8530_status_clear - Handle status events from a stopped chip
- *	@chan: Z8530 channel to shut up
- *
- *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
- *	For machines with PCI Z85x30 cards, or level triggered interrupts
- *	(eg the MacII) we must clear the interrupt cause or die.
- */
-
-static void z8530_status_clear(struct z8530_channel *chan)
-{
-	u8 status = read_zsreg(chan, R0);
-
-	if (status & TxEOM)
-		write_zsctrl(chan, ERR_RES);
-	write_zsctrl(chan, RES_EXT_INT);
-	write_zsctrl(chan, RES_H_IUS);
-}
-
-struct z8530_irqhandler z8530_nop = {
-	.rx = z8530_rx_clear,
-	.tx = z8530_tx_clear,
-	.status = z8530_status_clear,
-};
-EXPORT_SYMBOL(z8530_nop);
-
-/**
- *	z8530_interrupt - Handle an interrupt from a Z8530
- *	@irq: Interrupt number
- *	@dev_id: The Z8530 device that is interrupting.
- *
- *	A Z85[2]30 device has stuck its hand in the air for attention.
- *	We scan both the channels on the chip for events and then call
- *	the channel specific call backs for each channel that has events.
- *	We have to use callback functions because the two channels can be
- *	in different modes.
- *
- *	Locking is done for the handlers. Note that locking is done
- *	at the chip level (the 5uS delay issue is per chip not per
- *	channel). c->lock for both channels points to dev->lock
- */
-
-irqreturn_t z8530_interrupt(int irq, void *dev_id)
-{
-	struct z8530_dev *dev = dev_id;
-	u8 intr;
-	static volatile int locker=0;
-	int work = 0;
-	struct z8530_irqhandler *irqs;
-
-	if (locker) {
-		pr_err("IRQ re-enter\n");
-		return IRQ_NONE;
-	}
-	locker = 1;
-
-	spin_lock(&dev->lock);
-
-	while (++work < 5000) {
-		intr = read_zsreg(&dev->chanA, R3);
-		if (!(intr &
-		   (CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT)))
-			break;
-
-		/* This holds the IRQ status. On the 8530 you must read it
-		 * from chan A even though it applies to the whole chip
-		 */
-
-		/* Now walk the chip and see what it is wanting - it may be
-		 * an IRQ for someone else remember
-		 */
-
-		irqs = dev->chanA.irqs;
-
-		if (intr & (CHARxIP | CHATxIP | CHAEXT)) {
-			if (intr & CHARxIP)
-				irqs->rx(&dev->chanA);
-			if (intr & CHATxIP)
-				irqs->tx(&dev->chanA);
-			if (intr & CHAEXT)
-				irqs->status(&dev->chanA);
-		}
-
-		irqs = dev->chanB.irqs;
-
-		if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) {
-			if (intr & CHBRxIP)
-				irqs->rx(&dev->chanB);
-			if (intr & CHBTxIP)
-				irqs->tx(&dev->chanB);
-			if (intr & CHBEXT)
-				irqs->status(&dev->chanB);
-		}
-	}
-	spin_unlock(&dev->lock);
-	if (work == 5000)
-		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
-		       dev->name, intr);
-	/* Ok all done */
-	locker = 0;
-	return IRQ_HANDLED;
-}
-EXPORT_SYMBOL(z8530_interrupt);
-
-static const u8 reg_init[16] = {
-	0, 0, 0, 0,
-	0, 0, 0, 0,
-	0, 0, 0, 0,
-	0x55, 0, 0, 0
-};
-
-/**
- *	z8530_sync_open - Open a Z8530 channel for PIO
- *	@dev:	The network interface we are using
- *	@c:	The Z8530 channel to open in synchronous PIO mode
- *
- *	Switch a Z8530 into synchronous mode without DMA assist. We
- *	raise the RTS/DTR and commence network operation.
- */
-int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
-{
-	unsigned long flags;
-
-	spin_lock_irqsave(c->lock, flags);
-
-	c->sync = 1;
-	c->mtu = dev->mtu + 64;
-	c->count = 0;
-	c->skb = NULL;
-	c->skb2 = NULL;
-	c->irqs = &z8530_sync;
-
-	/* This loads the double buffer up */
-	z8530_rx_done(c);	/* Load the frame ring */
-	z8530_rx_done(c);	/* Load the backup frame */
-	z8530_rtsdtr(c, 1);
-	c->dma_tx = 0;
-	c->regs[R1] |= TxINT_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-
-	spin_unlock_irqrestore(c->lock, flags);
-	return 0;
-}
-EXPORT_SYMBOL(z8530_sync_open);
-
-/**
- *	z8530_sync_close - Close a PIO Z8530 channel
- *	@dev: Network device to close
- *	@c: Z8530 channel to disassociate and move to idle
- *
- *	Close down a Z8530 interface and switch its interrupt handlers
- *	to discard future events.
- */
-int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
-{
-	u8 chk;
-	unsigned long flags;
-
-	spin_lock_irqsave(c->lock, flags);
-	c->irqs = &z8530_nop;
-	c->max = 0;
-	c->sync = 0;
-
-	chk = read_zsreg(c, R0);
-	write_zsreg(c, R3, c->regs[R3]);
-	z8530_rtsdtr(c, 0);
-
-	spin_unlock_irqrestore(c->lock, flags);
-	return 0;
-}
-EXPORT_SYMBOL(z8530_sync_close);
-
-/**
- *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
- *	@dev: The network device to attach
- *	@c: The Z8530 channel to configure in sync DMA mode.
- *
- *	Set up a Z85x30 device for synchronous DMA in both directions. Two
- *	ISA DMA channels must be available for this to work. We assume ISA
- *	DMA driven I/O and PC limits on access.
- */
-int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
-{
-	unsigned long cflags, dflags;
-
-	c->sync = 1;
-	c->mtu = dev->mtu + 64;
-	c->count = 0;
-	c->skb = NULL;
-	c->skb2 = NULL;
-
-	/*	Load the DMA interfaces up
-	 */
-	c->rxdma_on = 0;
-	c->txdma_on = 0;
-
-	/*	Allocate the DMA flip buffers. Limit by page size.
-	 *	Everyone runs 1500 mtu or less on wan links so this
-	 *	should be fine.
