Key Locker is a CPU feature to reduce key exfiltration opportunities. It converts the AES key into an encoded form, called 'key handle', to reduce the exposure of private key material in memory. This key conversion along with all subsequent data transformations, is provided by new AES instructions ('AES-KL'). AES-KL is analogous to that of AES-NI as maintains a similar programming interface. Support the XTS mode as the primary use case is dm-crypt. The support has some details worth mentioning, which differentiate itself from AES-NI, that users may need to be aware of: == Key Handle Restriction == The AES-KL instruction set supports selecting key usage restrictions at key handle creation time. Restrict all key handles created by the kernel to kernel mode use only. Although the AES-KL instructions themselves are executable in userspace, this restriction enforces the mode consistency in its operation. If the key handle is created in userspace but referenced in the kernel, then encrypt() and decrypt() functions will return -EINVAL. === AES-NI Dependency for AES Compliance === Key Locker is not AES compliant as it lacks 192-bit key support. However, per the expectations of Linux crypto-cipher implementations, the software cipher implementation must support all the AES-compliant key sizes. The AES-KL cipher implementation achieves this constraint by logging a warning and falling back to VAES. In other words, the 192-bit key-size limitation is documented but not enforced. == Wrapping Key Restore Failure Handling == In the event of hardware failure, the wrapping key is lost from deep sleep states. Then, the wrapping key turns to zero which is an unusable state. The x86 core provides valid_keylocker() to indicate the failure. Subsequent setkey() as well as encode()/decode() can check it and return -ENODEV if failed. This allows an error code to be returned instead of encountering abrupt exceptions. == Userspace Exposition == Keylocker implementations have measurable performance penalties. Therefore, keep the current default remains the same. However, with a slow storage device, storage bandwidth is the bottleneck, even if disk encryption is enabled by AES-KL. Thus, it is up to the end user to decide whether to use AES-KL. User can select it by the name 'xts-aes-aeskl' shown in /proc/crypto. == 64-bit Only == Support 64-bit only, as the 32-bit kernel is being deprecated. Signed-off-by: Chang S. Bae <chang.seok.bae@xxxxxxxxx> Cc: Eric Biggers <ebiggers@xxxxxxxxxx> Cc: Ard Biesheuvel <ardb@xxxxxxxxxx> Cc: Herbert Xu <herbert@xxxxxxxxxxxxxxxxxxx> --- I've reworked this patch based on feedback, https://lore.kernel.org/lkml/20240408014806.GA965@quark.localdomain/ and rebased to upstream v6.10 Linus merge tree on May 13th: commit 84c7d76b5ab6 ("Merge tag 'v6.10-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6") According to the dm-crypt benchmark, using VEX-encoded instructions for tweak processing enhances performance by approximately 2-3%. The PCLMULDQD instruction did not yield a measurable impact, so I dropped it to simplify the implementation. In contrast to other AES instructions, AES-KL does not permit tweak processing between rounds. In XTS mode, a single instruction covers all rounds of 8 blocks without interleaving instructions. Maybe this is one of the reasons for the limited performance gain. Moving forward, I would like to address any further feedback on this AES-KL driver code first before the next revision of the whole series. Changes from v9: * Duplicate the new XTS glue