On Wed, Apr 27, 2022 at 12:37:58AM +0000, Nathan Huckleberry wrote: > Add hardware accelerated version of POLYVAL for ARM64 CPUs with > Crypto Extensions support. > > This implementation is accelerated using PMULL instructions to perform > the finite field computations. For added efficiency, 8 blocks of the > message are processed simultaneously by precomputing the first 8 > powers of the key. > > Karatsuba multiplication is used instead of Schoolbook multiplication > because it was found to be slightly faster on ARM64 CPUs. Montgomery > reduction must be used instead of Barrett reduction due to the > difference in modulus between POLYVAL's field and other finite fields. > > Signed-off-by: Nathan Huckleberry <nhuck@xxxxxxxxxx> > Reviewed-by: Ard Biesheuvel <ardb@xxxxxxxxxx> > --- > arch/arm64/crypto/Kconfig | 5 + > arch/arm64/crypto/Makefile | 3 + > arch/arm64/crypto/polyval-ce-core.S | 369 +++++++++++++++++++++++++ > arch/arm64/crypto/polyval-ce-glue.c | 194 +++++++++++++ > arch/x86/crypto/polyval-clmulni_glue.c | 2 +- > 5 files changed, 572 insertions(+), 1 deletion(-) > create mode 100644 arch/arm64/crypto/polyval-ce-core.S > create mode 100644 arch/arm64/crypto/polyval-ce-glue.c This patch shouldn't be changing arch/x86/. It looks like that hunk was folded into the wrong patch. > diff --git a/arch/arm64/crypto/polyval-ce-core.S b/arch/arm64/crypto/polyval-ce-core.S > new file mode 100644 > index 000000000000..87e7223ea9b6 > --- /dev/null > +++ b/arch/arm64/crypto/polyval-ce-core.S > @@ -0,0 +1,369 @@ > +/* SPDX-License-Identifier: GPL-2.0 */ > +/* > + * Implementation of POLYVAL using ARMv8 Crypto Extensions. > + * > + * Copyright 2021 Google LLC > + */ This file is looking good, just a few readability suggestions: > +BLOCKS_LEFT .req x2 > +KEY_START .req x10 > +EXTRA_BYTES .req x11 > +TMP .req x13 It would help to also define and use aliases for the other arguments to pmull_polyval_update(), e.g.: KEY_POWERS .req x0 MSG .req x1 BLOCKS_LEFT .req x2 ACCUMULATOR .req x3 Note that the x86 implementation does this for the first three. > +/* > + * Computes the 256-bit polynomial represented by LO, HI, MI. Stores > + * the result in PL, PH. > + * [PH : PL] = > + * [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + LO_0 + MI_0 + HI_0 : LO_0] > + */ > +.macro karatsuba2 > + // v4 = [HI_1 + MI_1 : HI_0 + MI_0] > + eor v4.16b, HI.16b, MI.16b > + // v4 = [HI_1 + MI_1 + LO_1 : HI_0 + MI_0 + LO_0] > + eor v4.16b, v4.16b, LO.16b > + // v5 = [HI_0 : LO_1] > + ext v5.16b, LO.16b, HI.16b, #8 > + // v4 = [HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + LO_0 + MI_0 + HI_0] > + eor v4.16b, v4.16b, v5.16b > + // HI = [HI_0 : HI_1] > + ext HI.16b, HI.16b, HI.16b, #8 > + // LO = [LO_0 : LO_1] > + ext LO.16b, LO.16b, LO.16b, #8 > + // PH = [HI_1 : HI_0 + HI_1 + MI_1 + LO_1] > + ext PH.16b, v4.16b, HI.16b, #8 > + // PL = [LO_1 + LO_0 + MI_0 + HI_0 : LO_0] > + ext PL.16b, LO.16b, v4.16b, #8 > +.endm You know that I'm very picky about ordering :-) I got a little confused while reading this because "HI_0 + MI_0 + LO_0" changes to "LO_0 + MI_0 + HI_0" partway through. It would be better to use a consistent order the whole time, probably "HI_0 + MI_0 + LO_0" since that maps naturally onto what the first two lines do. Note, the comment above the macro will need to be updated too. > +/* > + * Computes the 128-bit reduction of PL, PH. Stores the result in dest. > + * > + * This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) = > + * x^128 + x^127 + x^126 + x^121 + 1. > + * > + * We have a 256-bit polynomial P_H : P_L = P_3 : P_2 : P_1 : P_0 that is the > + * product of two 128-bit polynomials in Montgomery form. We need to reduce it > + * mod g(x). Also, since polynomials in Montgomery form have an "extra" factor > + * of x^128, this product has two extra factors of x^128. To get it back into > + * Montgomery form, we need to remove one of these factors by dividing by x^128. > + * > + * To accomplish both of these goals, we add multiples of g(x) that cancel out > + * the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low > + * bits are zero, the polynomial division by x^128 can be done by right shifting. > + * > + * Since the only nonzero term in the low 64 bits of g(x) is the constant term, > + * the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can > + * only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 + > + * x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to > + * the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T > + * = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191. > + * > + * Repeating this same process on the next 64 bits "folds" bits 64-127 into bits > + * 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1 > + * + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) * > + * x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 : > + * P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0). > + * > + * So our final computation is: > + * T = T_1 : T_0 = g*(x) * P_0 > + * V = V_1 : V_0 = g*(x) * (P_1 + T_0) > + * p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0 > + * > + * The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0 > + * + T_1 and XORing it into dest, rather than separately XORing P_1 : P_0, T_0 : > + * T1 into dest. This allows us to reuse P_1 + T_0 when computing V. > + */ Can you get this comment in sync with the x86 version? They should be identical (there's nothing x86 or arm64 specific here), but there are some updates you made to the x86 version that didn't make it into here. > +.macro montgomery_reduction dest > + DEST .req \dest > + // TMP_V = T_1 : T_0 = P_0 * g*(x) > + pmull TMP_V.1q, GSTAR.1d, PL.1d Put GSTAR as the last argument, to match the comment? Likewise for the other 3 multiplications with GSTAR in the file. > + eor DEST.16b, TMP_V.16b, PH.16b Similarly, swapping TMP_V and PH above (and in partial_reduce) would make the code match the comments naturally. > +/* > + * Handle any extra blocks before > + * full_stride loop. > + */ It's after full_stride loop, not before. Also this comment can fit on one line: /* Handle any extra blocks after the full_stride loop. */ > +.macro partial_stride > + add x0, KEY_START, #(STRIDE_BLOCKS << 4) > + sub x0, x0, BLOCKS_LEFT, lsl #4 > + // Clobber key register > + ld1 {KEY1.16b}, [x0], #16 > + > + ld1 {TMP_V.16b}, [x1], #16 > + eor SUM.16b, SUM.16b, TMP_V.16b > + karatsuba1_store KEY1 SUM > + sub BLOCKS_LEFT, BLOCKS_LEFT, #1 > + > + tst BLOCKS_LEFT, #4 > + beq .Lpartial4BlocksDone > + ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [x1], #64 > + // Clobber key registers > + ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [x0], #64 > + karatsuba1 M0 KEY8 > + karatsuba1 M1 KEY7 > + karatsuba1 M2 KEY6 > + karatsuba1 M3 KEY5 > +.Lpartial4BlocksDone: > + tst BLOCKS_LEFT, #2 > + beq .Lpartial2BlocksDone > + ld1 {M0.16b, M1.16b}, [x1], #32 > + // Clobber key registers > + ld1 {KEY8.16b, KEY7.16b}, [x0], #32 > + karatsuba1 M0 KEY8 > + karatsuba1 M1 KEY7 > +.Lpartial2BlocksDone: > + tst BLOCKS_LEFT, #1 > + beq .LpartialDone > + ld1 {M0.16b}, [x1], #16 > + // Clobber key registers > + ld1 {KEY8.16b}, [x0], #16 > + karatsuba1 M0 KEY8 > +.LpartialDone: > + karatsuba2 > + montgomery_reduction SUM > +.endm I don't understand the purpose of the "Clobber key registers" comments above. "Clobber" makes it sound like they are being reused for something other than the key powers, but they aren't. > diff --git a/arch/arm64/crypto/polyval-ce-glue.c b/arch/arm64/crypto/polyval-ce-glue.c > new file mode 100644 > index 000000000000..fd8e016d3a73 > --- /dev/null > +++ b/arch/arm64/crypto/polyval-ce-glue.c > @@ -0,0 +1,194 @@ > +// SPDX-License-Identifier: GPL-2.0-only > +/* > + * Accelerated POLYVAL implementation with ARMv8 Crypto Extensions > + * instructions. This file contains glue code. > + * > + * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@xxxxxx> > + * Copyright (c) 2009 Intel Corp. > + * Author: Huang Ying <ying.huang@xxxxxxxxx> > + * Copyright 2021 Google LLC > + */ > +/* > + * Glue code based on ghash-clmulni-intel_glue.c. > + * > + * This