On Sun, Mar 6, 2022 at 12:24 AM Yanteng Si <siyanteng01@xxxxxxxxx> wrote: > > Translate .../vm/memory-model.rst into Chinese. > > Signed-off-by: Yanteng Si <siyanteng@xxxxxxxxxxx> > --- > Documentation/translations/zh_CN/vm/index.rst | 3 +- > .../translations/zh_CN/vm/memory-model.rst | 135 ++++++++++++++++++ > 2 files changed, 137 insertions(+), 1 deletion(-) > create mode 100644 Documentation/translations/zh_CN/vm/memory-model.rst > > diff --git a/Documentation/translations/zh_CN/vm/index.rst b/Documentation/translations/zh_CN/vm/index.rst > index dd0b3d4c0ab8..186f85a156c0 100644 > --- a/Documentation/translations/zh_CN/vm/index.rst > +++ b/Documentation/translations/zh_CN/vm/index.rst > @@ -28,13 +28,14 @@ TODO:待引用文档集被翻译完毕后请及时修改此处) > highmem > frontswap > hwpoison > + memory-model > > TODOLIST: > * arch_pgtable_helpers > * free_page_reporting > * hmm > * hugetlbfs_reserv > -* memory-model > + > * mmu_notifier > * numa > * overcommit-accounting > diff --git a/Documentation/translations/zh_CN/vm/memory-model.rst b/Documentation/translations/zh_CN/vm/memory-model.rst > new file mode 100644 > index 000000000000..5fe475581cbd > --- /dev/null > +++ b/Documentation/translations/zh_CN/vm/memory-model.rst > @@ -0,0 +1,135 @@ > +.. SPDX-License-Identifier: GPL-2.0 > + > +:Original: Documentation/vm/memory-model.rst > + > +:翻译: > + > + 司延腾 Yanteng Si <siyanteng@xxxxxxxxxxx> > + > +:校译: > + > + > +============ > +物理内存模型 > +============ > + > +系统中的物理内存可以用不同的方式进行寻址。最简单的情况是,物理内存从地址0开 > +始,跨越一个连续的范围,直到最大的地址。然而,这个范围可能包含CPU无法访问的 > +小孔隙。那么,在完全不同的地址可能有几个连续的范围。而且,别忘了NUMA,即不 > +同的内存库连接到不同的CPU。 > + > +Linux使用两种内存模型中的一种对这种多样性进行抽象。FLATMEM和SPARSEM。每 > +个架构都定义了它所支持的内存模型,默认的内存模型是什么,以及是否有可能手动 > +覆盖该默认值。 > + > +所有的内存模型都使用排列在一个或多个数组中的 `struct page` 来跟踪物理页 > +帧的状态。 > + > +无论选择哪种内存模型,物理页框号(PFN)和相应的 `struct page` 之间都存 > +在一对一的映射关系。 > + > +每个内存模型都定义了 :c:func:`pfn_to_page` 和 :c:func:`page_to_pfn` > +帮助函数,允许从PFN到 `struct page` 的转换,反之亦然。 > + > +FLATMEM > +======= > + > +最简单的内存模型是FLATMEM。这个模型适用于非NUMA系统的连续或大部分连续的 > +物理内存。 > + > +在FLATMEM内存模型中,有一个全局的 `mem_map` 数组来映射整个物理内存。对 > +于大多数架构,孔隙在 `mem_map` 数组中都有条目。与孔洞相对应的 `struct page` > +对象从未被完全初始化。 > + > +为了分配 `mem_map` 数组,架构特定的设置代码应该调用free_area_init()函数。 > +然而,在调用memblock_free_all()函数之前,映射数组是不能使用的,该函数 > +将所有的内存交给页分配器。 > + > +一个架构可能会释放 `mem_map` 数组中不包括实际物理页的部分。在这种情况下,特 > +定架构的 :c:func:`pfn_valid` 实现应该考虑到 `mem_map` 中的孔隙。 > + > +使用FLATMEM,PFN和 `struct page` 之间的转换是直接的。 `PFN - ARCH_PFN_OFFSET` > +是 `mem_map` 数组的一个索引。 > + > +`ARCH_PFN_OFFSET` 定义了物理内存起始地址不同于0的系统的第一个页框号。 > + > +SPARSEMEM > +========= > + > +SPARSEMEM是Linux中最通用的内存模型,它是唯一支持若干高级功能的内存模型, > +如物理内存的热插拔、非易失性内存设备的替代内存图和较大系统的内存图的延迟 > +初始化。 > + > +SPARSEMEM模型将物理内存显示为一个部分的集合。一个区段用mem_section结构 > +体表示,它包含 `section_mem_map` ,从逻辑上讲,它是一个指向 `struct page` > +阵列的指针。然而,它被存储在一些其他的magic中,以帮助分区管理。区段的大小 > +和最大区段数是使用 `SECTION_SIZE_BITS` 和 `MAX_PHYSMEM_BITS` 常量 > +来指定的,这两个常量是由每个支持SPARSEMEM的架构定义的。 `MAX_PHYSMEM_BITS` > +是一个架构所支持的物理地址的实际宽度,而 `SECTION_SIZE_BITS` 是一个任 > +意的值。 > + > +最大的段数表示为 `NR_MEM_SECTIONS` ,定义为 > + > +.. math:: > + > + NR\_MEM\_SECTIONS = 2 ^ {(MAX\_PHYSMEM\_BITS - SECTION\_SIZE\_BITS)} > + > +`mem_section` 对象被安排在一个叫做 `mem_sections` 的二维数组中。这个数组的 > +大小和位置取决于 `CONFIG_SPARSEM_EXTREME` 和可能的最大段数: > + > +* 当 `CONFIG_SPARSEMEM_EXTREME` 被禁用时, `mem_sections` 数组是静态的,有 > + `NR_MEM_SECTIONS` 行。每一行持有一个 `mem_section` 对象。 > +* 当 `CONFIG_SPARSEMEM_EXTREME` 被启用时, `mem_sections` 数组被动态分配。 > + 每一行包含价值 `PAGE_SIZE` 的 `mem_section` 对象,行数的计算是为了适应所有的 > + 内存区。 > + > +架构设置代码应该调用sparse_init()来初始化内存区和内存映射。 > + > +通过SPARSEMEM,有两种可能的方式将PFN转换为相应的 `struct page` --"classic sparse"和 > + "sparse vmemmap"。选择是在构建时进行的,它由 `CONFIG_SPARSEMEM_VMEMMAP` 的 > + 值决定。 > + > +Classic sparse在page->flags中编码了一个页面的段号,并使用PFN的高位来访问映射该页 > +框的段。在一个区段内,PFN是指向页数组的索引。 > + > +Sparse vmemmapvmemmap使用虚拟映射的内存映射来优化pfn_to_page和page_to_pfn操 > +作。有一个全局的 `struct page *vmemmap` 指针,指向一个虚拟连续的 `struct page` > +对象阵列。PFN是该数组的一个索引,`struct page` 从 `vmemmap` 的偏移量是该页的PFN。 > + > +为了使用vmemmap,一个架构必须保留一个虚拟地址的范围,以映射包含内存映射的物理页,并 > +确保 `vmemmap`指向该范围。此外,架构应该实现 :c:func:`vmemmap_populate` 方法, > +它将分配物理内存并为虚拟内存映射创建页表。如果一个架构对vmemmap映射没有任何特殊要求, > +它可以使用通用内存管理提供的默认 :c:func:`vmemmap_populate_basepages`。 > + > +虚拟映射的内存映射允许将持久性内存设备的 `struct page` 对象存储在这些设备上预先分 > +配的存储中。这种存储用vmem_altmap结构表示,最终通过一长串的函数调用传递给 > +vmemmap_populate()。vmemmap_populate()实现可以使用 `vmem_altmap` 和 > +:c:func:`vmemmap_alloc_block_buf` 助手来分配持久性内存设备上的内存映射。 > + > +ZONE_DEVICE > +=========== > +`ZONE_DEVICE` 设施建立在 `SPARSEM_VMEMMAP` 之上,为设备驱动识别的物理地址范 > +围提供 `struct page` `mem_map` 服务。 `ZONE_DEVICE` 的 "设备" 方面与以下 > +事实有关:这些地址范围的页面对象从未被在线标记过,而且必须对设备进行引用,而不仅仅 > +是页面,以保持内存被pinned以便使用。 `ZONE_DEVICE` ,通过 :c:func:`devm_memremap_pages` , 以保持内存被“锁定”以便使用? for others: Reviewed-by: Alex Shi <alexs@xxxxxxxxxx> Thanks