code, instead of sharing (Eric). * Use VEX-coded instructions for non-AES parts of the code (Eric). * Adjust ASM code to stylistically follow the new VAES support (Eric). * Export and reference the high-level AES-NI XTS functions (Eric). Then, support a module build, along with rearranging build dependencies. * Reorganize the glue code and improve ASM code readability. * Revoke the review tag due to major changes. --- arch/x86/Kconfig.assembler | 5 + arch/x86/crypto/Kconfig | 18 ++ arch/x86/crypto/Makefile | 3 + arch/x86/crypto/aeskl-xts-x86_64.S | 358 +++++++++++++++++++++++++++ arch/x86/crypto/aeskl_glue.c | 376 +++++++++++++++++++++++++++++ arch/x86/crypto/aesni-intel_glue.c | 13 +- arch/x86/crypto/aesni-xts.h | 15 ++ 7 files changed, 783 insertions(+), 5 deletions(-) create mode 100644 arch/x86/crypto/aeskl-xts-x86_64.S create mode 100644 arch/x86/crypto/aeskl_glue.c create mode 100644 arch/x86/crypto/aesni-xts.h diff --git a/arch/x86/Kconfig.assembler b/arch/x86/Kconfig.assembler index 59aedf32c4ea..89e326c9dbfe 100644 --- a/arch/x86/Kconfig.assembler +++ b/arch/x86/Kconfig.assembler @@ -35,6 +35,11 @@ config AS_VPCLMULQDQ help Supported by binutils >= 2.30 and LLVM integrated assembler +config AS_HAS_KEYLOCKER + def_bool $(as-instr,encodekey256 %eax$(comma)%eax) + help + Supported by binutils >= 2.36 and LLVM integrated assembler >= V12 + config AS_WRUSS def_bool $(as-instr,wrussq %rax$(comma)(%rbx)) help diff --git a/arch/x86/crypto/Kconfig b/arch/x86/crypto/Kconfig index c9e59589a1ce..d55704fc9a8f 100644 --- a/arch/x86/crypto/Kconfig +++ b/arch/x86/crypto/Kconfig @@ -29,6 +29,24 @@ config CRYPTO_AES_NI_INTEL Architecture: x86 (32-bit and 64-bit) using: - AES-NI (AES new instructions) +config CRYPTO_AES_KL + tristate "Ciphers: AES, modes: XTS (AES-KL)" + depends on X86 && 64BIT + depends on AS_HAS_KEYLOCKER + select CRYPTO_AES_NI_INTEL + select CRYPTO_SIMD + select X86_KEYLOCKER + + help + Block cipher: AES cipher algorithms + Length-preserving ciphers: AES with XTS + + Architecture: x86 (64-bit) using: + - AES-KL (AES Key Locker) + - AES-NI for a 192-bit key + + See Documentation/arch/x86/keylocker.rst for more details. + config CRYPTO_BLOWFISH_X86_64 tristate "Ciphers: Blowfish, modes: ECB, CBC" depends on X86 && 64BIT diff --git a/arch/x86/crypto/Makefile b/arch/x86/crypto/Makefile index 9c5ce5613738..c46fd2d9dd16 100644 --- a/arch/x86/crypto/Makefile +++ b/arch/x86/crypto/Makefile @@ -51,6 +51,9 @@ aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o aesni-intel-$(CONFIG_64BIT) += aesni-intel_avx-x86_64.o \ aes_ctrby8_avx-x86_64.o aes-xts-avx-x86_64.o +obj-$(CONFIG_CRYPTO_AES_KL) += aeskl-x86_64.o +aeskl-x86_64-y := aeskl-xts-x86_64.o aeskl_glue.o + obj-$(CONFIG_CRYPTO_SHA1_SSSE3) += sha1-ssse3.o sha1-ssse3-y := sha1_avx2_x86_64_asm.o sha1_ssse3_asm.o sha1_ssse3_glue.o sha1-ssse3-$(CONFIG_AS_SHA1_NI) += sha1_ni_asm.o diff --git a/arch/x86/crypto/aeskl-xts-x86_64.S b/arch/x86/crypto/aeskl-xts-x86_64.S new file mode 100644 index 000000000000..6ff8b5feebfc --- /dev/null +++ b/arch/x86/crypto/aeskl-xts-x86_64.S @@ -0,0 +1,358 @@ +/* SPDX-License-Identifier: GPL-2.0-or-later */ +/* + * Implement AES algorithm using AES Key Locker instructions. + * + * Most code is primarily derived from aesni-intel_asm.S and + * stylistically aligned with aes-xts-avx-x86_64.S. + */ + +#include <linux/linkage.h> +#include <linux/cfi_types.h> +#include <asm/errno.h> +#include <asm/inst.h> +#include <asm/frame.h> + +/* Constant values shared between AES implementations: */ + +.section .rodata +.p2align 4 +.Lgf_poly: + /* + * Represents the polynomial x^7 + x^2 + x + 1, where the low 64 + * bits are XOR'd into the tweak's low 64 bits when a carry + * occurs from the high 64 bits. + */ + .quad 0x87, 1 + + /* + * Table of constants for variable byte shifts and blending + * during ciphertext stealing operations. + */ +.Lcts_permute_table: + .