-	 */
-
-	if (c->mtu  > PAGE_SIZE / 2)
-		return -EMSGSIZE;
-
-	c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
-	if (!c->rx_buf[0])
-		return -ENOBUFS;
-	c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2;
-
-	c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
-	if (!c->tx_dma_buf[0]) {
-		free_page((unsigned long)c->rx_buf[0]);
-		c->rx_buf[0] = NULL;
-		return -ENOBUFS;
-	}
-	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
-
-	c->tx_dma_used = 0;
-	c->dma_tx = 1;
-	c->dma_num = 0;
-	c->dma_ready = 1;
-
-	/*	Enable DMA control mode
-	 */
-
-	spin_lock_irqsave(c->lock, cflags);
-
-	/*	TX DMA via DIR/REQ
-	 */
-
-	c->regs[R14] |= DTRREQ;
-	write_zsreg(c, R14, c->regs[R14]);
-
-	c->regs[R1] &= ~TxINT_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-
-	/*	RX DMA via W/Req
-	 */
-
-	c->regs[R1] |= WT_FN_RDYFN;
-	c->regs[R1] |= WT_RDY_RT;
-	c->regs[R1] |= INT_ERR_Rx;
-	c->regs[R1] &= ~TxINT_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-	c->regs[R1] |= WT_RDY_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-
-	/*	DMA interrupts
-	 */
-
-	/*	Set up the DMA configuration
-	 */
-
-	dflags = claim_dma_lock();
-
-	disable_dma(c->rxdma);
-	clear_dma_ff(c->rxdma);
-	set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
-	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
-	set_dma_count(c->rxdma, c->mtu);
-	enable_dma(c->rxdma);
-
-	disable_dma(c->txdma);
-	clear_dma_ff(c->txdma);
-	set_dma_mode(c->txdma, DMA_MODE_WRITE);
-	disable_dma(c->txdma);
-
-	release_dma_lock(dflags);
-
-	/*	Select the DMA interrupt handlers
-	 */
-
-	c->rxdma_on = 1;
-	c->txdma_on = 1;
-	c->tx_dma_used = 1;
-
-	c->irqs = &z8530_dma_sync;
-	z8530_rtsdtr(c, 1);
-	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-
-	spin_unlock_irqrestore(c->lock, cflags);
-
-	return 0;
-}
-EXPORT_SYMBOL(z8530_sync_dma_open);
-
-/**
- *	z8530_sync_dma_close - Close down DMA I/O
- *	@dev: Network device to detach
- *	@c: Z8530 channel to move into discard mode
- *
- *	Shut down a DMA mode synchronous interface. Halt the DMA, and
- *	free the buffers.
- */
-int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
-{
-	u8 chk;
-	unsigned long flags;
-
-	c->irqs = &z8530_nop;
-	c->max = 0;
-	c->sync = 0;
-
-	/*	Disable the PC DMA channels
-	 */
-
-	flags = claim_dma_lock();
-	disable_dma(c->rxdma);
-	clear_dma_ff(c->rxdma);
-
-	c->rxdma_on = 0;
-
-	disable_dma(c->txdma);
-	clear_dma_ff(c->txdma);
-	release_dma_lock(flags);
-
-	c->txdma_on = 0;
-	c->tx_dma_used = 0;
-
-	spin_lock_irqsave(c->lock, flags);
-
-	/*	Disable DMA control mode
-	 */
-
-	c->regs[R1] &= ~WT_RDY_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-	c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
-	c->regs[R1] |= INT_ALL_Rx;
-	write_zsreg(c, R1, c->regs[R1]);
-	c->regs[R14] &= ~DTRREQ;
-	write_zsreg(c, R14, c->regs[R14]);
-
-	if (c->rx_buf[0]) {
-		free_page((unsigned long)c->rx_buf[0]);
-		c->rx_buf[0] = NULL;
-	}
-	if (c->tx_dma_buf[0]) {
-		free_page((unsigned  long)c->tx_dma_buf[0]);
-		c->tx_dma_buf[0] = NULL;
-	}
-	chk = read_zsreg(c, R0);
-	write_zsreg(c, R3, c->regs[R3]);
-	z8530_rtsdtr(c, 0);
-
-	spin_unlock_irqrestore(c->lock, flags);
-
-	return 0;
-}
-EXPORT_SYMBOL(z8530_sync_dma_close);
-
-/**
- *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
- *	@dev: The network device to attach
- *	@c: The Z8530 channel to configure in sync DMA mode.
- *
- *	Set up a Z85x30 device for synchronous DMA transmission. One
- *	ISA DMA channel must be available for this to work. The receive
- *	side is run in PIO mode, but then it has the bigger FIFO.
- */
-
-int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
-{
-	unsigned long cflags, dflags;
-
-	printk("Opening sync interface for TX-DMA\n");
-	c->sync = 1;
-	c->mtu = dev->mtu + 64;
-	c->count = 0;
-	c->skb = NULL;
-	c->skb2 = NULL;
-
-	/*	Allocate the DMA flip buffers. Limit by page size.
-	 *	Everyone runs 1500 mtu or less on wan links so this
-	 *	should be fine.
-	 */
-
-	if (c->mtu > PAGE_SIZE / 2)
-		return -EMSGSIZE;
-
-	c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
-	if (!c->tx_dma_buf[0])
-		return -ENOBUFS;
-
-	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;
-
-	spin_lock_irqsave(c->lock, cflags);
-
-	/*	Load the PIO receive ring
-	 */
-
-	z8530_rx_done(c);
-	z8530_rx_done(c);
-
-	/*	Load the DMA interfaces up
-	 */
-
-	c->rxdma_on = 0;
-	c->txdma_on = 0;
-
-	c->tx_dma_used = 0;
-	c->dma_num = 0;
-	c->dma_ready = 1;
-	c->dma_tx = 1;
-
-	/*	Enable DMA control mode
-	 */
-
-	/*	TX DMA via DIR/REQ
-	 */
-	c->regs[R14] |= DTRREQ;
-	write_zsreg(c, R14, c->regs[R14]);
-
-	c->regs[R1] &= ~TxINT_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-
-	/*	Set up the DMA configuration
-	 */
-
-	dflags = claim_dma_lock();
-
-	disable_dma(c->txdma);
-	clear_dma_ff(c->txdma);
-	set_dma_mode(c->txdma, DMA_MODE_WRITE);
-	disable_dma(c->txdma);
-
-	release_dma_lock(dflags);
-
-	/*	Select the DMA interrupt handlers
-	 */
-
-	c->rxdma_on = 0;
-	c->txdma_on = 1;
-	c->tx_dma_used = 1;
-
-	c->irqs = &z8530_txdma_sync;
-	z8530_rtsdtr(c, 1);
-	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-	spin_unlock_irqrestore(c->lock, cflags);
-
-	return 0;
-}
-EXPORT_SYMBOL(z8530_sync_txdma_open);
-
-/**
- *	z8530_sync_txdma_close - Close down a TX driven DMA channel
- *	@dev: Network device to detach
- *	@c: Z8530 channel to move into discard mode
- *
- *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
- *	and  free the buffers.
