[PATCH] block: remove biodoc.rst

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



This document is completely out of data and extremely misleading.  In
general the existing kerneldoc comment serve as a much better
documentation of the still existing functionality, while the history
blurbs are pretty much irrelevant today.

Signed-off-by: Christoph Hellwig <hch@xxxxxx>
---
 Documentation/block/biodoc.rst | 1155 --------------------------------
 Documentation/block/index.rst  |    1 -
 2 files changed, 1156 deletions(-)
 delete mode 100644 Documentation/block/biodoc.rst

diff --git a/Documentation/block/biodoc.rst b/Documentation/block/biodoc.rst
deleted file mode 100644
index fdebc0fd8468f..0000000000000
--- a/Documentation/block/biodoc.rst
+++ /dev/null
@@ -1,1155 +0,0 @@
-=====================================================
-Notes on the Generic Block Layer Rewrite in Linux 2.5
-=====================================================
-
-.. note::
-
-	It seems that there are lot of outdated stuff here. This seems
-	to be written somewhat as a task list. Yet, eventually, something
-	here might still be useful.
-
-Notes Written on Jan 15, 2002:
-
-	- Jens Axboe <jens.axboe@xxxxxxxxxx>
-	- Suparna Bhattacharya <suparna@xxxxxxxxxx>
-
-Last Updated May 2, 2002
-
-September 2003: Updated I/O Scheduler portions
-	- Nick Piggin <npiggin@xxxxxxxxx>
-
-Introduction
-============
-
-These are some notes describing some aspects of the 2.5 block layer in the
-context of the bio rewrite. The idea is to bring out some of the key
-changes and a glimpse of the rationale behind those changes.
-
-Please mail corrections & suggestions to suparna@xxxxxxxxxx.
-
-Credits
-=======
-
-2.5 bio rewrite:
-	- Jens Axboe <jens.axboe@xxxxxxxxxx>
-
-Many aspects of the generic block layer redesign were driven by and evolved
-over discussions, prior patches and the collective experience of several
-people. See sections 8 and 9 for a list of some related references.
-
-The following people helped with review comments and inputs for this
-document:
-
-	- Christoph Hellwig <hch@xxxxxxxxxxxxx>
-	- Arjan van de Ven <arjanv@xxxxxxxxxx>
-	- Randy Dunlap <rdunlap@xxxxxxxxxxxx>
-	- Andre Hedrick <andre@xxxxxxxxxxxxx>
-
-The following people helped with fixes/contributions to the bio patches
-while it was still work-in-progress:
-
-	- David S. Miller <davem@xxxxxxxxxx>
-
-
-.. Description of Contents:
-
-   1. Scope for tuning of logic to various needs
-     1.1 Tuning based on device or low level driver capabilities
-	- Per-queue parameters
-	- Highmem I/O support
-	- I/O scheduler modularization
-     1.2 Tuning based on high level requirements/capabilities
-	1.2.1 Request Priority/Latency
-     1.3 Direct access/bypass to lower layers for diagnostics and special
-	 device operations
-	1.3.1 Pre-built commands
-   2. New flexible and generic but minimalist i/o structure or descriptor
-      (instead of using buffer heads at the i/o layer)
-     2.1 Requirements/Goals addressed
-     2.2 The bio struct in detail (multi-page io unit)
-     2.3 Changes in the request structure
-   3. Using bios
-     3.1 Setup/teardown (allocation, splitting)
-     3.2 Generic bio helper routines
-       3.2.1 Traversing segments and completion units in a request
-       3.2.2 Setting up DMA scatterlists
-       3.2.3 I/O completion
-       3.2.4 Implications for drivers that do not interpret bios (don't handle
-	  multiple segments)
-     3.3 I/O submission
-   4. The I/O scheduler
-   5. Scalability related changes
-     5.1 Granular locking: Removal of io_request_lock
-     5.2 Prepare for transition to 64 bit sector_t
-   6. Other Changes/Implications
-     6.1 Partition re-mapping handled by the generic block layer
-   7. A few tips on migration of older drivers
-   8. A list of prior/related/impacted patches/ideas
-   9. Other References/Discussion Threads
-
-
-Bio Notes
-=========
-
-Let us discuss the changes in the context of how some overall goals for the
-block layer are addressed.
-
-1. Scope for tuning the generic logic to satisfy various requirements
-=====================================================================
-
-The block layer design supports adaptable abstractions to handle common
-processing with the ability to tune the logic to an appropriate extent
-depending on the nature of the device and the requirements of the caller.
-One of the objectives of the rewrite was to increase the degree of tunability
-and to enable higher level code to utilize underlying device/driver
-capabilities to the maximum extent for better i/o performance. This is
-important especially in the light of ever improving hardware capabilities
-and application/middleware software designed to take advantage of these
-capabilities.
-
-1.1 Tuning based on low level device / driver capabilities
-----------------------------------------------------------
-
-Sophisticated devices with large built-in caches, intelligent i/o scheduling
-optimizations, high memory DMA support, etc may find some of the
-generic processing an overhead, while for less capable devices the
-generic functionality is essential for performance or correctness reasons.
-Knowledge of some of the capabilities or parameters of the device should be
-used at the generic block layer to take the right decisions on
-behalf of the driver.
-
-How is this achieved ?
-
-Tuning at a per-queue level:
-
-i. Per-queue limits/values exported to the generic layer by the driver
-
-Various parameters that the generic i/o scheduler logic uses are set at
-a per-queue level (e.g maximum request size, maximum number of segments in
-a scatter-gather list, logical block size)
-
-Some parameters that were earlier available as global arrays indexed by
-major/minor are now directly associated with the queue. Some of these may
-move into the block device structure in the future. Some characteristics
-have been incorporated into a queue flags field rather than separate fields
-in themselves.  There are blk_queue_xxx functions to set the parameters,
-rather than update the fields directly
-
-Some new queue property settings:
-
-	blk_queue_bounce_limit(q, u64 dma_address)
-		Enable I/O to highmem pages, dma_address being the
-		limit. No highmem default.
-
-	blk_queue_max_sectors(q, max_sectors)
-		Sets two variables that limit the size of the request.
