Continuing the reasoning of "random: ensure early RDSEED goes through mixer on init", we don't want RDRAND interacting with anything without going through the mixer function, as a backdoored CPU could presumably cancel out data during an xor, which it'd have a harder time doing when being forced through a cryptographic hash function. There's actually no need at all to be calling RDRAND in write_pool(), because before we extract from the pool, we always do so with 32 bytes of RDSEED hashed in at that stage. Xoring at this stage is needless and introduces a minor liability. Cc: Theodore Ts'o <tytso@xxxxxxx> Cc: Dominik Brodowski <linux@xxxxxxxxxxxxxxxxxxxx> Reviewed-by: Eric Biggers <ebiggers@xxxxxxxxxx> Signed-off-by: Jason A. Donenfeld <Jason@xxxxxxxxx> --- drivers/char/random.c | 14 ++------------ 1 file changed, 2 insertions(+), 12 deletions(-) diff --git a/drivers/char/random.c b/drivers/char/random.c index 75dc370d83b5..785a4545c9d7 100644 --- a/drivers/char/random.c +++ b/drivers/char/random.c @@ -1315,25 +1315,15 @@ static __poll_t random_poll(struct file *file, poll_table *wait) static int write_pool(const char __user *buffer, size_t count) { size_t bytes; - u32 t, buf[16]; + u8 buf[BLAKE2S_BLOCK_SIZE]; const char __user *p = buffer; while (count > 0) { - int b, i = 0; - bytes = min(count, sizeof(buf)); - if (copy_from_user(&buf, p, bytes)) + if (copy_from_user(buf, p, bytes)) return -EFAULT; - - for (b = bytes; b > 0; b -= sizeof(u32), i++) { - if (!arch_get_random_int(&t)) - break; - buf[i] ^= t; - } - count -= bytes; p += bytes; - mix_pool_bytes(buf, bytes); cond_resched(); } -- 2.35.0