- */
-
-int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
-{
-	unsigned long dflags, cflags;
-	u8 chk;
-
-	spin_lock_irqsave(c->lock, cflags);
-
-	c->irqs = &z8530_nop;
-	c->max = 0;
-	c->sync = 0;
-
-	/*	Disable the PC DMA channels
-	 */
-
-	dflags = claim_dma_lock();
-
-	disable_dma(c->txdma);
-	clear_dma_ff(c->txdma);
-	c->txdma_on = 0;
-	c->tx_dma_used = 0;
-
-	release_dma_lock(dflags);
-
-	/*	Disable DMA control mode
-	 */
-
-	c->regs[R1] &= ~WT_RDY_ENAB;
-	write_zsreg(c, R1, c->regs[R1]);
-	c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
-	c->regs[R1] |= INT_ALL_Rx;
-	write_zsreg(c, R1, c->regs[R1]);
-	c->regs[R14] &= ~DTRREQ;
-	write_zsreg(c, R14, c->regs[R14]);
-
-	if (c->tx_dma_buf[0]) {
-		free_page((unsigned long)c->tx_dma_buf[0]);
-		c->tx_dma_buf[0] = NULL;
-	}
-	chk = read_zsreg(c, R0);
-	write_zsreg(c, R3, c->regs[R3]);
-	z8530_rtsdtr(c, 0);
-
-	spin_unlock_irqrestore(c->lock, cflags);
-	return 0;
-}
-EXPORT_SYMBOL(z8530_sync_txdma_close);
-
-/*	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
- *	it exists...
- */
-static const char * const z8530_type_name[] = {
-	"Z8530",
-	"Z85C30",
-	"Z85230"
-};
-
-/**
- *	z8530_describe - Uniformly describe a Z8530 port
- *	@dev: Z8530 device to describe
- *	@mapping: string holding mapping type (eg "I/O" or "Mem")
- *	@io: the port value in question
- *
- *	Describe a Z8530 in a standard format. We must pass the I/O as
- *	the port offset isn't predictable. The main reason for this function
- *	is to try and get a common format of report.
- */
-
-void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
-{
-	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
-		dev->name,
-		z8530_type_name[dev->type],
-		mapping,
-		Z8530_PORT_OF(io),
-		dev->irq);
-}
-EXPORT_SYMBOL(z8530_describe);
-
-/*	Locked operation part of the z8530 init code
- */
-static inline int do_z8530_init(struct z8530_dev *dev)
-{
-	/* NOP the interrupt handlers first - we might get a
-	 * floating IRQ transition when we reset the chip
-	 */
-	dev->chanA.irqs = &z8530_nop;
-	dev->chanB.irqs = &z8530_nop;
-	dev->chanA.dcdcheck = DCD;
-	dev->chanB.dcdcheck = DCD;
-
-	/* Reset the chip */
-	write_zsreg(&dev->chanA, R9, 0xC0);
-	udelay(200);
-	/* Now check its valid */
-	write_zsreg(&dev->chanA, R12, 0xAA);
-	if (read_zsreg(&dev->chanA, R12) != 0xAA)
-		return -ENODEV;
-	write_zsreg(&dev->chanA, R12, 0x55);
-	if (read_zsreg(&dev->chanA, R12) != 0x55)
-		return -ENODEV;
-
-	dev->type = Z8530;
-
-	/*	See the application note.
-	 */
-
-	write_zsreg(&dev->chanA, R15, 0x01);
-
-	/*	If we can set the low bit of R15 then
-	 *	the chip is enhanced.
-	 */
-
-	if (read_zsreg(&dev->chanA, R15) == 0x01) {
-		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
-		/* Put a char in the fifo */
-		write_zsreg(&dev->chanA, R8, 0);
-		if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP)
-			dev->type = Z85230;	/* Has a FIFO */
-		else
-			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
-	}
-
-	/*	The code assumes R7' and friends are
-	 *	off. Use write_zsext() for these and keep
-	 *	this bit clear.
-	 */
-
-	write_zsreg(&dev->chanA, R15, 0);
-
-	/*	At this point it looks like the chip is behaving
-	 */
-
-	memcpy(dev->chanA.regs, reg_init, 16);
-	memcpy(dev->chanB.regs, reg_init, 16);
-
-	return 0;
-}
-
-/**
- *	z8530_init - Initialise a Z8530 device
- *	@dev: Z8530 device to initialise.
- *
- *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
- *	is present, identify the type and then program it to hopefully
- *	keep quite and behave. This matters a lot, a Z8530 in the wrong
- *	state will sometimes get into stupid modes generating 10Khz
- *	interrupt streams and the like.
- *
- *	We set the interrupt handler up to discard any events, in case
- *	we get them during reset or setp.
- *
- *	Return 0 for success, or a negative value indicating the problem
- *	in errno form.
- */
-
-int z8530_init(struct z8530_dev *dev)
-{
-	unsigned long flags;
-	int ret;
-
-	/* Set up the chip level lock */
-	spin_lock_init(&dev->lock);
-	dev->chanA.lock = &dev->lock;
-	dev->chanB.lock = &dev->lock;
-
-	spin_lock_irqsave(&dev->lock, flags);
-	ret = do_z8530_init(dev);
-	spin_unlock_irqrestore(&dev->lock, flags);
-
-	return ret;
-}
-EXPORT_SYMBOL(z8530_init);
-
-/**
- *	z8530_shutdown - Shutdown a Z8530 device
- *	@dev: The Z8530 chip to shutdown
- *
- *	We set the interrupt handlers to silence any interrupts. We then
- *	reset the chip and wait 100uS to be sure the reset completed. Just
- *	in case the caller then tries to do stuff.