-
-		- The request queue's max_sectors, which is a soft size in
-		  units of 512 byte sectors, and could be dynamically varied
-		  by the core kernel.
-
-		- The request queue's max_hw_sectors, which is a hard limit
-		  and reflects the maximum size request a driver can handle
-		  in units of 512 byte sectors.
-
-		The default for both max_sectors and max_hw_sectors is
-		255. The upper limit of max_sectors is 1024.
-
-	blk_queue_max_phys_segments(q, max_segments)
-		Maximum physical segments you can handle in a request. 128
-		default (driver limit). (See 3.2.2)
-
-	blk_queue_max_hw_segments(q, max_segments)
-		Maximum dma segments the hardware can handle in a request. 128
-		default (host adapter limit, after dma remapping).
-		(See 3.2.2)
-
-	blk_queue_max_segment_size(q, max_seg_size)
-		Maximum size of a clustered segment, 64kB default.
-
-	blk_queue_logical_block_size(q, logical_block_size)
-		Lowest possible sector size that the hardware can operate
-		on, 512 bytes default.
-
-New queue flags:
-
-	- QUEUE_FLAG_CLUSTER (see 3.2.2)
-	- QUEUE_FLAG_QUEUED (see 3.2.4)
-
-
-ii. High-mem i/o capabilities are now considered the default
-
-The generic bounce buffer logic, present in 2.4, where the block layer would
-by default copyin/out i/o requests on high-memory buffers to low-memory buffers
-assuming that the driver wouldn't be able to handle it directly, has been
-changed in 2.5. The bounce logic is now applied only for memory ranges
-for which the device cannot handle i/o. A driver can specify this by
-setting the queue bounce limit for the request queue for the device
-(blk_queue_bounce_limit()). This avoids the inefficiencies of the copyin/out
-where a device is capable of handling high memory i/o.
-
-In order to enable high-memory i/o where the device is capable of supporting
-it, the pci dma mapping routines and associated data structures have now been
-modified to accomplish a direct page -> bus translation, without requiring
-a virtual address mapping (unlike the earlier scheme of virtual address
--> bus translation). So this works uniformly for high-memory pages (which
-do not have a corresponding kernel virtual address space mapping) and
-low-memory pages.
-
-Note: Please refer to Documentation/core-api/dma-api-howto.rst for a discussion
-on PCI high mem DMA aspects and mapping of scatter gather lists, and support
-for 64 bit PCI.
-
-Special handling is required only for cases where i/o needs to happen on
-pages at physical memory addresses beyond what the device can support. In these
-cases, a bounce bio representing a buffer from the supported memory range
-is used for performing the i/o with copyin/copyout as needed depending on
-the type of the operation.  For example, in case of a read operation, the
-data read has to be copied to the original buffer on i/o completion, so a
-callback routine is set up to do this, while for write, the data is copied
-from the original buffer to the bounce buffer prior to issuing the
-operation. Since an original buffer may be in a high memory area that's not
-mapped in kernel virtual addr, a kmap operation may be required for
-performing the copy, and special care may be needed in the completion path
-as it may not be in irq context. Special care is also required (by way of
-GFP flags) when allocating bounce buffers, to avoid certain highmem
-deadlock possibilities.
-
-It is also possible that a bounce buffer may be allocated from high-memory
-area that's not mapped in kernel virtual addr, but within the range that the
-device can use directly; so the bounce page may need to be kmapped during
-copy operations. [Note: This does not hold in the current implementation,
-though]
-
-There are some situations when pages from high memory may need to
-be kmapped, even if bounce buffers are not necessary. For example a device
-may need to abort DMA operations and revert to PIO for the transfer, in
-which case a virtual mapping of the page is required. For SCSI it is also
-done in some scenarios where the low level driver cannot be trusted to
-handle a single sg entry correctly. The driver is expected to perform the
-kmaps as needed on such occasions as appropriate. A driver could also use
-the blk_queue_bounce() routine on its own to bounce highmem i/o to low
-memory for specific requests if so desired.
-
-iii. The i/o scheduler algorithm itself can be replaced/set as appropriate
-
-As in 2.4, it is possible to plugin a brand new i/o scheduler for a particular
-queue or pick from (copy) existing generic schedulers and replace/override
-certain portions of it. The 2.5 rewrite provides improved modularization
-of the i/o scheduler. There are more pluggable callbacks, e.g for init,
-add request, extract request, which makes it possible to abstract specific
-i/o scheduling algorithm aspects and details outside of the generic loop.
-It also makes it possible to completely hide the implementation details of
-the i/o scheduler from block drivers.
-
-I/O scheduler wrappers are to be used instead of accessing the queue directly.
-See section 4. The I/O scheduler for details.
-
-1.2 Tuning Based on High level code capabilities
-------------------------------------------------
-
-i. Application capabilities for raw i/o
-
-This comes from some of the high-performance database/middleware
-requirements where an application prefers to make its own i/o scheduling
-decisions based on an understanding of the access patterns and i/o
-characteristics
-
-ii. High performance filesystems or other higher level kernel code's
-capabilities
-
-Kernel components like filesystems could also take their own i/o scheduling
-decisions for optimizing performance. Journalling filesystems may need
-some control over i/o ordering.
-
-What kind of support exists at the generic block layer for this ?
-
-The flags and rw fields in the bio structure can be used for some tuning
-from above e.g indicating that an i/o is just a readahead request, or priority
-settings (currently unused). As far as user applications are concerned they
-would need an additional mechanism either via open flags or ioctls, or some
-other upper level mechanism to communicate such settings to block.
-
-1.2.1 Request Priority/Latency
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Todo/Under discussion::
-
-  Arjan's proposed request priority scheme allows higher levels some broad
-  control (high/med/low) over the priority  of an i/o request vs other pending
-  requests in the queue. For example it allows reads for bringing in an
-  executable page on demand to be given a higher priority over pending write
-  requests which haven't aged too much on the queue. Potentially this priority
-  could even be exposed to applications in some manner, providing higher level
-  tunability. Time based aging avoids starvation of lower priority
-  requests. Some bits in the bi_opf flags field in the bio structure are
-  intended to be used for this priority information.
