This commit adds document for pte_ref under `Documentation/vm/`. Signed-off-by: Qi Zheng <zhengqi.arch@xxxxxxxxxxxxx> --- Documentation/vm/pte_ref.rst | 212 +++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 212 insertions(+) create mode 100644 Documentation/vm/pte_ref.rst diff --git a/Documentation/vm/pte_ref.rst b/Documentation/vm/pte_ref.rst new file mode 100644 index 000000000000..c5323a263464 --- /dev/null +++ b/Documentation/vm/pte_ref.rst @@ -0,0 +1,212 @@ +.. _pte_ref: + +============================================================================ +pte_ref: Tracking about how many references to each user PTE page table page +============================================================================ + +.. contents:: :local: + +1. Preface +========== + +Now in order to pursue high performance, applications mostly use some +high-performance user-mode memory allocators, such as jemalloc or tcmalloc. +These memory allocators use ``madvise(MADV_DONTNEED or MADV_FREE)`` to release +physical memory for the following reasons:: + + First of all, we should hold as few write locks of mmap_lock as possible,since + the mmap_lock semaphore has long been a contention point in the memory + management subsystem. The mmap()/munmap() hold the write lock, and the + madvise(MADV_DONTNEED or MADV_FREE) hold the read lock, so using madvise() + instead of munmap() to released physical memory can reduce the competition of + the mmap_lock. + + Secondly, after using madvise() to release physical memory, there is no need to + build vma and allocate page tables again when accessing the same virtual + address again, which can also save some time. + +The following is the largest user PTE page table memory that can be allocated by +a single user process in a 32-bit and a 64-bit system. + ++---------------------------+--------+---------+ +| | 32-bit | 64-bit | ++===========================+========+=========+ +| user PTE page table pages | 3 MiB | 512 GiB | ++---------------------------+--------+---------+ +| user PMD page table pages | 3 KiB | 1 GiB | ++---------------------------+--------+---------+ + +(for 32-bit, take 3G user address space, 4K page size as an example; for 64-bit, +take 48-bit address width, 4K page size as an example.) + +After using ``madvise()``, everything looks good, but as can be seen from the +above table, a single process can create a large number of PTE page tables on a +64-bit system, since both of the ``MADV_DONTNEED`` and ``MADV_FREE`` will not +release page table memory. And before the process exits or calls ``munmap()``, +the kernel cannot reclaim these pages even if these PTE page tables do not map +anything. + +Therefore, we decided to introduce reference count to manage the PTE page table +life cycle, so that some free PTE page table memory in the system can be +dynamically released. + +2. The reference count of user PTE page table pages +=================================================== + +We introduce two members for the ``struct page`` of the user PTE page table +page:: + + union { + pgtable_t pmd_huge_pte; /* protected by page->ptl */ + pmd_t *pmd; /* PTE page only */ + }; + union { + struct mm_struct *pt_mm; /* x86 pgds only */ + atomic_t pt_frag_refcount; /* powerpc */ + atomic_t pte_refcount; /* PTE page only */ + }; + +The ``pmd`` member record the pmd entry that maps the user PTE page table page, +the ``pte_refcount`` member keep track of how many references to the user PTE +page table page. + +The following people will hold a reference on the user PTE page table page:: + + The !pte_none() entry, such as regular page table entry that map physical + pages, or swap entry, or migrate entry, etc. + + Visitor to the PTE page table entries, such as page table walker. + +Any ``!pte_none()`` entry and visitor can be regarded as the user of its PTE +page table page. When the ``pte_refcount`` is reduced to 0, it means that no one +is using the PTE page table page, then this free PTE page table page can be +released back to the system at this time. + +3. Competitive relationship +=========================== + +Now, the user page table will only be released by calling ``free_pgtables()`` +when the process exits or ``unmap_region()`` is called (e.g. ``munmap()`` path). +So other threads only need to ensure mutual exclusion with these paths to ensure +that the page table is not released. For