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 + .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 + .byte 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 + .byte 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f + .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 + .byte 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80 + +.text + +.set V0, %xmm0 +.set V1, %xmm1 +.set V2, %xmm2 +.set V3, %xmm3 +.set V4, %xmm4 +.set V5, %xmm5 +.set V6, %xmm6 +.set V7, %xmm7 +.set V8, %xmm8 +.set V9, %xmm9 +.set V10, %xmm10 +.set V11, %xmm11 +.set V12, %xmm12 +.set V13, %xmm13 +.set V14, %xmm14 +.set V15, %xmm15 + +.set TWEAK_XMM1, V8 +.set TWEAK_XMM2, V9 +.set TWEAK_XMM3, V10 +.set TWEAK_XMM4, V11 +.set TWEAK_XMM5, V12 +.set TWEAK_XMM6, V13 +.set TWEAK_XMM7, V14 +.set GF_POLY_XMM, V15 +.set TWEAK_TMP, TWEAK_XMM1 +.set TWEAK_XMM, TWEAK_XMM2 +.set TMP, %r10 + +/* Function parameters */ +.set HANDLEP, %rdi /* Pointer to struct aeskl_ctx */ +.set DST, %rsi /* Pointer to next destination data */ +.set UKEYP, DST /* Pointer to the original key */ +.set KLEN, %r9d /* AES key length in bytes */ +.set SRC, %rdx /* Pointer to next source data */ +.set LEN, %rcx /* Remaining length in bytes */ +.set TWEAK, %r8 /* Pointer to next tweak */ + +/* + * void __aeskl_setkey(struct crypto_aes_ctx *handlep, const u8 *ukeyp, + * unsigned int key_len) + */ +SYM_FUNC_START(__aeskl_setkey) + FRAME_BEGIN + movl %edx, 480(HANDLEP) + vmovdqu (UKEYP), V0 + mov $1, %eax + cmp $16, %dl + je .Lsetkey_128 + + vmovdqu 0x10(UKEYP), V1 + encodekey256 %eax, %eax + vmovdqu V3, 0x30(HANDLEP) + jmp .Lsetkey_end +.Lsetkey_128: + encodekey128 %eax, %eax + +.Lsetkey_end: + vmovdqu V0, 0x00(HANDLEP) + vmovdqu V1, 0x10(HANDLEP) + vmovdqu V2, 0x20(HANDLEP) + + FRAME_END + RET +SYM_FUNC_END(__aeskl_setkey) + +.macro _aeskl width, operation + cmp $16, KLEN + je .Laeskl128\@ +.ifc \width, wide + .ifc \operation, dec + aesdecwide256kl (HANDLEP) + .else + aesencwide256kl (HANDLEP) + .endif +.else + .ifc \operation, dec + aesdec256kl (HANDLEP), V0 + .else + aesenc256kl (HANDLEP), V0 + .endif +.endif + jmp .Laesklend\@ +.Laeskl128\@: +.ifc \width, wide + .ifc \operation, dec + aesdecwide128kl (HANDLEP) + .else + aesencwide128kl (HANDLEP) + .endif +.else + .ifc \operation, dec + aesdec128kl (HANDLEP), V0 + .else + aesenc128kl (HANDLEP), V0 + .endif +.endif +.Laesklend\@: +.endm + +/* int __aeskl_enc(const void *handlep, u8 *dst, const u8 *src) */ +SYM_FUNC_START(__aeskl_enc) + FRAME_BEGIN + vmovdqu (SRC), V0 + movl 480(HANDLEP), KLEN + + _aeskl oneblock, enc + jz .Lerror + xor %rax, %rax + vmovdqu V0, (DST) + FRAME_END + RET +.Lerror: + mov $(-EINVAL), %rax + FRAME_END + RET +SYM_FUNC_END(__aeskl_enc) + +/* + * Calculate the next 128-bit XTS tweak by multiplying the polynomial 'x' + * with the current tweak stored in the xmm register \src, and store the + * result in \dst. + */ +.macro _next_tweak src, tmp, dst + vpshufd $0x13, \src, \tmp + vpaddq \src, \src, \dst + vpsrad $31, \tmp, \tmp + vpand GF_POLY_XMM, \tmp, \tmp + vpxor \tmp, \dst, \dst +.endm + +.macro _aeskl_xts_crypt operation + FRAME_BEGIN + vmovdqa .Lgf_poly(%rip), GF_POLY_XMM + vmovups (TWEAK), TWEAK_XMM + mov 