-
-
-1.3 Direct Access to Low level Device/Driver Capabilities (Bypass mode)
------------------------------------------------------------------------
-
-(e.g Diagnostics, Systems Management)
-
-There are situations where high-level code needs to have direct access to
-the low level device capabilities or requires the ability to issue commands
-to the device bypassing some of the intermediate i/o layers.
-These could, for example, be special control commands issued through ioctl
-interfaces, or could be raw read/write commands that stress the drive's
-capabilities for certain kinds of fitness tests. Having direct interfaces at
-multiple levels without having to pass through upper layers makes
-it possible to perform bottom up validation of the i/o path, layer by
-layer, starting from the media.
-
-The normal i/o submission interfaces, e.g submit_bio, could be bypassed
-for specially crafted requests which such ioctl or diagnostics
-interfaces would typically use, and the elevator add_request routine
-can instead be used to directly insert such requests in the queue or preferably
-the blk_do_rq routine can be used to place the request on the queue and
-wait for completion. Alternatively, sometimes the caller might just
-invoke a lower level driver specific interface with the request as a
-parameter.
-
-If the request is a means for passing on special information associated with
-the command, then such information is associated with the request->special
-field (rather than misuse the request->buffer field which is meant for the
-request data buffer's virtual mapping).
-
-For passing request data, the caller must build up a bio descriptor
-representing the concerned memory buffer if the underlying driver interprets
-bio segments or uses the block layer end*request* functions for i/o
-completion. Alternatively one could directly use the request->buffer field to
-specify the virtual address of the buffer, if the driver expects buffer
-addresses passed in this way and ignores bio entries for the request type
-involved. In the latter case, the driver would modify and manage the
-request->buffer, request->sector and request->nr_sectors or
-request->current_nr_sectors fields itself rather than using the block layer
-end_request or end_that_request_first completion interfaces.
-(See 2.3 or Documentation/block/request.rst for a brief explanation of
-the request structure fields)
-
-::
-
-  [TBD: end_that_request_last should be usable even in this case;
-  Perhaps an end_that_direct_request_first routine could be implemented to make
-  handling direct requests easier for such drivers; Also for drivers that
-  expect bios, a helper function could be provided for setting up a bio
-  corresponding to a data buffer]
-
-  <JENS: I dont understand the above, why is end_that_request_first() not
-  usable? Or _last for that matter. I must be missing something>
-
-  <SUP: What I meant here was that if the request doesn't have a bio, then
-   end_that_request_first doesn't modify nr_sectors or current_nr_sectors,
-   and hence can't be used for advancing request state settings on the
-   completion of partial transfers. The driver has to modify these fields
-   directly by hand.
-   This is because end_that_request_first only iterates over the bio list,
-   and always returns 0 if there are none associated with the request.
-   _last works OK in this case, and is not a problem, as I mentioned earlier
-  >
-
-1.3.1 Pre-built Commands
-^^^^^^^^^^^^^^^^^^^^^^^^
-
-A request can be created with a pre-built custom command  to be sent directly
-to the device. The cmd block in the request structure has room for filling
-in the command bytes. (i.e rq->cmd is now 16 bytes in size, and meant for
-command pre-building, and the type of the request is now indicated
-through rq->flags instead of via rq->cmd)
-
-The request structure flags can be set up to indicate the type of request
-in such cases (REQ_PC: direct packet command passed to driver, REQ_BLOCK_PC:
-packet command issued via blk_do_rq, REQ_SPECIAL: special request).
-
-It can help to pre-build device commands for requests in advance.
-Drivers can now specify a request prepare function (q->prep_rq_fn) that the
-block layer would invoke to pre-build device commands for a given request,
-or perform other preparatory processing for the request. This is routine is
-called by elv_next_request(), i.e. typically just before servicing a request.
-(The prepare function would not be called for requests that have RQF_DONTPREP
-enabled)
-
-Aside:
-  Pre-building could possibly even be done early, i.e before placing the
-  request on the queue, rather than construct the command on the fly in the
-  driver while servicing the request queue when it may affect latencies in
-  interrupt context or responsiveness in general. One way to add early
-  pre-building would be to do it whenever we fail to merge on a request.
-  Now REQ_NOMERGE is set in the request flags to skip this one in the future,
-  which means that it will not change before we feed it to the device. So
-  the pre-builder hook can be invoked there.
-
-
-2. Flexible and generic but minimalist i/o structure/descriptor
-===============================================================
-
-2.1 Reason for a new structure and requirements addressed
----------------------------------------------------------
-
-Prior to 2.5, buffer heads were used as the unit of i/o at the generic block
-layer, and the low level request structure was associated with a chain of
-buffer heads for a contiguous i/o request. This led to certain inefficiencies
-when it came to large i/o requests and readv/writev style operations, as it
-forced such requests to be broken up into small chunks before being passed
-on to the generic block layer, only to be merged by the i/o scheduler
-when the underlying device was capable of handling the i/o in one shot.
-Also, using the buffer head as an i/o structure for i/os that didn't originate
-from the buffer cache unnecessarily added to the weight of the descriptors
-which were generated for each such chunk.
-
-The following were some of the goals and expectations considered in the
-redesign of the block i/o data structure in 2.5.
-
-1.  Should be appropriate as a descriptor for both raw and buffered i/o  -
-    avoid cache related fields which are irrelevant in the direct/page i/o path,
-    or filesystem block size alignment restrictions which may not be relevant
-    for raw i/o.
-2.  Ability to represent high-memory buffers (which do not have a virtual
-    address mapping in kernel address space).
-3.  Ability to represent large i/os w/o unnecessarily breaking them up (i.e
-    greater than PAGE_SIZE chunks in one shot)
-4.  At the same time, ability to retain independent identity of i/os from
-    different sources or i/o units requiring individual completion (e.g. for
-    latency reasons)
-5.  Ability to represent an i/o involving multiple physical memory segments
-    (including non-page aligned page fragments, as specified via readv/writev)
-    without unnecessarily breaking it up, if the underlying device is capable of
-    handling it.
-6.  Preferably should be based on a memory descriptor structure that can be
-    passed around different types of subsystems or layers, maybe even
-    networking, without duplication or extra copies of data/descriptor fields
-    themselves in the process
-7.  Ability to handle the possibility of splits/merges as the structure passes
-    through layered drivers (lvm, md, evms), with minimal overhead.