- *
- *	This is called without the lock held
- */
-int z8530_shutdown(struct z8530_dev *dev)
-{
-	unsigned long flags;
-	/* Reset the chip */
-
-	spin_lock_irqsave(&dev->lock, flags);
-	dev->chanA.irqs = &z8530_nop;
-	dev->chanB.irqs = &z8530_nop;
-	write_zsreg(&dev->chanA, R9, 0xC0);
-	/* We must lock the udelay, the chip is offlimits here */
-	udelay(100);
-	spin_unlock_irqrestore(&dev->lock, flags);
-	return 0;
-}
-EXPORT_SYMBOL(z8530_shutdown);
-
-/**
- *	z8530_channel_load - Load channel data
- *	@c: Z8530 channel to configure
- *	@rtable: table of register, value pairs
- *	FIXME: ioctl to allow user uploaded tables
- *
- *	Load a Z8530 channel up from the system data. We use +16 to
- *	indicate the "prime" registers. The value 255 terminates the
- *	table.
- */
-
-int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
-{
-	unsigned long flags;
-
-	spin_lock_irqsave(c->lock, flags);
-
-	while (*rtable != 255) {
-		int reg = *rtable++;
-
-		if (reg > 0x0F)
-			write_zsreg(c, R15, c->regs[15] | 1);
-		write_zsreg(c, reg & 0x0F, *rtable);
-		if (reg > 0x0F)
-			write_zsreg(c, R15, c->regs[15] & ~1);
-		c->regs[reg] = *rtable++;
-	}
-	c->rx_function = z8530_null_rx;
-	c->skb = NULL;
-	c->tx_skb = NULL;
-	c->tx_next_skb = NULL;
-	c->mtu = 1500;
-	c->max = 0;
-	c->count = 0;
-	c->status = read_zsreg(c, R0);
-	c->sync = 1;
-	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
-
-	spin_unlock_irqrestore(c->lock, flags);
-	return 0;
-}
-EXPORT_SYMBOL(z8530_channel_load);
-
-/**
- *	z8530_tx_begin - Begin packet transmission
- *	@c: The Z8530 channel to kick
- *
- *	This is the speed sensitive side of transmission. If we are called
- *	and no buffer is being transmitted we commence the next buffer. If
- *	nothing is queued we idle the sync.
- *
- *	Note: We are handling this code path in the interrupt path, keep it
- *	fast or bad things will happen.
- *
- *	Called with the lock held.
- */
-
-static void z8530_tx_begin(struct z8530_channel *c)
-{
-	unsigned long flags;
-
-	if (c->tx_skb)
-		return;
-
-	c->tx_skb = c->tx_next_skb;
-	c->tx_next_skb = NULL;
-	c->tx_ptr = c->tx_next_ptr;
-
-	if (!c->tx_skb) {
-		/* Idle on */
-		if (c->dma_tx) {
-			flags = claim_dma_lock();
-			disable_dma(c->txdma);
-			/*	Check if we crapped out.
-			 */
-			if (get_dma_residue(c->txdma)) {
-				c->netdevice->stats.tx_dropped++;
-				c->netdevice->stats.tx_fifo_errors++;
-			}
-			release_dma_lock(flags);
-		}
-		c->txcount = 0;
-	} else {
-		c->txcount = c->tx_skb->len;
-
-		if (c->dma_tx) {
-			/*	FIXME. DMA is broken for the original 8530,
-			 *	on the older parts we need to set a flag and
-			 *	wait for a further TX interrupt to fire this
-			 *	stage off
-			 */
-
-			flags = claim_dma_lock();
-			disable_dma(c->txdma);
-
-			/*	These two are needed by the 8530/85C30
-			 *	and must be issued when idling.
-			 */
-			if (c->dev->type != Z85230) {
-				write_zsctrl(c, RES_Tx_CRC);
-				write_zsctrl(c, RES_EOM_L);
-			}
-			write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
-			clear_dma_ff(c->txdma);
-			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
-			set_dma_count(c->txdma, c->txcount);
-			enable_dma(c->txdma);
-			release_dma_lock(flags);
-			write_zsctrl(c, RES_EOM_L);
-			write_zsreg(c, R5, c->regs[R5] | TxENAB);
-		} else {
-			/* ABUNDER off */
-			write_zsreg(c, R10, c->regs[10]);
-			write_zsctrl(c, RES_Tx_CRC);
-
-			while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) {
-				write_zsreg(c, R8, *c->tx_ptr++);
-				c->txcount--;
-			}
-		}
-	}
-	/*	Since we emptied tx_skb we can ask for more
-	 */
-	netif_wake_queue(c->netdevice);
-}
-
-/**
- *	z8530_tx_done - TX complete callback
- *	@c: The channel that completed a transmit.
- *
- *	This is called when we complete a packet send. We wake the queue,
- *	start the next packet going and then free the buffer of the existing
- *	packet. This code is fairly timing sensitive.
- *
- *	Called with the register lock held.
- */
-
-static void z8530_tx_done(struct z8530_channel *c)
-{
-	struct sk_buff *skb;
-
-	/* Actually this can happen.*/
-	if (!c->tx_skb)
-		return;
-
-	skb = c->tx_skb;
-	c->tx_skb = NULL;
-	z8530_tx_begin(c);
-	c->netdevice->stats.tx_packets++;
-	c->netdevice->stats.tx_bytes += skb->len;
-	dev_consume_skb_irq(skb);
-}
-
-/**
- *	z8530_null_rx - Discard a packet
- *	@c: The channel the packet arrived on
- *	@skb: The buffer
- *
- *	We point the receive handler at this function when idle. Instead
- *	of processing the frames we get to throw them away.