480(HANDLEP), KLEN + +.ifc \operation, dec + /* + * During decryption, if the message length is not a multiple of + * the AES block length, exclude the last complete block from the + * decryption loop by subtracting 16 from LEN. This adjustment is + * necessary because ciphertext stealing decryption uses the last + * two tweaks in reverse order. Special handling is required for + * the last complete block and any remaining partial block at the + * end. + */ + test $15, LEN + jz .L8block_at_a_time\@ + sub $16, LEN +.endif + +.L8block_at_a_time\@: + sub $128, LEN + jl .Lhandle_remainder\@ + + vpxor (SRC), TWEAK_XMM, V0 + vmovups TWEAK_XMM, (DST) + + /* + * Calculate and cache tweak values. Note that the tweak + * computation cannot be interleaved with AES rounds here using + * Key Locker instructions. + */ + _next_tweak TWEAK_XMM, V1, TWEAK_XMM1 + _next_tweak TWEAK_XMM1, V1, TWEAK_XMM2 + _next_tweak TWEAK_XMM2, V1, TWEAK_XMM3 + _next_tweak TWEAK_XMM3, V1, TWEAK_XMM4 + _next_tweak TWEAK_XMM4, V1, TWEAK_XMM5 + _next_tweak TWEAK_XMM5, V1, TWEAK_XMM6 + _next_tweak TWEAK_XMM6, V1, TWEAK_XMM7 + + /* XOR each source block with its tweak. */ + vpxor 0x10(SRC), TWEAK_XMM1, V1 + vpxor 0x20(SRC), TWEAK_XMM2, V2 + vpxor 0x30(SRC), TWEAK_XMM3, V3 + vpxor 0x40(SRC), TWEAK_XMM4, V4 + vpxor 0x50(SRC), TWEAK_XMM5, V5 + vpxor 0x60(SRC), TWEAK_XMM6, V6 + vpxor 0x70(SRC), TWEAK_XMM7, V7 + + /* Encrypt or decrypt 8 blocks per iteration. */ + _aeskl wide, \operation + jz .Lerror\@ + + /* XOR tweaks again. */ + vpxor (DST), V0, V0 + vpxor TWEAK_XMM1, V1, V1 + vpxor TWEAK_XMM2, V2, V2 + vpxor TWEAK_XMM3, V3, V3 + vpxor TWEAK_XMM4, V4, V4 + vpxor TWEAK_XMM5, V5, V5 + vpxor TWEAK_XMM6, V6, V6 + vpxor TWEAK_XMM7, V7, V7 + + /* Store destination blocks. */ + vmovdqu V0, 0x00(DST) + vmovdqu V1, 0x10(DST) + vmovdqu V2, 0x20(DST) + vmovdqu V3, 0x30(DST) + vmovdqu V4, 0x40(DST) + vmovdqu V5, 0x50(DST) + vmovdqu V6, 0x60(DST) + vmovdqu V7, 0x70(DST) + + _next_tweak TWEAK_XMM7, TWEAK_TMP, TWEAK_XMM + add $128, SRC + add $128, DST + test LEN, LEN + jz .Lend\@ + jmp .L8block_at_a_time\@ + +.Lhandle_remainder\@: + add $128, LEN + jz .Lend\@ +.ifc \operation, enc + vmovdqu V7, V0 +.endif + sub $16, LEN + jl .Lcts\@ + + /* Encrypt or decrypt one block per iteration */ +.Lblock_at_a_time\@: + vpxor (SRC), TWEAK_XMM, V0 + _aeskl oneblock, \operation + jz .Lerror\@ + vpxor TWEAK_XMM, V0, V0 + _next_tweak TWEAK_XMM, TWEAK_TMP, TWEAK_XMM + test LEN, LEN + jz .Lout\@ + + add $16, SRC + vmovdqu V0, (DST) + add $16, DST + sub $16, LEN + jge .Lblock_at_a_time\@ + +.Lcts\@: +.ifc \operation, dec + /* + * If decrypting, the last block was not decrypted because CTS + * decryption uses the last two tweaks in reverse order. This is + * done by advancing the tweak and decrypting the last block. + */ + _next_tweak TWEAK_XMM, TWEAK_TMP, V4 + vpxor (SRC), V4, V0 + _aeskl oneblock, \operation + jz .Lerror\@ + vpxor V4, V0, V0 + add $16, SRC +.else + /* + * If encrypting, the last block was already encrypted in V0. + * Prepare the CTS encryption by rewinding the pointer. + */ + sub $16, DST +.endif + lea .Lcts_permute_table(%rip), TMP + + /* Load the source partial block */ + vmovdqu (SRC, LEN, 1), V3 + + /* + * Shift the first LEN bytes of the encryption and decryption of + * the last block to the end of a register, then store it to + * DST+LEN. + */ + add $16, LEN + vpshufb (TMP, LEN, 1), V0, V2 + vmovdqu V2, (DST, LEN, 1) + + /* Shift the source partial block to the beginning */ + sub LEN, TMP + vmovdqu 32(TMP), V2 + vpshufb V2, V3, V3 + + /* Blend