-
-The solution was to define a new structure (bio)  for the block layer,
-instead of using the buffer head structure (bh) directly, the idea being
-avoidance of some associated baggage and limitations. The bio structure
-is uniformly used for all i/o at the block layer ; it forms a part of the
-bh structure for buffered i/o, and in the case of raw/direct i/o kiobufs are
-mapped to bio structures.
-
-2.2 The bio struct
-------------------
-
-The bio structure uses a vector representation pointing to an array of tuples
-of <page, offset, len> to describe the i/o buffer, and has various other
-fields describing i/o parameters and state that needs to be maintained for
-performing the i/o.
-
-Notice that this representation means that a bio has no virtual address
-mapping at all (unlike buffer heads).
-
-::
-
-  struct bio_vec {
-       struct page     *bv_page;
-       unsigned short  bv_len;
-       unsigned short  bv_offset;
-  };
-
-  /*
-   * main unit of I/O for the block layer and lower layers (ie drivers)
-   */
-  struct bio {
-       struct bio          *bi_next;    /* request queue link */
-       struct block_device *bi_bdev;	/* target device */
-       unsigned long       bi_flags;    /* status, command, etc */
-       unsigned long       bi_opf;       /* low bits: r/w, high: priority */
-
-       unsigned int	bi_vcnt;     /* how may bio_vec's */
-       struct bvec_iter	bi_iter;	/* current index into bio_vec array */
-
-       unsigned int	bi_size;     /* total size in bytes */
-       unsigned short	bi_hw_segments; /* segments after DMA remapping */
-       unsigned int	bi_max;	     /* max bio_vecs we can hold
-                                        used as index into pool */
-       struct bio_vec   *bi_io_vec;  /* the actual vec list */
-       bio_end_io_t	*bi_end_io;  /* bi_end_io (bio) */
-       atomic_t		bi_cnt;	     /* pin count: free when it hits zero */
-       void             *bi_private;
-  };
-
-With this multipage bio design:
-
-- Large i/os can be sent down in one go using a bio_vec list consisting
-  of an array of <page, offset, len> fragments (similar to the way fragments
-  are represented in the zero-copy network code)
-- Splitting of an i/o request across multiple devices (as in the case of
-  lvm or raid) is achieved by cloning the bio (where the clone points to
-  the same bi_io_vec array, but with the index and size accordingly modified)
-- A linked list of bios is used as before for unrelated merges [#]_ - this
-  avoids reallocs and makes independent completions easier to handle.
-- Code that traverses the req list can find all the segments of a bio
-  by using rq_for_each_segment.  This handles the fact that a request
-  has multiple bios, each of which can have multiple segments.
-- Drivers which can't process a large bio in one shot can use the bi_iter
-  field to keep track of the next bio_vec entry to process.
-  (e.g a 1MB bio_vec needs to be handled in max 128kB chunks for IDE)
-  [TBD: Should preferably also have a bi_voffset and bi_vlen to avoid modifying
-  bi_offset an len fields]
-
-.. [#]
-
-	unrelated merges -- a request ends up containing two or more bios that
-	didn't originate from the same place.
-
-bi_end_io() i/o callback gets called on i/o completion of the entire bio.
-
-At a lower level, drivers build a scatter gather list from the merged bios.
-The scatter gather list is in the form of an array of <page, offset, len>
-entries with their corresponding dma address mappings filled in at the
-appropriate time. As an optimization, contiguous physical pages can be
-covered by a single entry where <page> refers to the first page and <len>
-covers the range of pages (up to 16 contiguous pages could be covered this
-way). There is a helper routine (blk_rq_map_sg) which drivers can use to build
-the sg list.
-
-Note: Right now the only user of bios with more than one page is ll_rw_kio,
-which in turn means that only raw I/O uses it (direct i/o may not work
-right now). The intent however is to enable clustering of pages etc to
-become possible. The pagebuf abstraction layer from SGI also uses multi-page
-bios, but that is currently not included in the stock development kernels.
-The same is true of Andrew Morton's work-in-progress multipage bio writeout
-and readahead patches.
-
-2.3 Changes in the Request Structure
-------------------------------------
-
-The request structure is the structure that gets passed down to low level
-drivers. The block layer make_request function builds up a request structure,
-places it on the queue and invokes the drivers request_fn. The driver makes
-use of block layer helper routine elv_next_request to pull the next request
-off the queue. Control or diagnostic functions might bypass block and directly
-invoke underlying driver entry points passing in a specially constructed
-request structure.
-
-Only some relevant fields (mainly those which changed or may be referred
-to in some of the discussion here) are listed below, not necessarily in
-the order in which they occur in the structure (see include/linux/blkdev.h)
-Refer to Documentation/block/request.rst for details about all the request
-structure fields and a quick reference about the layers which are
-supposed to use or modify those fields::
-
-  struct request {
-	struct list_head queuelist;  /* Not meant to be directly accessed by
-					the driver.
-					Used by q->elv_next_request_fn
-					rq->queue is gone
-					*/
-	.
-	.
-	unsigned char cmd[16]; /* prebuilt command data block */
-	unsigned long flags;   /* also includes earlier rq->cmd settings */
-	.
-	.
-	sector_t sector; /* this field is now of type sector_t instead of int
-			    preparation for 64 bit sectors */
-	.
-	.
-
-	/* Number of scatter-gather DMA addr+len pairs after
-	 * physical address coalescing is performed.
-	 */
-	unsigned short nr_phys_segments;
-
-	/* Number of scatter-gather addr+len pairs after
-	 * physical and DMA remapping hardware coalescing is performed.
-	 * This is the number of scatter-gather entries the driver
-	 * will actually have to deal with after DMA mapping is done.
-	 */
-	unsigned short nr_hw_segments;
-
-	/* Various sector counts */
-	unsigned long nr_sectors;  /* no. of sectors left: driver modifiable */
-	unsigned long hard_nr_sectors;  /* block internal copy of above */
-	unsigned int current_nr_sectors; /* no. of sectors left in the
-					   current segment:driver modifiable */
-	unsigned long hard_cur_sectors; /* block internal copy of the above */
-	.