- */
-void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
-{
-	dev_kfree_skb_any(skb);
-}
-EXPORT_SYMBOL(z8530_null_rx);
-
-/**
- *	z8530_rx_done - Receive completion callback
- *	@c: The channel that completed a receive
- *
- *	A new packet is complete. Our goal here is to get back into receive
- *	mode as fast as possible. On the Z85230 we could change to using
- *	ESCC mode, but on the older chips we have no choice. We flip to the
- *	new buffer immediately in DMA mode so that the DMA of the next
- *	frame can occur while we are copying the previous buffer to an sk_buff
- *
- *	Called with the lock held
- */
-static void z8530_rx_done(struct z8530_channel *c)
-{
-	struct sk_buff *skb;
-	int ct;
-
-	/*	Is our receive engine in DMA mode
-	 */
-	if (c->rxdma_on) {
-		/*	Save the ready state and the buffer currently
-		 *	being used as the DMA target
-		 */
-		int ready = c->dma_ready;
-		unsigned char *rxb = c->rx_buf[c->dma_num];
-		unsigned long flags;
-
-		/*	Complete this DMA. Necessary to find the length
-		 */
-		flags = claim_dma_lock();
-
-		disable_dma(c->rxdma);
-		clear_dma_ff(c->rxdma);
-		c->rxdma_on = 0;
-		ct = c->mtu - get_dma_residue(c->rxdma);
-		if (ct < 0)
-			ct = 2;	/* Shit happens.. */
-		c->dma_ready = 0;
-
-		/*	Normal case: the other slot is free, start the next DMA
-		 *	into it immediately.
-		 */
-
-		if (ready) {
-			c->dma_num ^= 1;
-			set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
-			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
-			set_dma_count(c->rxdma, c->mtu);
-			c->rxdma_on = 1;
-			enable_dma(c->rxdma);
-			/* Stop any frames that we missed the head of
-			 * from passing
-			 */
-			write_zsreg(c, R0, RES_Rx_CRC);
-		} else {
-			/* Can't occur as we dont reenable the DMA irq until
-			 * after the flip is done
-			 */
-			netdev_warn(c->netdevice, "DMA flip overrun!\n");
-		}
-
-		release_dma_lock(flags);
-
-		/*	Shove the old buffer into an sk_buff. We can't DMA
-		 *	directly into one on a PC - it might be above the 16Mb
-		 *	boundary. Optimisation - we could check to see if we
-		 *	can avoid the copy. Optimisation 2 - make the memcpy
-		 *	a copychecksum.
-		 */
-
-		skb = dev_alloc_skb(ct);
-		if (!skb) {
-			c->netdevice->stats.rx_dropped++;
-			netdev_warn(c->netdevice, "Memory squeeze\n");
-		} else {
-			skb_put(skb, ct);
-			skb_copy_to_linear_data(skb, rxb, ct);
-			c->netdevice->stats.rx_packets++;
-			c->netdevice->stats.rx_bytes += ct;
-		}
-		c->dma_ready = 1;
-	} else {
-		RT_LOCK;
-		skb = c->skb;
-
-		/*	The game we play for non DMA is similar. We want to
-		 *	get the controller set up for the next packet as fast
-		 *	as possible. We potentially only have one byte + the
-		 *	fifo length for this. Thus we want to flip to the new
-		 *	buffer and then mess around copying and allocating
-		 *	things. For the current case it doesn't matter but
-		 *	if you build a system where the sync irq isn't blocked
-		 *	by the kernel IRQ disable then you need only block the
-		 *	sync IRQ for the RT_LOCK area.
-		 *
-		 */
-		ct = c->count;
-
-		c->skb = c->skb2;
-		c->count = 0;
-		c->max = c->mtu;
-		if (c->skb) {
-			c->dptr = c->skb->data;
-			c->max = c->mtu;
-		} else {
-			c->count = 0;
-			c->max = 0;
-		}
-		RT_UNLOCK;
-
-		c->skb2 = dev_alloc_skb(c->mtu);
-		if (c->skb2)
-			skb_put(c->skb2, c->mtu);
-
-		c->netdevice->stats.rx_packets++;
-		c->netdevice->stats.rx_bytes += ct;
-	}
-	/*	If we received a frame we must now process it.
-	 */
-	if (skb) {
-		skb_trim(skb, ct);
-		c->rx_function(c, skb);
-	} else {
-		c->netdevice->stats.rx_dropped++;
-		netdev_err(c->netdevice, "Lost a frame\n");
-	}
-}
-
-/**
- *	spans_boundary - Check a packet can be ISA DMA'd
- *	@skb: The buffer to check
- *
- *	Returns true if the buffer cross a DMA boundary on a PC. The poor
- *	thing can only DMA within a 64K block not across the edges of it.
- */
-
-static inline int spans_boundary(struct sk_buff *skb)
-{
-	unsigned long a = (unsigned long)skb->data;
-
-	a ^= (a + skb->len);
-	if (a & 0x00010000)	/* If the 64K bit is different.. */
-		return 1;
-	return 0;
-}
-
-/**
- *	z8530_queue_xmit - Queue a packet
- *	@c: The channel to use
- *	@skb: The packet to kick down the channel
- *
- *	Queue a packet for transmission. Because we have rather
- *	hard to hit interrupt latencies for the Z85230 per packet
- *	even in DMA mode we do the flip to DMA buffer if needed here
- *	not in the IRQ.
- *
- *	Called from the network code. The lock is not held at this
- *	point.
- */
-netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
-{
-	unsigned long flags;
-
-	netif_stop_queue(c->netdevice);
-	if (c->tx_next_skb)
-		return NETDEV_TX_BUSY;
-
-	/* PC SPECIFIC - DMA limits */
-	/*	If we will DMA the transmit and its gone over the ISA bus
-	 *	limit, then copy to the flip buffer
-	 */
-
-	if (c->dma_tx &&
-	    ((unsigned long)(virt_to_bus(skb->data + skb->len)) >=
-	    16 * 1024 * 1024 || spans_boundary(skb))) {
-		/*	Send the flip buffer, and flip the flippy bit.
-		 *	We don't care which is used when just so long as
-		 *	we never use the same buffer twice in a row. Since
-		 *	only one buffer can be going out at a time the other
-		 *	has to be safe.