to generate the source partial block */ + vpblendvb V2, V0, V3, V3 + + /* Encrypt or decrypt again and store the last block. */ + vpxor TWEAK_XMM, V3, V0 + _aeskl oneblock, \operation + jz .Lerror\@ + vpxor TWEAK_XMM, V0, V0 + vmovdqu V0, (DST) + + xor %rax, %rax + FRAME_END + RET +.Lout\@: + vmovdqu V0, (DST) +.Lend\@: + vmovups TWEAK_XMM, (TWEAK) + xor %rax, %rax + FRAME_END + RET +.Lerror\@: + mov $(-EINVAL), %rax + FRAME_END + RET +.endm + +/* + * int __aeskl_xts_encrypt(const struct aeskl_ctx *handlep, u8 *dst, + * const u8 *src, unsigned int klen, le128 *tweak) + */ +SYM_FUNC_START(__aeskl_xts_encrypt) + _aeskl_xts_crypt enc +SYM_FUNC_END(__aeskl_xts_encrypt) + +/* + * int __aeskl_xts_decrypt(const struct crypto_aes_ctx *handlep, u8 *dst, + * const u8 *src, unsigned int klen, le128 *twek) + */ +SYM_FUNC_START(__aeskl_xts_decrypt) + _aeskl_xts_crypt dec +SYM_FUNC_END(__aeskl_xts_decrypt) + diff --git a/arch/x86/crypto/aeskl_glue.c b/arch/x86/crypto/aeskl_glue.c new file mode 100644 index 000000000000..6dc4d380be54 --- /dev/null +++ b/arch/x86/crypto/aeskl_glue.c @@ -0,0 +1,376 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Support for AES Key Locker instructions. This file contains glue + * code and the real AES implementation is in aeskl-intel_asm.S. + * + * Most code is based on aesni-intel_glue.c + */ + +#include <linux/types.h> +#include <linux/module.h> +#include <linux/err.h> +#include <crypto/algapi.h> +#include <crypto/aes.h> +#include <crypto/xts.h> +#include <crypto/scatterwalk.h> +#include <crypto/internal/skcipher.h> +#include <crypto/internal/simd.h> +#include <asm/simd.h> +#include <asm/cpu_device_id.h> +#include <asm/fpu/api.h> +#include <asm/keylocker.h> +#include "aesni-xts.h" + +#define AESKL_ALIGN 16 +#define AESKL_ALIGN_ATTR __attribute__ ((__aligned__(AESKL_ALIGN))) +#define AESKL_ALIGN_EXTRA ((AESKL_ALIGN - 1) & ~(CRYPTO_MINALIGN - 1)) + +#define AESKL_AAD_SIZE 16 +#define AESKL_TAG_SIZE 16 +#define AESKL_CIPHERTEXT_MAX AES_KEYSIZE_256 + +/* The Key Locker handle is an encoded form of the AES key. */ +struct aeskl_handle { + u8 additional_authdata[AESKL_AAD_SIZE]; + u8 integrity_tag[AESKL_TAG_SIZE]; + u8 ciphre_text[AESKL_CIPHERTEXT_MAX]; +}; + +/* + * Key Locker does not support 192-bit key size. The driver needs to + * retrieve the key size in the first place. The offset of the + * 'key_length' field here should be compatible with struct + * crypto_aes_ctx. + */ +#define AESKL_CTX_RESERVED (sizeof(struct crypto_aes_ctx) - sizeof(struct aeskl_handle) \ + - sizeof(u32)) + +struct aeskl_ctx { + struct aeskl_handle handle; + u8 reserved[AESKL_CTX_RESERVED]; + u32 key_length; +}; + +struct aeskl_xts_ctx { + struct aeskl_ctx tweak_ctx AESKL_ALIGN_ATTR; + struct aeskl_ctx crypt_ctx AESKL_ALIGN_ATTR; +}; + +#define XTS_AES_CTX_SIZE (sizeof(struct aeskl_xts_ctx) + AESKL_ALIGN_EXTRA) + +static inline struct aeskl_xts_ctx *aeskl_xts_ctx(struct crypto_skcipher *tfm) +{ + void *addr = crypto_skcipher_ctx(tfm); + + if (crypto_tfm_ctx_alignment() >= AESKL_ALIGN) + return addr; + + return PTR_ALIGN(addr, AESKL_ALIGN); +} + +static inline u32 xts_keylen(struct skcipher_request *req) +{ + struct aeskl_xts_ctx *ctx = aeskl_xts_ctx(crypto_skcipher_reqtfm(req)); + + return ctx->crypt_ctx.key_length; +} + +asmlinkage void __aeskl_setkey(struct aeskl_ctx *ctx, const u8 *in_key, unsigned int keylen); + +asmlinkage int __aeskl_enc(const void *ctx, u8 *out, const u8 *in); + +asmlinkage int __aeskl_xts_encrypt(const struct aeskl_ctx *ctx, u8 *out, const u8 *in, + unsigned