-	.
-	int tag;	/* command tag associated with request */
-	void *special;  /* same as before */
-	char *buffer;   /* valid only for low memory buffers up to
-			 current_nr_sectors */
-	.
-	.
-	struct bio *bio, *biotail;  /* bio list instead of bh */
-	struct request_list *rl;
-  }
-
-See the req_ops and req_flag_bits definitions for an explanation of the various
-flags available. Some bits are used by the block layer or i/o scheduler.
-
-The behaviour of the various sector counts are almost the same as before,
-except that since we have multi-segment bios, current_nr_sectors refers
-to the numbers of sectors in the current segment being processed which could
-be one of the many segments in the current bio (i.e i/o completion unit).
-The nr_sectors value refers to the total number of sectors in the whole
-request that remain to be transferred (no change). The purpose of the
-hard_xxx values is for block to remember these counts every time it hands
-over the request to the driver. These values are updated by block on
-end_that_request_first, i.e. every time the driver completes a part of the
-transfer and invokes block end*request helpers to mark this. The
-driver should not modify these values. The block layer sets up the
-nr_sectors and current_nr_sectors fields (based on the corresponding
-hard_xxx values and the number of bytes transferred) and updates it on
-every transfer that invokes end_that_request_first. It does the same for the
-buffer, bio, bio->bi_iter fields too.
-
-The buffer field is just a virtual address mapping of the current segment
-of the i/o buffer in cases where the buffer resides in low-memory. For high
-memory i/o, this field is not valid and must not be used by drivers.
-
-Code that sets up its own request structures and passes them down to
-a driver needs to be careful about interoperation with the block layer helper
-functions which the driver uses. (Section 1.3)
-
-3. Using bios
-=============
-
-3.1 Setup/Teardown
-------------------
-
-There are routines for managing the allocation, and reference counting, and
-freeing of bios (bio_alloc, bio_get, bio_put).
-
-This makes use of Ingo Molnar's mempool implementation, which enables
-subsystems like bio to maintain their own reserve memory pools for guaranteed
-deadlock-free allocations during extreme VM load. For example, the VM
-subsystem makes use of the block layer to writeout dirty pages in order to be
-able to free up memory space, a case which needs careful handling. The
-allocation logic draws from the preallocated emergency reserve in situations
-where it cannot allocate through normal means. If the pool is empty and it
-can wait, then it would trigger action that would help free up memory or
-replenish the pool (without deadlocking) and wait for availability in the pool.
-If it is in IRQ context, and hence not in a position to do this, allocation
-could fail if the pool is empty. In general mempool always first tries to
-perform allocation without having to wait, even if it means digging into the
-pool as long it is not less that 50% full.
-
-On a free, memory is released to the pool or directly freed depending on
-the current availability in the pool. The mempool interface lets the
-subsystem specify the routines to be used for normal alloc and free. In the
-case of bio, these routines make use of the standard slab allocator.
-
-The caller of bio_alloc is expected to taken certain steps to avoid
-deadlocks, e.g. avoid trying to allocate more memory from the pool while
-already holding memory obtained from the pool.
-
-::
-
-  [TBD: This is a potential issue, though a rare possibility
-   in the bounce bio allocation that happens in the current code, since
-   it ends up allocating a second bio from the same pool while
-   holding the original bio ]
-
-Memory allocated from the pool should be released back within a limited
-amount of time (in the case of bio, that would be after the i/o is completed).
-This ensures that if part of the pool has been used up, some work (in this
-case i/o) must already be in progress and memory would be available when it
-is over. If allocating from multiple pools in the same code path, the order
-or hierarchy of allocation needs to be consistent, just the way one deals
-with multiple locks.
-
-The bio_alloc routine also needs to allocate the bio_vec_list (bvec_alloc())
-for a non-clone bio. There are the 6 pools setup for different size biovecs,
-so bio_alloc(gfp_mask, nr_iovecs) will allocate a vec_list of the
-given size from these slabs.
-
-The bio_get() routine may be used to hold an extra reference on a bio prior
-to i/o submission, if the bio fields are likely to be accessed after the
-i/o is issued (since the bio may otherwise get freed in case i/o completion
-happens in the meantime).
-
-3.2 Generic bio helper Routines
--------------------------------
-
-3.2.1 Traversing segments and completion units in a request
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-The macro rq_for_each_segment() should be used for traversing the bios
-in the request list (drivers should avoid directly trying to do it
-themselves). Using these helpers should also make it easier to cope
-with block changes in the future.
-
-::
-
-	struct req_iterator iter;
-	rq_for_each_segment(bio_vec, rq, iter)
-		/* bio_vec is now current segment */
-
-I/O completion callbacks are per-bio rather than per-segment, so drivers
-that traverse bio chains on completion need to keep that in mind. Drivers
-which don't make a distinction between segments and completion units would
-need to be reorganized to support multi-segment bios.
-
-3.2.2 Setting up DMA scatterlists
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-The blk_rq_map_sg() helper routine would be used for setting up scatter
-gather lists from a request, so a driver need not do it on its own.
-
-	nr_segments = blk_rq_map_sg(q, rq, scatterlist);
-
-The helper routine provides a level of abstraction which makes it easier
-to modify the internals of request to scatterlist conversion down the line
-without breaking drivers. The blk_rq_map_sg routine takes care of several
-things like collapsing physically contiguous segments (if QUEUE_FLAG_CLUSTER
-is set) and correct segment accounting to avoid exceeding the limits which
-the i/o hardware can handle, based on various queue properties.
-
-- Prevents a clustered segment from crossing a 4GB mem boundary
-- Avoids building segments that would exceed the number of physical
-  memory segments that the driver can handle (phys_segments) and the
-  number that the underlying hardware can handle at once, accounting for
-  DMA remapping (hw_segments)  (i.e. IOMMU aware limits).
