Yu Zhao <yuzhao@xxxxxxxxxx> writes: ..... + > +/* > + * Evictable pages are divided into multiple generations. The youngest and the > + * oldest generation numbers, max_seq and min_seq, are monotonically increasing. > + * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An > + * offset within MAX_NR_GENS, gen, indexes the lru list of the corresponding > + * generation. The gen counter in folio->flags stores gen+1 while a page is on > + * lrugen->lists[]. Otherwise, it stores 0. > + * > + * A page is added to the youngest generation on faulting. The aging needs to > + * check the accessed bit at least twice before handing this page over to the > + * eviction. The first check takes care of the accessed bit set on the initial > + * fault; the second check makes sure this page hasn't been used since then. > + * This process, AKA second chance, requires a minimum of two generations, > + * hence MIN_NR_GENS. And to be compatible with the active/inactive lru, these > + * two generations are mapped to the active; the rest of generations, if they > + * exist, are mapped to the inactive. PG_active is always cleared while a page > + * is on lrugen->lists[] so that demotion, which happens consequently when the > + * aging creates a new generation, needs not to worry about it. > + */ Where do we clear PG_active in the code? Is this the reason we endup with void deactivate_page(struct page *page) { - if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) { + if (PageLRU(page) && !PageUnevictable(page) && (PageActive(page) || lru_gen_enabled())) { > +#define MIN_NR_GENS 2U > +#define MAX_NR_GENS ((unsigned int)CONFIG_NR_LRU_GENS) > + > +struct lru_gen_struct { > + /* the aging increments the youngest generation number */ > + unsigned long max_seq; > + /* the eviction increments the oldest generation numbers */ > + unsigned long min_seq[ANON_AND_FILE]; > + /* the birth time of each generation in jiffies */ > + unsigned long timestamps[MAX_NR_GENS]; > + /* the multigenerational lru lists */ > + struct list_head lists[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; > + /* the sizes of the above lists */ > + unsigned long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; > + /* whether the multigenerational lru is enabled */ > + bool enabled; > +}; > + .... > static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, > diff --git a/mm/swap.c b/mm/swap.c > index e8c9dc6d0377..d7dde3b7d4b5 100644 > --- a/mm/swap.c > +++ b/mm/swap.c > @@ -462,6 +462,11 @@ void folio_add_lru(struct folio *folio) > VM_BUG_ON_FOLIO(folio_test_active(folio) && folio_test_unevictable(folio), folio); > VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); > > + /* see the comment in lru_gen_add_folio() */ > + if (lru_gen_enabled() && !folio_test_unevictable(folio) && > + task_in_lru_fault() && !(current->flags & PF_MEMALLOC)) > + folio_set_active(folio); > + Can you explain this better? What is the significance of marking the folio active here. Do we need to differentiate parallel page faults (across different vmas) w.r.t task_in_lru_fault()? > folio_get(folio); > local_lock(&lru_pvecs.lock); > pvec = this_cpu_ptr(&lru_pvecs.lru_add); > @@ -563,7 +568,7 @@ static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec) >