implementation of POLYVAL uses montgomery multiplication accelerated by > + * ARMv8 Crypto Extensions instructions to implement the finite field operations. > + * > + */ There's an extra newline in the second block comment. Also, given that there's a standalone block comment that describes the file, the description at the very top should be a one-line summary. So maybe something like: // SPDX-License-Identifier: GPL-2.0-only /* * Glue code for POLYVAL using ARMv8 Crypto Extensions * * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@xxxxxx> * Copyright (c) 2009 Intel Corp. * Author: Huang Ying <ying.huang@xxxxxxxxx> * Copyright 2021 Google LLC */ /* * Glue code based on ghash-clmulni-intel_glue.c. * * This implementation of POLYVAL uses montgomery multiplication accelerated by * ARMv8 Crypto Extensions instructions to implement the finite field operations. */ > + > +#include <crypto/algapi.h> > +#include <crypto/gf128mul.h> > +#include <crypto/internal/hash.h> > +#include <crypto/internal/simd.h> > +#include <crypto/polyval.h> > +#include <linux/crypto.h> > +#include <linux/init.h> > +#include <linux/kernel.h> > +#include <linux/module.h> > +#include <linux/cpufeature.h> > +#include <asm/neon.h> > +#include <asm/simd.h> > +#include <asm/unaligned.h> <crypto/gf128mul.h> and <asm/unaligned.h> don't appear to be used. > + memcpy(ctx->key_powers[NUM_KEY_POWERS-1], key, > + POLYVAL_BLOCK_SIZE); This fits on one line. > +static int polyval_arm64_update(struct shash_desc *desc, > + const u8 *src, unsigned int srclen) > +{ > + struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); > + struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); > + u8 *pos; > + unsigned int nblocks; > + unsigned int n; > + > + if (dctx->bytes) { > + n = min(srclen, dctx->bytes); > + pos = dctx->buffer + POLYVAL_BLOCK_SIZE - dctx->bytes; > + > + dctx->bytes -= n; > + srclen -= n; > + > + while (n--) > + *pos++ ^= *src++; > + > + if (!dctx->bytes) > + internal_polyval_mul(dctx->buffer, > + ctx->key_powers[NUM_KEY_POWERS-1]); > + } > + > + nblocks = srclen/POLYVAL_BLOCK_SIZE; > + internal_polyval_update(ctx, src, nblocks, dctx->buffer); > + srclen -= nblocks*POLYVAL_BLOCK_SIZE; This is executing a kernel_neon_begin()/kernel_neon_end() section of unbounded length. To allow the task to be preempted occasionally, it needs to handle the input in chunks, e.g. 4K at a time, like the existing code for other algorithms does. Something like the following would work: @@ -122,13 +118,16 @@ static int polyval_arm64_update(struct shash_desc *desc, ctx->key_powers[NUM_KEY_POWERS-1]); } - nblocks = srclen/POLYVAL_BLOCK_SIZE; - internal_polyval_update(ctx, src, nblocks, dctx->buffer); - srclen -= nblocks*POLYVAL_BLOCK_SIZE; + while (srclen >= POLYVAL_BLOCK_SIZE) { + /* Allow rescheduling every 4K bytes. */ + nblocks = min(srclen, 4096U) / POLYVAL_BLOCK_SIZE; + internal_polyval_update(ctx, src, nblocks, dctx->buffer); + srclen -= nblocks * POLYVAL_BLOCK_SIZE; + src += nblocks * POLYVAL_BLOCK_SIZE; + } if (srclen) { dctx->bytes = POLYVAL_BLOCK_SIZE - srclen; - src += nblocks*POLYVAL_BLOCK_SIZE; pos = dctx->buffer; while (srclen--) *pos++ ^= *src++; > + struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); struct polyval_tfm_ctx should be const everywhere except in ->setkey. > +static int polyval_arm64_final(struct shash_desc *desc, u8 *dst) > +{ > + struct polyval_desc_ctx *dctx = shash_desc_ctx(desc); > + struct polyval_tfm_ctx *ctx = crypto_shash_ctx(desc->tfm); > + > + if (dctx->bytes) { > + internal_polyval_mul(dctx->buffer, > + ctx->key_powers[NUM_KEY_POWERS-1]); > + } > + > + dctx->bytes = 0; > + memcpy(dst, dctx->buffer, POLYVAL_BLOCK_SIZE); > + > + return 0; > +} The line 'dctx->bytes = 0;' is unnecessary. > +static int __init polyval_ce_mod_init(void) > +{ > + if (!cpu_have_named_feature(PMULL)) > + return -ENODEV; > + return crypto_register_shash(&polyval_alg); > +} The cpu_have_named_feature() check above is unnecessary since it is already included in what module_cpu_feature_match() expands into. - Eric