Putting the round constants and the message schedule arrays together in one structure saves one register, which can be a significant benefit on register-constrained architectures. On x86-32 (tested on Broadwell Xeon), this gives a 10% performance benefit. Signed-off-by: Arvind Sankar <nivedita@xxxxxxxxxxxx> Suggested-by: David Laight <David.Laight@xxxxxxxxxx> --- lib/crypto/sha256.c | 49 ++++++++++++++++++++++++++------------------- 1 file changed, 28 insertions(+), 21 deletions(-) diff --git a/lib/crypto/sha256.c b/lib/crypto/sha256.c index 3a8802d5f747..985cd0560d79 100644 --- a/lib/crypto/sha256.c +++ b/lib/crypto/sha256.c @@ -29,6 +29,11 @@ static const u32 SHA256_K[] = { 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2, }; +struct KW { + u32 K[64]; + u32 W[64]; +}; + static inline u32 Ch(u32 x, u32 y, u32 z) { return z ^ (x & (y ^ z)); @@ -56,39 +61,39 @@ static inline void BLEND_OP(int I, u32 *W) #define SHA256_ROUND(i, a, b, c, d, e, f, g, h) do { \ u32 t1, t2; \ - t1 = h + e1(e) + Ch(e, f, g) + SHA256_K[i] + W[i]; \ + t1 = h + e1(e) + Ch(e, f, g) + KW->K[i] + KW->W[i]; \ t2 = e0(a) + Maj(a, b, c); \ d += t1; \ h = t1 + t2; \ } while (0) -static void sha256_transform(u32 *state, const u8 *input, u32 *W) +static void sha256_transform(u32 *state, const u8 *input, struct KW *KW) { u32 a, b, c, d, e, f, g, h; int i; /* load the input */ for (i = 0; i < 16; i += 8) { - LOAD_OP(i + 0, W, input); - LOAD_OP(i + 1, W, input); - LOAD_OP(i + 2, W, input); - LOAD_OP(i + 3, W, input); - LOAD_OP(i + 4, W, input); - LOAD_OP(i + 5, W, input); - LOAD_OP(i + 6, W, input); - LOAD_OP(i + 7, W, input); + LOAD_OP(i + 0, KW->W, input); + LOAD_OP(i + 1, KW->W, input); + LOAD_OP(i + 2, KW->W, input); + LOAD_OP(i + 3, KW->W, input); + LOAD_OP(i + 4, KW->W, input); + LOAD_OP(i + 5, KW->W, input); + LOAD_OP(i + 6, KW->W, input); + LOAD_OP(i + 7, KW->W, input); } /* now blend */ for (i = 16; i < 64; i += 8) { - BLEND_OP(i + 0, W); - BLEND_OP(i + 1, W); - BLEND_OP(i + 2, W); - BLEND_OP(i + 3, W); - BLEND_OP(i + 4, W); - BLEND_OP(i + 5, W); - BLEND_OP(i + 6, W); - BLEND_OP(i + 7, W); + BLEND_OP(i + 0, KW->W); + BLEND_OP(i + 1, KW->W); + BLEND_OP(i + 2, KW->W); + BLEND_OP(i + 3, KW->W); + BLEND_OP(i + 4, KW->W); + BLEND_OP(i + 5, KW->W); + BLEND_OP(i + 6, KW->W); + BLEND_OP(i + 7, KW->W); } /* load the state into our registers */ @@ -115,7 +120,7 @@ void sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len) { unsigned int partial, done; const u8 *src; - u32 W[64]; + struct KW KW; partial = sctx->count & 0x3f; sctx->count += len; @@ -129,13 +134,15 @@ void sha256_update(struct sha256_state *sctx, const u8 *data, unsigned int len) src = sctx->buf; } + memcpy(KW.K, SHA256_K, sizeof(KW.K)); + do { - sha256_transform(sctx->state, src, W); + sha256_transform(sctx->state, src, &KW); done += 64; src = data + done; } while (done + 63 < len); - memzero_explicit(W, sizeof(W)); + memzero_explicit(KW.W, sizeof(KW.W)); partial = 0; } -- 2.26.2