-		 */
-		c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used];
-		c->tx_dma_used ^= 1;	/* Flip temp buffer */
-		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
-	} else {
-		c->tx_next_ptr = skb->data;
-	}
-	RT_LOCK;
-	c->tx_next_skb = skb;
-	RT_UNLOCK;
-
-	spin_lock_irqsave(c->lock, flags);
-	z8530_tx_begin(c);
-	spin_unlock_irqrestore(c->lock, flags);
-
-	return NETDEV_TX_OK;
-}
-EXPORT_SYMBOL(z8530_queue_xmit);
-
-/*	Module support
- */
-static const char banner[] __initconst =
-	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
-
-static int __init z85230_init_driver(void)
-{
-	printk(banner);
-	return 0;
-}
-module_init(z85230_init_driver);
-
-static void __exit z85230_cleanup_driver(void)
-{
-}
-module_exit(z85230_cleanup_driver);
-
-MODULE_AUTHOR("Red Hat Inc.");
-MODULE_DESCRIPTION("Z85x30 synchronous driver core");
-MODULE_LICENSE("GPL");
diff --git a/drivers/net/wan/z85230.h b/drivers/net/wan/z85230.h
deleted file mode 100644
index 462cb620bc5d..000000000000
--- a/drivers/net/wan/z85230.h
+++ /dev/null
@@ -1,407 +0,0 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-/*
- *	Description of Z8530 Z85C30 and Z85230 communications chips
- *
- * Copyright (C) 1995 David S. Miller (davem@xxxxxxxxxxxxxxxx)
- * Copyright (C) 1998 Alan Cox <alan@xxxxxxxxxxxxxxxxxxx>
- */
-
-#ifndef _Z8530_H
-#define _Z8530_H
-
-#include <linux/tty.h>
-#include <linux/interrupt.h>
-
-/* Conversion routines to/from brg time constants from/to bits
- * per second.
- */
-#define BRG_TO_BPS(brg, freq) ((freq) / 2 / ((brg) + 2))
-#define BPS_TO_BRG(bps, freq) ((((freq) + (bps)) / (2 * (bps))) - 2)
-
-/* The Zilog register set */
-
-#define	FLAG	0x7e
-
-/* Write Register 0 */
-#define	R0	0		/* Register selects */
-#define	R1	1
-#define	R2	2
-#define	R3	3
-#define	R4	4
-#define	R5	5
-#define	R6	6
-#define	R7	7
-#define	R8	8
-#define	R9	9
-#define	R10	10
-#define	R11	11
-#define	R12	12
-#define	R13	13
-#define	R14	14
-#define	R15	15
-
-#define RPRIME	16		/* Indicate a prime register access on 230 */
-
-#define	NULLCODE	0	/* Null Code */
-#define	POINT_HIGH	0x8	/* Select upper half of registers */
-#define	RES_EXT_INT	0x10	/* Reset Ext. Status Interrupts */
-#define	SEND_ABORT	0x18	/* HDLC Abort */
-#define	RES_RxINT_FC	0x20	/* Reset RxINT on First Character */
-#define	RES_Tx_P	0x28	/* Reset TxINT Pending */
-#define	ERR_RES		0x30	/* Error Reset */
-#define	RES_H_IUS	0x38	/* Reset highest IUS */
-
-#define	RES_Rx_CRC	0x40	/* Reset Rx CRC Checker */
-#define	RES_Tx_CRC	0x80	/* Reset Tx CRC Checker */
-#define	RES_EOM_L	0xC0	/* Reset EOM latch */
-
-/* Write Register 1 */
-
-#define	EXT_INT_ENAB	0x1	/* Ext Int Enable */
-#define	TxINT_ENAB	0x2	/* Tx Int Enable */
-#define	PAR_SPEC	0x4	/* Parity is special condition */
-
-#define	RxINT_DISAB	0	/* Rx Int Disable */
-#define	RxINT_FCERR	0x8	/* Rx Int on First Character Only or Error */
-#define	INT_ALL_Rx	0x10	/* Int on all Rx Characters or error */
-#define	INT_ERR_Rx	0x18	/* Int on error only */
-
-#define	WT_RDY_RT	0x20	/* Wait/Ready on R/T */
-#define	WT_FN_RDYFN	0x40	/* Wait/FN/Ready FN */
-#define	WT_RDY_ENAB	0x80	/* Wait/Ready Enable */
-
-/* Write Register #2 (Interrupt Vector) */
-
-/* Write Register 3 */
-
-#define	RxENABLE	0x1	/* Rx Enable */
-#define	SYNC_L_INH	0x2	/* Sync Character Load Inhibit */
-#define	ADD_SM		0x4	/* Address Search Mode (SDLC) */
-#define	RxCRC_ENAB	0x8	/* Rx CRC Enable */
-#define	ENT_HM		0x10	/* Enter Hunt Mode */
-#define	AUTO_ENAB	0x20	/* Auto Enables */
-#define	Rx5		0x0	/* Rx 5 Bits/Character */
-#define	Rx7		0x40	/* Rx 7 Bits/Character */
-#define	Rx6		0x80	/* Rx 6 Bits/Character */
-#define	Rx8		0xc0	/* Rx 8 Bits/Character */
-
-/* Write Register 4 */
-
-#define	PAR_ENA		0x1	/* Parity Enable */
-#define	PAR_EVEN	0x2	/* Parity Even/Odd* */
-
-#define	SYNC_ENAB	0	/* Sync Modes Enable */
-#define	SB1		0x4	/* 1 stop bit/char */
-#define	SB15		0x8	/* 1.5 stop bits/char */
-#define	SB2		0xc	/* 2 stop bits/char */
-
-#define	MONSYNC		0	/* 8 Bit Sync character */
-#define	BISYNC		0x10	/* 16 bit sync character */
-#define	SDLC		0x20	/* SDLC Mode (01111110 Sync Flag) */
-#define	EXTSYNC		0x30	/* External Sync Mode */
-
-#define	X1CLK		0x0	/* x1 clock mode */
-#define	X16CLK		0x40	/* x16 clock mode */
-#define	X32CLK		0x80	/* x32 clock mode */
-#define	X64CLK		0xC0	/* x64 clock mode */
-
-/* Write Register 5 */
-
-#define	TxCRC_ENAB	0x1	/* Tx CRC Enable */
-#define	RTS		0x2	/* RTS */
-#define	SDLC_CRC	0x4	/* SDLC/CRC-16 */
-#define	TxENAB		0x8	/* Tx Enable */
-#define	SND_BRK		0x10	/* Send Break */
-#define	Tx5		0x0	/* Tx 5 bits (or less)/character */
-#define	Tx7		0x20	/* Tx 7 bits/character */
-#define	Tx6		0x40	/* Tx 6 bits/character */
-#define	Tx8		0x60	/* Tx 8 bits/character */
-#define	DTR		0x80	/* DTR */
-
