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We define the fibonacci sequence ¢,, as follows
Definition 1. Letn € N

wo =0

p1 =1

Pn = Pn-1+ Pn-2
We have proved the following theorems

Theorem 1 (Limit A). Let k,m,r €N, m > 1,7 =2" 2R, -1 <z <1, z # {1505, =145}

oo r
>t =
pors Tk 2" — Bam + 1
Theorem 2 (Limit B). Let k,m,r € N, m > 1,r=2" 2R, -1 <z <1, z # {1505 =155}

i(p k 7‘$Tk = —@§(IT+1)
k=0 e z?r *ﬂr‘rr +1

And ask about O(z,r) with z,r € R

x?"

@(.13, T) = —xZ'r — ﬁrl.'r m 1

So we have built the integral of ¢(z,r) in the following way

Theorem 3. Letz,r € R, r >4, -1 <2 <1, 2 # {1_72\/5» 7_1;\/5}

/cp(x, r)z"dr =Y (r) O(z,r)
with the condition of p(1,r) = ¢,, where T(r) is defined as follows

T(r) = : _\/ﬁg(r)) (101)[;/) a 1ngT7')’

let ¢ = 1+2\/5, T= 1’2\/5, then S(r) is defined as
Blry=y"+71"

- ¢n —n
©n N
And with the idea of the following
Z Prk vk O(z,r)

o Pr

that it’s always true for all r = 2™ > 4, where m € N, we ask for all of the instances that generate O(z,r).



So we ended up with this theorem

Theorem 4 (Representation A). Let j,k,n,s,t,uk,v,vj,w,ZJg eNz,reR r>4, -1<ax<1,
x#{O,%,%ﬁ}, t=> ug, S=y. v 2z=25+w+u

g Lﬁ (90,(]“))’%1 </ o dr>ﬂ ﬁ (iﬂi (log z)’~* p(x,7) k>>vj </ <p(:c,r)a:rdr>w (2 — ﬂ(r))%-&-v _

—~

§=0 \ k=0
n n 2s+w (9)
ug
T(r)" lH (Xk(lﬂ")) ] H (Xj(ﬂﬂ, 7’)) <$75> (Z orra” )
k=0 §=0
where o(z,7)*) is the k-derivative.
Then we did the same for the following equation
/gon(x,r)x”dr =7T,(r)0"(z,r) (10)

And ended up with something similar

Theorem 5 (Representation B). Let j, k,n, s, t, ug, v, vj, w, szEN z,reR, r>4, —1<x<l1,
:1:7&{0,#,*1%‘/5}, s=> vk, t=> uk, z=(Mm+1)s+nw+ug

s Lli[l (%@)M] (/ Pr dr>u E(éﬂi (logz)i=* gOn(ﬂfﬂ“)(k)) (/ <pn(a:,r)xrdr>w (2 _ﬂ(r))(n+1)t+nu _
T () Y, (r)" [li[ (Xk (1,r, n) ] (X] o n) vj (xrs> (Z e >(n+1)s+nw
=0

Vi

k=0
(11)
where x(x,r,n) is define as follows
Definition 2.
_ log z - s 1
S(z,7,m) = Xo(w, ) = 0 Tu(r) (B)) + ~or =" logar ) + (Tu(r) (2" + — = B(r)) (12)

Xia(,rm) = (g (e rm) + (n+1) (Z“’T’“ T’“)( (B + 22— loga)xy(e,rm)  (13)

Next we try to develop the quotient, so we define the following

Definition 3.

1 s J , - —s
p(x,r,n,s) = lwl ZT,ﬁ (log )" ~* @, (2, 7)* (/ @n(x,r):crdr) (14)
j=1P7" 1 j=1k=0
1 it (& LY
T(x,7r,n,8) = Ork® 15
(2. 5) [n;_l | e (5 15

And we get this

Theorem 6 (Representation C). Letn,s €N, z,r € R, r >4, —-1 <z <1,z # {0, \/g _H“[}

o {2_;(”} ( / o dr)s p(z,7,m,8) = 7,71, ) (16)



And with the help of some substitutions we get this one

Theorem 7 (Representation H). Let s,u,v €N, 2,7 € R, r >4, -1 <z <1, z # {0, \/g *H‘f}

(B (o) ([ i o

where I'(r) is define as follows

D) = 2+ 6() [ Brdr (18)
Finally, if we separate the x part from the r part we get

Theorem 8 (Formula 1). Let],knTkEN r,rzE€R P24, —1<z<1,x#{0,°L ‘@ *”‘f}

(S ) [ (et 1
Pr (kz_ogp’rk )

2" T () k o 7i (log 2)i=F o, (z,7)*)
and for the r part we get

(19)

Theorem 9 (Formula 2). Letu,v € N, r,z e R, r > 4

oi ==y [C GO ([, ) o (foar) (20)

So if we just multiply both we get ©2* for x,r variables or the following formula

Theorem 10 (Formula 7). Let k,u,v €N, z,r, 2 € R, r >4, -1 <z <1, z #{0,2 V5 _1+‘[}

s AT () () () [
(21)

[1]

And if we get the inverse

Theorem 11 (Formula 8). Let k,u,v €N, 2,7,z € R, r >4, —1 <z <1, x # {0,158 _H"f}

(1IN

[1]

7 = le=mmrer mre I J (fe d’“)_(w); (/» d) (i”x> [ <x,r>x(rf¢sif£>xrdr>

(22)
We can perform the sum and we get

Theorem 12. Let k,u,v €N, 2,72 € R, r >4, -1 <z <1, 2 #{0,1 \/571+f}

G =145 + Z +21Z+i[<2—ﬁ<r>>3(fz;i(;)(i>)vE(M)}; (/Mr>_<u+n; (/MT) o3
(Eoe) [ttt

(23)
this is always true for all r that are power of 2.
But we can ask for all s € R that are between 2™~ ! < s < 2™, where r = 2™, we get this
—— T(r)Y(s)* ' T'(s)" r (/ )‘(““)5 (/ >—v§
“ Z “r L@ eratrELs) U2 9
S . £k gt 2" p(a,r) ’
Os E(z,r) ([ o(z,r)ardr)
(24)



and for a certain subsequence oo = {4} the following holds

o0

((2) =

n=1

We can conclude that for all z between 0 < z < 2
G(z) =1+

meaning that ((z) generates a 0.

nZ

1

?7

(25)

(26)
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