example:: + + thread A thread B + page table walker munmap + ================= ====== + + mmap_read_lock() + if (!pte_none() && pte_present() && !pmd_trans_unstable()) { + pte_offset_map_lock() + *walk page table* + pte_unmap_unlock() + } + mmap_read_unlock() + + mmap_write_lock_killable() + detach_vmas_to_be_unmapped() + unmap_region() + --> free_pgtables() + +But after we introduce the reference count for the user PTE page table page, +these existing balances will be broken. The page can be released at any time +when its ``pte_refcount`` is reduced to 0. Therefore, the following case may +happen:: + + thread A thread B thread C + page table walker madvise(MADV_DONTNEED) page fault + ================= ====================== ========== + + mmap_read_lock() + if (!pte_none() && pte_present() && !pmd_trans_unstable()) { + + mmap_read_lock() + unmap_page_range() + --> zap_pte_range() + *the pte_refcount is reduced to 0* + --> *free PTE page table page* + + /* broken!! */ mmap_read_lock() + pte_offset_map_lock() + +As we can see, all of the thread A, B and C hold the read lock of mmap_lock, so +they can execute concurrently. When thread B releases the PTE page table page, +the value in the corresponding pmd entry will become unstable, which may be +none or huge pmd, or map a new PTE page table page again. This will cause system +chaos and even panic. + +So as described in the section "The reference count of user PTE page table +pages", we need to try to take a reference to the PTE page table page before +walking page table, then the system will become orderly again:: + + thread A thread B + page table walker madvise(MADV_DONTNEED) + ================= ====================== + + mmap_read_lock() + if (!pte_none() && pte_present() && !pmd_trans_unstable()) { + pte_try_get() + --> pte_get_unless_zero + *if successfully, then:* + + mmap_read_lock() + unmap_page_range() + --> zap_pte_range() + *the pte_refcount is reduced to 1* + + pte_offset_map_lock() + *walk page table* + pte_unmap_unlock() + pte_put() + --> *the pte_refcount is reduced to 0* + --> *free PTE page table page* + +There is also a lock-less scenario(such as fast GUP). Fortunately, we don't need +to do any additional operations to ensure that the system is in order. Take fast +GUP as an example:: + + thread A thread B + fast GUP madvise(MADV_DONTNEED) + ======== ====================== + + get_user_pages_fast_only() + --> local_irq_save(); + *free PTE page table page* + --> unhook page + /* The CPU where thread A is located closed + * the local interrupt and cannot respond to + * IPI, so it will block here */ + TLB invalidate page + gup_pgd_range(); + local_irq_restore(); + *free page* + +4. Helpers +========== + ++---------------------+-------------------------------------------------+ +| pte_ref_init | Initialize the pte_refcount and pmd | ++---------------------+-------------------------------------------------+ +| pte_to_pmd | Get the corresponding pmd | ++---------------------+-------------------------------------------------+ +| pte_update_pmd | Update the corresponding pmd | ++---------------------+-------------------------------------------------+ +| pte_get | Increment a pte_refcount | ++---------------------+-------------------------------------------------+ +| pte_get_many | Add a value to a pte_refcount | ++---------------------+-------------------------------------------------+ +| pte_get_unless_zero | Increment a pte_refcount unless it is 0 | ++---------------------+-------------------------------------------------+ +| pte_try_get | Try to increment a pte_refcount | ++---------------------+-------------------------------------------------+ +| pte_tryget_map | Try to increment a pte_refcount before | +| | pte_offset_map() | ++---------------------+-------------------------------------------------+ +| pte_tryget_map_lock | Try to increment a pte_refcount before | +| | pte_offset_map_lock() | ++---------------------+-------------------------------------------------+ +| pte_put | Decrement a pte_refcount | ++---------------------+-------------------------------------------------+ +| pte_put_many | Sub a value to a pte_refcount | ++---------------------+-------------------------------------------------+ +| pte_put_vmf | Decrement a pte_refcount in the page fault path | ++---------------------+-------------------------------------------------+ -- 2.11.0