-
-Routines which the low level driver can use to set up the segment limits:
-
-blk_queue_max_hw_segments() : Sets an upper limit of the maximum number of
-hw data segments in a request (i.e. the maximum number of address/length
-pairs the host adapter can actually hand to the device at once)
-
-blk_queue_max_phys_segments() : Sets an upper limit on the maximum number
-of physical data segments in a request (i.e. the largest sized scatter list
-a driver could handle)
-
-3.2.3 I/O completion
-^^^^^^^^^^^^^^^^^^^^
-
-The existing generic block layer helper routines end_request,
-end_that_request_first and end_that_request_last can be used for i/o
-completion (and setting things up so the rest of the i/o or the next
-request can be kicked of) as before. With the introduction of multi-page
-bio support, end_that_request_first requires an additional argument indicating
-the number of sectors completed.
-
-3.2.4 Implications for drivers that do not interpret bios
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-(don't handle multiple segments)
-
-Drivers that do not interpret bios e.g those which do not handle multiple
-segments and do not support i/o into high memory addresses (require bounce
-buffers) and expect only virtually mapped buffers, can access the rq->buffer
-field. As before the driver should use current_nr_sectors to determine the
-size of remaining data in the current segment (that is the maximum it can
-transfer in one go unless it interprets segments), and rely on the block layer
-end_request, or end_that_request_first/last to take care of all accounting
-and transparent mapping of the next bio segment when a segment boundary
-is crossed on completion of a transfer. (The end*request* functions should
-be used if only if the request has come down from block/bio path, not for
-direct access requests which only specify rq->buffer without a valid rq->bio)
-
-3.3 I/O Submission
-------------------
-
-The routine submit_bio() is used to submit a single io. Higher level i/o
-routines make use of this:
-
-(a) Buffered i/o:
-
-The routine submit_bh() invokes submit_bio() on a bio corresponding to the
-bh, allocating the bio if required. ll_rw_block() uses submit_bh() as before.
-
-(b) Kiobuf i/o (for raw/direct i/o):
-
-The ll_rw_kio() routine breaks up the kiobuf into page sized chunks and
-maps the array to one or more multi-page bios, issuing submit_bio() to
-perform the i/o on each of these.
-
-The embedded bh array in the kiobuf structure has been removed and no
-preallocation of bios is done for kiobufs. [The intent is to remove the
-blocks array as well, but it's currently in there to kludge around direct i/o.]
-Thus kiobuf allocation has switched back to using kmalloc rather than vmalloc.
-
-Todo/Observation:
-
- A single kiobuf structure is assumed to correspond to a contiguous range
- of data, so brw_kiovec() invokes ll_rw_kio for each kiobuf in a kiovec.
- So right now it wouldn't work for direct i/o on non-contiguous blocks.
- This is to be resolved.  The eventual direction is to replace kiobuf
- by kvec's.
-
- Badari Pulavarty has a patch to implement direct i/o correctly using
- bio and kvec.
-
-
-(c) Page i/o:
-
-Todo/Under discussion:
-
- Andrew Morton's multi-page bio patches attempt to issue multi-page
- writeouts (and reads) from the page cache, by directly building up
- large bios for submission completely bypassing the usage of buffer
- heads. This work is still in progress.
-
- Christoph Hellwig had some code that uses bios for page-io (rather than
- bh). This isn't included in bio as yet. Christoph was also working on a
- design for representing virtual/real extents as an entity and modifying
- some of the address space ops interfaces to utilize this abstraction rather
- than buffer_heads. (This is somewhat along the lines of the SGI XFS pagebuf
- abstraction, but intended to be as lightweight as possible).
-
-(d) Direct access i/o:
-
-Direct access requests that do not contain bios would be submitted differently
-as discussed earlier in section 1.3.
-
-Aside:
-
-  Kvec i/o:
-
-  Ben LaHaise's aio code uses a slightly different structure instead
-  of kiobufs, called a kvec_cb. This contains an array of <page, offset, len>
-  tuples (very much like the networking code), together with a callback function
-  and data pointer. This is embedded into a brw_cb structure when passed
-  to brw_kvec_async().
-
-  Now it should be possible to directly map these kvecs to a bio. Just as while
-  cloning, in this case rather than PRE_BUILT bio_vecs, we set the bi_io_vec
-  array pointer to point to the veclet array in kvecs.
-
-  TBD: In order for this to work, some changes are needed in the way multi-page
-  bios are handled today. The values of the tuples in such a vector passed in
-  from higher level code should not be modified by the block layer in the course
-  of its request processing, since that would make it hard for the higher layer
-  to continue to use the vector descriptor (kvec) after i/o completes. Instead,
-  all such transient state should either be maintained in the request structure,
-  and passed on in some way to the endio completion routine.
-
-
-4. The I/O scheduler
-====================
-
-I/O scheduler, a.k.a. elevator, is implemented in two layers.  Generic dispatch
-queue and specific I/O schedulers.  Unless stated otherwise, elevator is used
-to refer to both parts and I/O scheduler to specific I/O schedulers.
-
-Block layer implements generic dispatch queue in `block/*.c`.
-The generic dispatch queue is responsible for requeueing, handling non-fs
-requests and all other subtleties.
-
-Specific I/O schedulers are responsible for ordering normal filesystem
-requests.  They can also choose to delay certain requests to improve
-throughput or whatever purpose.  As the plural form indicates, there are
-multiple I/O schedulers.  They can be built as modules but at least one should
-be built inside the kernel.  Each queue can choose different one and can also
-change to another one dynamically.
-
-A block layer call to the i/o scheduler follows the convention elv_xxx(). This
-calls elevator_xxx_fn in the elevator switch (block/elevator.c). Oh, xxx
-and xxx might not match exactly, but use your imagination. If an elevator
-doesn't implement a function, the switch does nothing or some minimal house
-keeping work.
-
-4.1. I/O scheduler API
-----------------------
-
-The functions an elevator may implement are: (* are mandatory)
-
-=============================== ================================================
-elevator_merge_fn		called to query requests for merge with a bio
-
-elevator_merge_req_fn		called when two requests get merged. the one
-				which gets merged into the other one will be
-				never seen by I/O scheduler again. IOW, after
-				being merged, the request is gone.
-
-elevator_merged_fn		called when a request in the scheduler has been
-				involved in a merge. It is used in the deadline
-				scheduler for example, to reposition the request
-				if its sorting order has changed.