-/* Write Register 6 (Sync bits 0-7/SDLC Address Field) */
-
-/* Write Register 7 (Sync bits 8-15/SDLC 01111110) */
-
-/* Write Register 8 (transmit buffer) */
-
-/* Write Register 9 (Master interrupt control) */
-#define	VIS	1	/* Vector Includes Status */
-#define	NV	2	/* No Vector */
-#define	DLC	4	/* Disable Lower Chain */
-#define	MIE	8	/* Master Interrupt Enable */
-#define	STATHI	0x10	/* Status high */
-#define	NORESET	0	/* No reset on write to R9 */
-#define	CHRB	0x40	/* Reset channel B */
-#define	CHRA	0x80	/* Reset channel A */
-#define	FHWRES	0xc0	/* Force hardware reset */
-
-/* Write Register 10 (misc control bits) */
-#define	BIT6	1	/* 6 bit/8bit sync */
-#define	LOOPMODE 2	/* SDLC Loop mode */
-#define	ABUNDER	4	/* Abort/flag on SDLC xmit underrun */
-#define	MARKIDLE 8	/* Mark/flag on idle */
-#define	GAOP	0x10	/* Go active on poll */
-#define	NRZ	0	/* NRZ mode */
-#define	NRZI	0x20	/* NRZI mode */
-#define	FM1	0x40	/* FM1 (transition = 1) */
-#define	FM0	0x60	/* FM0 (transition = 0) */
-#define	CRCPS	0x80	/* CRC Preset I/O */
-
-/* Write Register 11 (Clock Mode control) */
-#define	TRxCXT	0	/* TRxC = Xtal output */
-#define	TRxCTC	1	/* TRxC = Transmit clock */
-#define	TRxCBR	2	/* TRxC = BR Generator Output */
-#define	TRxCDP	3	/* TRxC = DPLL output */
-#define	TRxCOI	4	/* TRxC O/I */
-#define	TCRTxCP	0	/* Transmit clock = RTxC pin */
-#define	TCTRxCP	8	/* Transmit clock = TRxC pin */
-#define	TCBR	0x10	/* Transmit clock = BR Generator output */
-#define	TCDPLL	0x18	/* Transmit clock = DPLL output */
-#define	RCRTxCP	0	/* Receive clock = RTxC pin */
-#define	RCTRxCP	0x20	/* Receive clock = TRxC pin */
-#define	RCBR	0x40	/* Receive clock = BR Generator output */
-#define	RCDPLL	0x60	/* Receive clock = DPLL output */
-#define	RTxCX	0x80	/* RTxC Xtal/No Xtal */
-
-/* Write Register 12 (lower byte of baud rate generator time constant) */
-
-/* Write Register 13 (upper byte of baud rate generator time constant) */
-
-/* Write Register 14 (Misc control bits) */
-#define	BRENABL	1	/* Baud rate generator enable */
-#define	BRSRC	2	/* Baud rate generator source */
-#define	DTRREQ	4	/* DTR/Request function */
-#define	AUTOECHO 8	/* Auto Echo */
-#define	LOOPBAK	0x10	/* Local loopback */
-#define	SEARCH	0x20	/* Enter search mode */
-#define	RMC	0x40	/* Reset missing clock */
-#define	DISDPLL	0x60	/* Disable DPLL */
-#define	SSBR	0x80	/* Set DPLL source = BR generator */
-#define	SSRTxC	0xa0	/* Set DPLL source = RTxC */
-#define	SFMM	0xc0	/* Set FM mode */
-#define	SNRZI	0xe0	/* Set NRZI mode */
-
-/* Write Register 15 (external/status interrupt control) */
-#define PRIME	1	/* R5' etc register access (Z85C30/230 only) */
-#define	ZCIE	2	/* Zero count IE */
-#define FIFOE	4	/* Z85230 only */
-#define	DCDIE	8	/* DCD IE */
-#define	SYNCIE	0x10	/* Sync/hunt IE */
-#define	CTSIE	0x20	/* CTS IE */
-#define	TxUIE	0x40	/* Tx Underrun/EOM IE */
-#define	BRKIE	0x80	/* Break/Abort IE */
-
-
-/* Read Register 0 */
-#define	Rx_CH_AV	0x1	/* Rx Character Available */
-#define	ZCOUNT		0x2	/* Zero count */
-#define	Tx_BUF_EMP	0x4	/* Tx Buffer empty */
-#define	DCD		0x8	/* DCD */
-#define	SYNC_HUNT	0x10	/* Sync/hunt */
-#define	CTS		0x20	/* CTS */
-#define	TxEOM		0x40	/* Tx underrun */
-#define	BRK_ABRT	0x80	/* Break/Abort */
-
-/* Read Register 1 */
-#define	ALL_SNT		0x1	/* All sent */
-/* Residue Data for 8 Rx bits/char programmed */
-#define	RES3		0x8	/* 0/3 */
-#define	RES4		0x4	/* 0/4 */
-#define	RES5		0xc	/* 0/5 */
-#define	RES6		0x2	/* 0/6 */
-#define	RES7		0xa	/* 0/7 */
-#define	RES8		0x6	/* 0/8 */
-#define	RES18		0xe	/* 1/8 */
-#define	RES28		0x0	/* 2/8 */
-/* Special Rx Condition Interrupts */
-#define	PAR_ERR		0x10	/* Parity error */
-#define	Rx_OVR		0x20	/* Rx Overrun Error */
-#define	CRC_ERR		0x40	/* CRC/Framing Error */
-#define	END_FR		0x80	/* End of Frame (SDLC) */
-
-/* Read Register 2 (channel b only) - Interrupt vector */
-
-/* Read Register 3 (interrupt pending register) ch a only */
-#define	CHBEXT	0x1		/* Channel B Ext/Stat IP */
-#define	CHBTxIP	0x2		/* Channel B Tx IP */
-#define	CHBRxIP	0x4		/* Channel B Rx IP */
-#define	CHAEXT	0x8		/* Channel A Ext/Stat IP */
-#define	CHATxIP	0x10		/* Channel A Tx IP */
-#define	CHARxIP	0x20		/* Channel A Rx IP */
-
-/* Read Register 8 (receive data register) */
-
-/* Read Register 10  (misc status bits) */
-#define	ONLOOP	2		/* On loop */
-#define	LOOPSEND 0x10		/* Loop sending */
-#define	CLK2MIS	0x40		/* Two clocks missing */
-#define	CLK1MIS	0x80		/* One clock missing */
-
-/* Read Register 12 (lower byte of baud rate generator constant) */
-
-/* Read Register 13 (upper byte of baud rate generator constant) */
-
-/* Read Register 15 (value of WR 15) */
-
-
-/*
- *	Interrupt handling functions for this SCC
- */
-
-struct z8530_channel;
- 