int len, u8 *iv); +asmlinkage int __aeskl_xts_decrypt(const struct aeskl_ctx *ctx, u8 *out, const u8 *in, + unsigned int len, u8 *iv); + +/* + * If a hardware failure occurs, the wrapping key may be lost during + * sleep states. The state of the feature can be retrieved via + * valid_keylocker(). + * + * Since disabling can occur preemptively, check for availability on + * every use along with kernel_fpu_begin(). + */ + +static int aeskl_setkey(struct aeskl_ctx *ctx, const u8 *in_key, unsigned int keylen) +{ + if (!crypto_simd_usable()) + return -EBUSY; + + kernel_fpu_begin(); + if (!valid_keylocker()) { + kernel_fpu_end(); + return -ENODEV; + } + + __aeskl_setkey(ctx, in_key, keylen); + kernel_fpu_end(); + return 0; +} + +static int aeskl_xts_encrypt_iv(const struct aeskl_ctx *tweak_key, + u8 iv[AES_BLOCK_SIZE]) +{ + if (!valid_keylocker()) + return -ENODEV; + + return __aeskl_enc(tweak_key, iv, iv); +} + +static int aeskl_xts_encrypt(const struct aeskl_ctx *key, + const u8 *src, u8 *dst, unsigned int len, + u8 tweak[AES_BLOCK_SIZE]) +{ + if (!valid_keylocker()) + return -ENODEV; + + return __aeskl_xts_encrypt(key, dst, src, len, tweak); +} + +static int aeskl_xts_decrypt(const struct aeskl_ctx *key, + const u8 *src, u8 *dst, unsigned int len, + u8 tweak[AES_BLOCK_SIZE]) +{ + if (!valid_keylocker()) + return -ENODEV; + + return __aeskl_xts_decrypt(key, dst, src, len, tweak); +} + +/* + * The glue code in xts_crypt() and xts_crypt_slowpath() follows + * aesni-intel_glue.c. While this code is shareable, the key + * material format difference can cause more destructive code changes in + * the AES-NI side. + */ + +typedef int (*xts_encrypt_iv_func)(const struct aeskl_ctx *tweak_key, + u8 iv[AES_BLOCK_SIZE]); +typedef int (*xts_crypt_func)(const struct aeskl_ctx *key, + const u8 *src, u8 *dst, unsigned int len, + u8 tweak[AES_BLOCK_SIZE]); + +/* This handles cases where the source and/or destination span pages. */ +static noinline int +xts_crypt_slowpath(struct skcipher_request *req, xts_crypt_func crypt_func) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); + const struct aeskl_xts_ctx *ctx = aeskl_xts_ctx(tfm); + int tail = req->cryptlen % AES_BLOCK_SIZE; + struct scatterlist sg_src[2], sg_dst[2]; + struct skcipher_request subreq; + struct skcipher_walk walk; + struct scatterlist *src, *dst; + int err; + + /* + * If the message length isn't divisible by the AES block size, then + * separate off the last full block and the partial block. This ensures + * that they are processed in the same call to the assembly function, + * which is required for ciphertext stealing. + */ + if (tail) { + skcipher_request_set_tfm(&subreq, tfm); + skcipher_request_set_callback(&subreq, + skcipher_request_flags(req), + NULL, NULL); + skcipher_request_set_crypt(&subreq, req->src, req->dst, + req->cryptlen - tail - AES_BLOCK_SIZE, + req->iv); + req = &subreq; + } + + err = skcipher_walk_virt(&walk, req, false); + + while (walk.nbytes) { + kernel_fpu_begin(); + err |= (*crypt_func)(&ctx->crypt_ctx, + walk.src.virt.addr, walk.dst.virt.addr, + walk.nbytes & ~(AES_BLOCK_SIZE - 1), req->iv); + kernel_fpu_end(); + err |= skcipher_walk_done(&walk, + walk.nbytes & (AES_BLOCK_SIZE - 1)); + } + + if (err || !tail) + return err; + + /* Do ciphertext stealing with the last full block and partial block. */ + + dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); + if (req->dst != req->src) + dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); + + skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, + req->iv); + + err = skcipher_walk_virt(&walk, req, false); + if (err) + return err; + + kernel_fpu_begin(); + err = (*crypt_func)(&ctx->crypt_ctx, walk.src.virt.addr, walk.dst.virt.addr, + walk.nbytes, req->iv); + kernel_fpu_end(); + if (err) + return err; + + return skcipher_walk_done(&walk, 0); +} + +/* __always_inline to avoid indirect call in fastpath */ +static __always_inline int +xts_crypt(struct skcipher_request *req, xts_encrypt_iv_func encrypt_iv, + xts_crypt_func crypt_func) +{ + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); + const struct aeskl_xts_ctx *ctx = aeskl_xts_ctx(tfm); + const unsigned int cryptlen = req->cryptlen; + struct scatterlist *src = req->src; + struct scatterlist *dst = req->dst; + int err; + + if (unlikely(cryptlen < AES_BLOCK_SIZE)) + return -EINVAL; + + kernel_fpu_begin(); + err = (*encrypt_iv)(&ctx->tweak_ctx, req->iv); + if (err) + goto out; + + /* + * In practice, virtually all XTS plaintexts and ciphertexts are either + * 512 or 4096 bytes, aligned such that they don't span page boundaries. + * To optimize the performance of these cases, and also any other case + * where no page boundary is spanned, the below fast-path handles + * single-page sources and destinations as efficiently as possible. + */ + if (likely(src->length >= cryptlen && dst->length >= cryptlen && + src->offset + cryptlen <= PAGE_SIZE && + dst->offset + cryptlen <= PAGE_SIZE)) { + struct page *src_page = sg_page(src); + struct page *dst_page = sg_page(dst); + void *src_virt = kmap_local_page(src_page) + src->offset; + void *dst_virt = kmap_local_page(dst_page) + dst->offset; + + err = (*crypt_func)(&ctx->crypt_ctx, src_virt, dst_virt, cryptlen, + req->iv); + if (err) + goto out; + kunmap_local(dst_virt); + kunmap_local(src_virt); + kernel_fpu_end(); + return 0; + } +out: + kernel_fpu_end(); + if (err) + return err; + return xts_crypt_slowpath(req, crypt_func); +} + +static int xts_setkey_aeskl(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen) +{ + struct aeskl_xts_ctx *ctx = aeskl_xts_ctx(tfm); + unsigned int aes_keylen; + int err; + + err = xts_verify_key(tfm, key, keylen); + if (err) + return err; + + aes_keylen = keylen / 2; + err = aes_check_keylen(aes_keylen); + if (err) + return err; + + if (unlikely(aes_keylen == AES_KEYSIZE_192)) { + pr_warn_once("AES-KL does not support 192-bit key. Use AES-NI.\n"); + return xts_setkey_aesni(tfm, key, keylen); + } + + err = aeskl_setkey(&ctx->crypt_ctx, key, aes_keylen); + if (err) + return err; + return aeskl_setkey(&ctx->tweak_ctx, key + aes_keylen, aes_keylen); +} + +static int xts_encrypt_aeskl(struct skcipher_request *req) +{ + if (unlikely(xts_keylen(req) == AES_KEYSIZE_192)) + return xts_encrypt_aesni(req); + + return xts_crypt(req, aeskl_xts_encrypt_iv, aeskl_xts_encrypt); +} + +static int xts_decrypt_aeskl(struct skcipher_request *req) +{ + if (unlikely(xts_keylen(req) == AES_KEYSIZE_192)) + return xts_decrypt_aesni(req); + + return xts_crypt(req, aeskl_xts_encrypt_iv, aeskl_xts_decrypt); +} + +static struct skcipher_alg aeskl_skciphers[] = { + { + .base = { + .cra_name = "__xts(aes)", + .cra_driver_name = "__xts-aes-aeskl", + .cra_priority = 200, + .cra_flags = CRYPTO_ALG_INTERNAL, + .cra_blocksize = AES_BLOCK_SIZE, + .cra_ctxsize = XTS_AES_CTX_SIZE, + .cra_module = THIS_MODULE, + }, + .min_keysize = 2 * AES_MIN_KEY_SIZE, + .max_keysize = 2 * AES_MAX_KEY_SIZE, + .ivsize = AES_BLOCK_SIZE, + .walksize = 2 * AES_BLOCK_SIZE, + .setkey = xts_setkey_aeskl, + .encrypt = xts_encrypt_aeskl, + .decrypt = xts_decrypt_aeskl, + } +}; + +static struct simd_skcipher_alg *aeskl_simd_skciphers[ARRAY_SIZE(aeskl_skciphers)]; + +static int __init aeskl_init(void) +{ + u32 eax, ebx, ecx, edx; + + if (!valid_keylocker()) + return -ENODEV; + + cpuid_count(KEYLOCKER_CPUID, 0, &eax, &ebx, &ecx, &edx); + if (!