-
-elevator_allow_merge_fn		called whenever the block layer determines
-				that a bio can be merged into an existing
-				request safely. The io scheduler may still
-				want to stop a merge at this point if it
-				results in some sort of conflict internally,
-				this hook allows it to do that. Note however
-				that two *requests* can still be merged at later
-				time. Currently the io scheduler has no way to
-				prevent that. It can only learn about the fact
-				from elevator_merge_req_fn callback.
-
-elevator_dispatch_fn*		fills the dispatch queue with ready requests.
-				I/O schedulers are free to postpone requests by
-				not filling the dispatch queue unless @force
-				is non-zero.  Once dispatched, I/O schedulers
-				are not allowed to manipulate the requests -
-				they belong to generic dispatch queue.
-
-elevator_add_req_fn*		called to add a new request into the scheduler
-
-elevator_former_req_fn
-elevator_latter_req_fn		These return the request before or after the
-				one specified in disk sort order. Used by the
-				block layer to find merge possibilities.
-
-elevator_completed_req_fn	called when a request is completed.
-
-elevator_set_req_fn
-elevator_put_req_fn		Must be used to allocate and free any elevator
-				specific storage for a request.
-
-elevator_activate_req_fn	Called when device driver first sees a request.
-				I/O schedulers can use this callback to
-				determine when actual execution of a request
-				starts.
-elevator_deactivate_req_fn	Called when device driver decides to delay
-				a request by requeueing it.
-
-elevator_init_fn*
-elevator_exit_fn		Allocate and free any elevator specific storage
-				for a queue.
-=============================== ================================================
-
-4.2 Request flows seen by I/O schedulers
-----------------------------------------
-
-All requests seen by I/O schedulers strictly follow one of the following three
-flows.
-
- set_req_fn ->
-
- i.   add_req_fn -> (merged_fn ->)* -> dispatch_fn -> activate_req_fn ->
-      (deactivate_req_fn -> activate_req_fn ->)* -> completed_req_fn
- ii.  add_req_fn -> (merged_fn ->)* -> merge_req_fn
- iii. [none]
-
- -> put_req_fn
-
-4.3 I/O scheduler implementation
---------------------------------
-
-The generic i/o scheduler algorithm attempts to sort/merge/batch requests for
-optimal disk scan and request servicing performance (based on generic
-principles and device capabilities), optimized for:
-
-i.   improved throughput
-ii.  improved latency
-iii. better utilization of h/w & CPU time
-
-Characteristics:
-
-i. Binary tree
-AS and deadline i/o schedulers use red black binary trees for disk position
-sorting and searching, and a fifo linked list for time-based searching. This
-gives good scalability and good availability of information. Requests are
-almost always dispatched in disk sort order, so a cache is kept of the next
-request in sort order to prevent binary tree lookups.
-
-This arrangement is not a generic block layer characteristic however, so
-elevators may implement queues as they please.
-
-ii. Merge hash
-AS and deadline use a hash table indexed by the last sector of a request. This
-enables merging code to quickly look up "back merge" candidates, even when
-multiple I/O streams are being performed at once on one disk.
-
-"Front merges", a new request being merged at the front of an existing request,
-are far less common than "back merges" due to the nature of most I/O patterns.
-Front merges are handled by the binary trees in AS and deadline schedulers.
-
-iii. Plugging the queue to batch requests in anticipation of opportunities for
-     merge/sort optimizations
-
-Plugging is an approach that the current i/o scheduling algorithm resorts to so
-that it collects up enough requests in the queue to be able to take
-advantage of the sorting/merging logic in the elevator. If the
-queue is empty when a request comes in, then it plugs the request queue
-(sort of like plugging the bath tub of a vessel to get fluid to build up)
-till it fills up with a few more requests, before starting to service
-the requests. This provides an opportunity to merge/sort the requests before
-passing them down to the device. There are various conditions when the queue is
-unplugged (to open up the flow again), either through a scheduled task or
-could be on demand.
-
-Aside:
-  This is kind of controversial territory, as it's not clear if plugging is
-  always the right thing to do. Devices typically have their own queues,
-  and allowing a big queue to build up in software, while letting the device be
-  idle for a while may not always make sense. The trick is to handle the fine
-  balance between when to plug and when to open up. Also now that we have
-  multi-page bios being queued in one shot, we may not need to wait to merge
-  a big request from the broken up pieces coming by.
-
-4.4 I/O contexts
-----------------
-
-I/O contexts provide a dynamically allocated per process data area. They may
-be used in I/O schedulers, and in the block layer (could be used for IO statis,
-priorities for example). See `*io_context` in block/ll_rw_blk.c, and as-iosched.c
-for an example of usage in an i/o scheduler.
-
-
-5. Scalability related changes
-==============================
-
-5.1 Granular Locking: io_request_lock replaced by a per-queue lock
-------------------------------------------------------------------
-
-The global io_request_lock has been removed as of 2.5, to avoid
-the scalability bottleneck it was causing, and has been replaced by more
-granular locking. The request queue structure has a pointer to the
-lock to be used for that queue. As a result, locking can now be
-per-queue, with a provision for sharing a lock across queues if
-necessary (e.g the scsi layer sets the queue lock pointers to the
-corresponding adapter lock, which results in a per host locking
-granularity). The locking semantics are the same, i.e. locking is
-still imposed by the block layer, grabbing the lock before
-request_fn execution which it means that lots of older drivers
-should still be SMP safe. Drivers are free to drop the queue
-lock themselves, if required. Drivers that explicitly used the
-io_request_lock for serialization need to be modified accordingly.
-Usually it's as easy as adding a global lock::
-
-	static DEFINE_SPINLOCK(my_driver_lock);
-
-and passing the address to that lock to blk_init_queue().
-
-5.2 64 bit sector numbers (sector_t prepares for 64 bit support)
-----------------------------------------------------------------
-
-The sector number used in the bio structure has been changed to sector_t,
-which could be defined as 64 bit in preparation for 64 bit sector support.
-
-6. Other Changes/Implications
-=============================
-
-6.1 Partition re-mapping handled by the generic block layer
------------------------------------------------------------
-
-In 2.5 some of the gendisk/partition related code has been reorganized.