-struct z8530_irqhandler
-{
-	void (*rx)(struct z8530_channel *);
-	void (*tx)(struct z8530_channel *);
-	void (*status)(struct z8530_channel *);
-};
-
-/*
- *	A channel of the Z8530
- */
-
-struct z8530_channel
-{
-	struct		z8530_irqhandler *irqs;		/* IRQ handlers */
-	/*
-	 *	Synchronous
-	 */
-	u16		count;		/* Buyes received */
-	u16		max;		/* Most we can receive this frame */
-	u16		mtu;		/* MTU of the device */
-	u8		*dptr;		/* Pointer into rx buffer */
-	struct sk_buff	*skb;		/* Buffer dptr points into */
-	struct sk_buff	*skb2;		/* Pending buffer */
-	u8		status;		/* Current DCD */
-	u8		dcdcheck;	/* which bit to check for line */
-	u8		sync;		/* Set if in sync mode */
-
-	u8		regs[32];	/* Register map for the chip */
-	u8		pendregs[32];	/* Pending register values */
-	
-	struct sk_buff 	*tx_skb;	/* Buffer being transmitted */
-	struct sk_buff  *tx_next_skb;	/* Next transmit buffer */
-	u8		*tx_ptr;	/* Byte pointer into the buffer */
-	u8		*tx_next_ptr;	/* Next pointer to use */
-	u8		*tx_dma_buf[2];	/* TX flip buffers for DMA */
-	u8		tx_dma_used;	/* Flip buffer usage toggler */
-	u16		txcount;	/* Count of bytes to transmit */
-	
-	void		(*rx_function)(struct z8530_channel *, struct sk_buff *);
-	
-	/*
-	 *	Sync DMA
-	 */
-	
-	u8		rxdma;		/* DMA channels */
-	u8		txdma;		
-	u8		rxdma_on;	/* DMA active if flag set */
-	u8		txdma_on;
-	u8		dma_num;	/* Buffer we are DMAing into */
-	u8		dma_ready;	/* Is the other buffer free */
-	u8		dma_tx;		/* TX is to use DMA */
-	u8		*rx_buf[2];	/* The flip buffers */
-	
-	/*
-	 *	System
-	 */
-	 
-	struct z8530_dev *dev;		/* Z85230 chip instance we are from */
-	unsigned long	ctrlio;		/* I/O ports */
-	unsigned long	dataio;
-
-	/*
-	 *	For PC we encode this way.
-	 */	
-#define Z8530_PORT_SLEEP	0x80000000
-#define Z8530_PORT_OF(x)	((x)&0xFFFF)
-
-	u32		rx_overrun;		/* Overruns - not done yet */
-	u32		rx_crc_err;
-
-	/*
-	 *	Bound device pointers
-	 */
-
-	void		*private;	/* For our owner */
-	struct net_device	*netdevice;	/* Network layer device */
-
-	spinlock_t		*lock;	  /* Device lock */
-};
-
-/*
- *	Each Z853x0 device.
- */
-
-struct z8530_dev
-{
-	char *name;	/* Device instance name */
-	struct z8530_channel chanA;	/* SCC channel A */
-	struct z8530_channel chanB;	/* SCC channel B */
-	int type;
-#define Z8530	0	/* NMOS dinosaur */	
-#define Z85C30	1	/* CMOS - better */
-#define Z85230	2	/* CMOS with real FIFO */
-	int irq;	/* Interrupt for the device */
-	int active;	/* Soft interrupt enable - the Mac doesn't 
-			   always have a hard disable on its 8530s... */
-	spinlock_t lock;
-};
-
-
-/*
- *	Functions
- */
- 
-extern u8 z8530_dead_port[];
-extern u8 z8530_hdlc_kilostream_85230[];
-extern u8 z8530_hdlc_kilostream[];
-irqreturn_t z8530_interrupt(int, void *);
-void z8530_describe(struct z8530_dev *, char *mapping, unsigned long io);
-int z8530_init(struct z8530_dev *);
-int z8530_shutdown(struct z8530_dev *);
-int z8530_sync_open(struct net_device *, struct z8530_channel *);
-int z8530_sync_close(struct net_device *, struct z8530_channel *);
-int z8530_sync_dma_open(struct net_device *, struct z8530_channel *);
-int z8530_sync_dma_close(struct net_device *, struct z8530_channel *);
-int z8530_sync_txdma_open(struct net_device *, struct z8530_channel *);
-int z8530_sync_txdma_close(struct net_device *, struct z8530_channel *);
-int z8530_channel_load(struct z8530_channel *, u8 *);
-netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb);
-void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb);
-
-
-/*
- *	Standard interrupt vector sets
- */
- 
-extern struct z8530_irqhandler z8530_sync, z8530_async, z8530_nop;
-
-/*
- *	Asynchronous Interfacing
- */
-
-/*
- * The size of the serial xmit buffer is 1 page, or 4096 bytes
- */
-
-#define SERIAL_XMIT_SIZE 4096
-#define WAKEUP_CHARS	256
-
-/*
- * Events are used to schedule things to happen at timer-interrupt
- * time, instead of at rs interrupt time.
- */
-#define RS_EVENT_WRITE_WAKEUP	0
-
-/* Internal flags used only by kernel/chr_drv/serial.c */
-#define ZILOG_INITIALIZED	0x80000000 /* Serial port was initialized */
-#define ZILOG_CALLOUT_ACTIVE	0x40000000 /* Call out device is active */
-#define ZILOG_NORMAL_ACTIVE	0x20000000 /* Normal device is active */
-#define ZILOG_BOOT_AUTOCONF	0x10000000 /* Autoconfigure port on bootup */
-#define ZILOG_CLOSING		0x08000000 /* Serial port is closing */
-#define ZILOG_CTS_FLOW		0x04000000 /* Do CTS flow control */
-#define ZILOG_CHECK_CD		0x02000000 /* i.e., CLOCAL */
-
-#endif /* !(_Z8530_H) */
-- 
2.34.1




[Index of Archives]     [Kernel Newbies]     [Security]     [Netfilter]     [Bugtraq]     [Linux FS]     [Yosemite Forum]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Video 4 Linux]     [Device Mapper]     [Linux Resources]

  Powered by Linux