(ebx & KEYLOCKER_CPUID_EBX_WIDE)) + return -ENODEV; + + /* + * AES-KL itself does not rely on AES-NI. But, AES-KL does not + * support 192-bit keys. To ensure AES compliance, AES-KL falls + * back to AES-NI. + */ + if (!cpu_feature_enabled(X86_FEATURE_AES)) + return -ENODEV; + + /* The tweak processing is optimized using AVX instructions. */ + if (!cpu_feature_enabled(X86_FEATURE_AVX)) + return -ENODEV; + + return simd_register_skciphers_compat(aeskl_skciphers, ARRAY_SIZE(aeskl_skciphers), + aeskl_simd_skciphers); +} + +static void __exit aeskl_exit(void) +{ + simd_unregister_skciphers(aeskl_skciphers, ARRAY_SIZE(aeskl_skciphers), + aeskl_simd_skciphers); +} + +late_initcall(aeskl_init); +module_exit(aeskl_exit); + +MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, AES Key Locker implementation"); +MODULE_LICENSE("GPL"); +MODULE_ALIAS_CRYPTO("aes"); diff --git a/arch/x86/crypto/aesni-intel_glue.c b/arch/x86/crypto/aesni-intel_glue.c index 5b25d2a58aeb..61456f0a99fa 100644 --- a/arch/x86/crypto/aesni-intel_glue.c +++ b/arch/x86/crypto/aesni-intel_glue.c @@ -35,7 +35,7 @@ #include <linux/workqueue.h> #include <linux/spinlock.h> #include <linux/static_call.h> - +#include "aesni-xts.h" #define AESNI_ALIGN 16 #define AESNI_ALIGN_ATTR __attribute__ ((__aligned__(AESNI_ALIGN))) @@ -864,8 +864,8 @@ static int helper_rfc4106_decrypt(struct aead_request *req) } #endif -static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key, - unsigned int keylen) +int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key, + unsigned int keylen) { struct aesni_xts_ctx *ctx = aes_xts_ctx(tfm); int err; @@ -884,6 +884,7 @@ static int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key, /* second half of xts-key is for tweak */ return aes_set_key_common(&ctx->tweak_ctx, key + keylen, keylen); } +EXPORT_SYMBOL_GPL(xts_setkey_aesni); typedef void (*xts_encrypt_iv_func)(const struct crypto_aes_ctx *tweak_key, u8 iv[AES_BLOCK_SIZE]); @@ -1020,15 +1021,17 @@ static void aesni_xts_decrypt(const struct crypto_aes_ctx *key, aesni_xts_dec(key, dst, src, len, tweak); } -static int xts_encrypt_aesni(struct skcipher_request *req) +int xts_encrypt_aesni(struct skcipher_request *req) { return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_encrypt); } +EXPORT_SYMBOL_GPL(xts_encrypt_aesni); -static int xts_decrypt_aesni(struct skcipher_request *req) +int xts_decrypt_aesni(struct skcipher_request *req) { return xts_crypt(req, aesni_xts_encrypt_iv, aesni_xts_decrypt); } +EXPORT_SYMBOL_GPL(xts_decrypt_aesni); static struct crypto_alg aesni_cipher_alg = { .cra_name = "aes", diff --git a/arch/x86/crypto/aesni-xts.h b/arch/x86/crypto/aesni-xts.h new file mode 100644 index 000000000000..9833da2bd9d2 --- /dev/null +++ b/arch/x86/crypto/aesni-xts.h @@ -0,0 +1,15 @@ +/* SPDX-License-Identifier: GPL-2.0 */ + +#ifndef _AESNI_XTS_H +#define _AESNI_XTS_H + +/* + * These AES-NI functions are used by the AES-KL code as a fallback when + * a 192-bit key is provided. Key Locker does not support 192-bit keys. + */ + +int xts_setkey_aesni(struct crypto_skcipher *tfm, const u8 *key, unsigned int keylen); +int xts_encrypt_aesni(struct skcipher_request *req); +int xts_decrypt_aesni(struct skcipher_request *req); + +#endif /* _AESNI_XTS_H */ -- 2.34.1