-Now the generic block layer performs partition-remapping early and thus
-provides drivers with a sector number relative to whole device, rather than
-having to take partition number into account in order to arrive at the true
-sector number. The routine blk_partition_remap() is invoked by
-submit_bio_noacct even before invoking the queue specific ->submit_bio,
-so the i/o scheduler also gets to operate on whole disk sector numbers. This
-should typically not require changes to block drivers, it just never gets
-to invoke its own partition sector offset calculations since all bios
-sent are offset from the beginning of the device.
-
-
-7. A Few Tips on Migration of older drivers
-===========================================
-
-Old-style drivers that just use CURRENT and ignores clustered requests,
-may not need much change.  The generic layer will automatically handle
-clustered requests, multi-page bios, etc for the driver.
-
-For a low performance driver or hardware that is PIO driven or just doesn't
-support scatter-gather changes should be minimal too.
-
-The following are some points to keep in mind when converting old drivers
-to bio.
-
-Drivers should use elv_next_request to pick up requests and are no longer
-supposed to handle looping directly over the request list.
-(struct request->queue has been removed)
-
-Now end_that_request_first takes an additional number_of_sectors argument.
-It used to handle always just the first buffer_head in a request, now
-it will loop and handle as many sectors (on a bio-segment granularity)
-as specified.
-
-Now bh->b_end_io is replaced by bio->bi_end_io, but most of the time the
-right thing to use is bio_endio(bio) instead.
-
-If the driver is dropping the io_request_lock from its request_fn strategy,
-then it just needs to replace that with q->queue_lock instead.
-
-As described in Sec 1.1, drivers can set max sector size, max segment size
-etc per queue now. Drivers that used to define their own merge functions i
-to handle things like this can now just use the blk_queue_* functions at
-blk_init_queue time.
-
-Drivers no longer have to map a {partition, sector offset} into the
-correct absolute location anymore, this is done by the block layer, so
-where a driver received a request ala this before::
-
-	rq->rq_dev = mk_kdev(3, 5);	/* /dev/hda5 */
-	rq->sector = 0;			/* first sector on hda5 */
-
-it will now see::
-
-	rq->rq_dev = mk_kdev(3, 0);	/* /dev/hda */
-	rq->sector = 123128;		/* offset from start of disk */
-
-As mentioned, there is no virtual mapping of a bio. For DMA, this is
-not a problem as the driver probably never will need a virtual mapping.
-Instead it needs a bus mapping (dma_map_page for a single segment or
-use dma_map_sg for scatter gather) to be able to ship it to the driver. For
-PIO drivers (or drivers that need to revert to PIO transfer once in a
-while (IDE for example)), where the CPU is doing the actual data
-transfer a virtual mapping is needed. If the driver supports highmem I/O,
-(Sec 1.1, (ii) ) it needs to use kmap_atomic or similar to temporarily map
-a bio into the virtual address space.
-
-
-8. Prior/Related/Impacted patches
-=================================
-
-8.1. Earlier kiobuf patches (sct/axboe/chait/hch/mkp)
------------------------------------------------------
-
-- orig kiobuf & raw i/o patches (now in 2.4 tree)
-- direct kiobuf based i/o to devices (no intermediate bh's)
-- page i/o using kiobuf
-- kiobuf splitting for lvm (mkp)
-- elevator support for kiobuf request merging (axboe)
-
-8.2. Zero-copy networking (Dave Miller)
----------------------------------------
-
-8.3. SGI XFS - pagebuf patches - use of kiobufs
------------------------------------------------
-8.4. Multi-page pioent patch for bio (Christoph Hellwig)
---------------------------------------------------------
-8.5. Direct i/o implementation (Andrea Arcangeli) since 2.4.10-pre11
---------------------------------------------------------------------
-8.6. Async i/o implementation patch (Ben LaHaise)
--------------------------------------------------
-8.7. EVMS layering design (IBM EVMS team)
------------------------------------------
-8.8. Larger page cache size patch (Ben LaHaise) and Large page size (Daniel Phillips)
--------------------------------------------------------------------------------------
-
-    => larger contiguous physical memory buffers
-
-8.9. VM reservations patch (Ben LaHaise)
-----------------------------------------
-8.10. Write clustering patches ? (Marcelo/Quintela/Riel ?)
-----------------------------------------------------------
-8.11. Block device in page cache patch (Andrea Archangeli) - now in 2.4.10+
----------------------------------------------------------------------------
-8.12. Multiple block-size transfers for faster raw i/o (Shailabh Nagar, Badari)
--------------------------------------------------------------------------------
-8.13  Priority based i/o scheduler - prepatches (Arjan van de Ven)
-------------------------------------------------------------------
-8.14  IDE Taskfile i/o patch (Andre Hedrick)
---------------------------------------------
-8.15  Multi-page writeout and readahead patches (Andrew Morton)
----------------------------------------------------------------
-8.16  Direct i/o patches for 2.5 using kvec and bio (Badari Pulavarthy)
------------------------------------------------------------------------
-
-9. Other References
-===================
-
-9.1 The Splice I/O Model
-------------------------
-
-Larry McVoy (and subsequent discussions on lkml, and Linus' comments - Jan 2001
-
-9.2 Discussions about kiobuf and bh design
-------------------------------------------
-
-On lkml between sct, linus, alan et al - Feb-March 2001 (many of the
-initial thoughts that led to bio were brought up in this discussion thread)
-
-9.3 Discussions on mempool on lkml - Dec 2001.
-----------------------------------------------
diff --git a/Documentation/block/index.rst b/Documentation/block/index.rst
index 3a41495dd77b5..68f115f2b1c6b 100644
--- a/Documentation/block/index.rst
+++ b/Documentation/block/index.rst
@@ -8,7 +8,6 @@ Block
    :maxdepth: 1
 
    bfq-iosched
-   biodoc
    biovecs
    blk-mq
    capability
-- 
2.30.2




[Index of Archives]     [Kernel Newbies]     [Security]     [Netfilter]     [Bugtraq]     [Linux FS]     [Yosemite Forum]     [MIPS Linux]     [ARM Linux]     [Linux Security]     [Linux RAID]     [Samba]     [Video 4 Linux]     [Device Mapper]     [Linux Resources]

  Powered by Linux