Added support for executing multiple requests, in parallel, for crypto engine. A new callback is added, can_enqueue_more, which asks the driver if the hardware has free space, to enqueue a new request. The new crypto_engine_alloc_init_and_set function, initialize crypto-engine, sets the maximum size for crypto-engine software queue (not hardcoded anymore) and the can_enqueue_more callback. On crypto_pump_requests, if can_enqueue_more callback returns true, a new request is send to hardware, until there is no space and the callback returns false. If the new callback, can_enqueue_more, is not implemented the crypto-engine will work as before - will send requests to hardware, one-by-one, on crypto_pump_requests, and complete it, on crypto_finalize_request, and so on. Signed-off-by: Iuliana Prodan <iuliana.prodan@xxxxxxx> --- crypto/crypto_engine.c | 116 +++++++++++++++++++++++++++++++++++------------- include/crypto/engine.h | 11 +++-- 2 files changed, 94 insertions(+), 33 deletions(-) diff --git a/crypto/crypto_engine.c b/crypto/crypto_engine.c index eb029ff..dc33249 100644 --- a/crypto/crypto_engine.c +++ b/crypto/crypto_engine.c @@ -22,32 +22,33 @@ * @err: error number */ static void crypto_finalize_request(struct crypto_engine *engine, - struct crypto_async_request *req, int err) + struct crypto_async_request *req, int err) { unsigned long flags; - bool finalize_cur_req = false; + bool finalize_req = false; int ret; struct crypto_engine_ctx *enginectx; spin_lock_irqsave(&engine->queue_lock, flags); - if (engine->cur_req == req) - finalize_cur_req = true; + /* + * If hardware cannot enqueue more requests, + * make sure we are completing the current request + */ + if (engine->can_enqueue_more || engine->cur_req == req) { + finalize_req = true; + engine->cur_req = NULL; + } spin_unlock_irqrestore(&engine->queue_lock, flags); - if (finalize_cur_req) { + if (finalize_req) { enginectx = crypto_tfm_ctx(req->tfm); - if (engine->cur_req_prepared && + if (enginectx->op.prepare_request && enginectx->op.unprepare_request) { ret = enginectx->op.unprepare_request(engine, req); if (ret) dev_err(engine->dev, "failed to unprepare request\n"); } - spin_lock_irqsave(&engine->queue_lock, flags); - engine->cur_req = NULL; - engine->cur_req_prepared = false; - spin_unlock_irqrestore(&engine->queue_lock, flags); } - req->complete(req, err); kthread_queue_work(engine->kworker, &engine->pump_requests); @@ -73,10 +74,6 @@ static void crypto_pump_requests(struct crypto_engine *engine, spin_lock_irqsave(&engine->queue_lock, flags); - /* Make sure we are not already running a request */ - if (engine->cur_req) - goto out; - /* If another context is idling then defer */ if (engine->idling) { kthread_queue_work(engine->kworker, &engine->pump_requests); @@ -108,13 +105,33 @@ static void crypto_pump_requests(struct crypto_engine *engine, goto out; } +start_request: + /* If hardware is busy, do not send any request */ + if (engine->can_enqueue_more) { + if (!engine->can_enqueue_more(engine)) + goto out; + } else if (engine->cur_req) { + /* + * If hardware cannot enqueue more requests, + * make sure we are not already running a request + */ + goto out; + } + /* Get the fist request from the engine queue to handle */ backlog = crypto_get_backlog(&engine->queue); async_req = crypto_dequeue_request(&engine->queue); if (!async_req) goto out; - engine->cur_req = async_req; + /* + * If hardware cannot enqueue more requests, + * keep track of the request we are processing now. + * We'll need it on completion (crypto_finalize_request). + */ + if (!engine->can_enqueue_more) + engine->cur_req = async_req; + if (backlog) backlog->complete(backlog, -EINPROGRESS); @@ -130,7 +147,7 @@ static void crypto_pump_requests(struct crypto_engine *engine, ret = engine->prepare_crypt_hardware(engine); if (ret) { dev_err(engine->dev, "failed to prepare crypt hardware\n"); - goto req_err; + goto req_err_2; } } @@ -141,26 +158,38 @@ static void crypto_pump_requests(struct crypto_engine *engine, if (ret) { dev_err(engine->dev, "failed to prepare request: %d\n", ret); - goto req_err; + goto req_err_2; } - engine->cur_req_prepared = true; } if (!enginectx->op.do_one_request) { dev_err(engine->dev, "failed to do request\n"); ret = -EINVAL; - goto req_err; + goto req_err_1; } + ret = enginectx->op.do_one_request(engine, async_req); if (ret) { dev_err(engine->dev, "Failed to do one request from queue: %d\n", ret); - goto req_err; + goto req_err_1; } - return; -req_err: - crypto_finalize_request(engine, async_req, ret); - return; + goto retry; +req_err_1: + if (enginectx->op.unprepare_request) { + ret = enginectx->op.unprepare_request(engine, async_req); + if (ret) + dev_err(engine->dev, "failed to unprepare request\n"); + } +req_err_2: + async_req->complete(async_req, ret); + +retry: + if (engine->can_enqueue_more) { + spin_lock_irqsave(&engine->queue_lock, flags); + goto start_request; + } + return; out: spin_unlock_irqrestore(&engine->queue_lock, flags); } @@ -386,15 +415,26 @@ int crypto_engine_stop(struct crypto_engine *engine) EXPORT_SYMBOL_GPL(crypto_engine_stop); /** - * crypto_engine_alloc_init - allocate crypto hardware engine structure and - * initialize it. + * crypto_engine_alloc_init_and_set - allocate crypto hardware engine structure + * and initialize it by setting the maximum number of entries in the software + * crypto-engine queue. * @dev: the device attached with one hardware engine + * @cbk_can_enq: pointer to a callback function to be invoked when pumping + * requests to check whether the hardware can process a new + * request. + * This has the form: + * callback(struct crypto_engine *engine) + * where: + * @engine: the crypto engine structure. * @rt: whether this queue is set to run as a realtime task + * @qlen: maximum size of the crypto-engine queue * * This must be called from context that can sleep. * Return: the crypto engine structure on success, else NULL. */ -struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) +struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, + bool (*cbk_can_enq)(struct crypto_engine *engine), + bool rt, int qlen) { struct sched_param param = { .sched_priority = MAX_RT_PRIO / 2 }; struct crypto_engine *engine; @@ -411,12 +451,12 @@ struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) engine->running = false; engine->busy = false; engine->idling = false; - engine->cur_req_prepared = false; engine->priv_data = dev; + engine->can_enqueue_more = cbk_can_enq; snprintf(engine->name, sizeof(engine->name), "%s-engine", dev_name(dev)); - crypto_init_queue(&engine->queue, CRYPTO_ENGINE_MAX_QLEN); + crypto_init_queue(&engine->queue, qlen); spin_lock_init(&engine->queue_lock); engine->kworker = kthread_create_worker(0, "%s", engine->name); @@ -433,6 +473,22 @@ struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) return engine; } +EXPORT_SYMBOL_GPL(crypto_engine_alloc_init_and_set); + +/** + * crypto_engine_alloc_init - allocate crypto hardware engine structure and + * initialize it. + * @dev: the device attached with one hardware engine + * @rt: whether this queue is set to run as a realtime task + * + * This must be called from context that can sleep. + * Return: the crypto engine structure on success, else NULL. + */ +struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt) +{ + return crypto_engine_alloc_init_and_set(dev, NULL, rt, + CRYPTO_ENGINE_MAX_QLEN); +} EXPORT_SYMBOL_GPL(crypto_engine_alloc_init); /** diff --git a/include/crypto/engine.h b/include/crypto/engine.h index e29cd67..00d35703 100644 --- a/include/crypto/engine.h +++ b/include/crypto/engine.h @@ -24,7 +24,6 @@ * @idling: the engine is entering idle state * @busy: request pump is busy * @running: the engine is on working - * @cur_req_prepared: current request is prepared * @list: link with the global crypto engine list * @queue_lock: spinlock to syncronise access to request queue * @queue: the crypto queue of the engine @@ -35,17 +34,19 @@ * @unprepare_crypt_hardware: there are currently no more requests on the * queue so the subsystem notifies the driver that it may relax the * hardware by issuing this call + * @can_enqueue_more: callback to check whether the hardware can process + * a new request * @kworker: kthread worker struct for request pump * @pump_requests: work struct for scheduling work to the request pump * @priv_data: the engine private data - * @cur_req: the current request which is on processing + * @cur_req: the current request which is on processing, in case the hardware + * doesn't support multiple requests (can_enqueue_more is not used). */ struct crypto_engine { char name[ENGINE_NAME_LEN]; bool idling; bool busy; bool running; - bool cur_req_prepared; struct list_head list; spinlock_t queue_lock; @@ -56,6 +57,7 @@ struct crypto_engine { int (*prepare_crypt_hardware)(struct crypto_engine *engine); int (*unprepare_crypt_hardware)(struct crypto_engine *engine); + bool (*can_enqueue_more)(struct crypto_engine *engine); struct kthread_worker *kworker; struct kthread_work pump_requests; @@ -102,6 +104,9 @@ void crypto_finalize_skcipher_request(struct crypto_engine *engine, int crypto_engine_start(struct crypto_engine *engine); int crypto_engine_stop(struct crypto_engine *engine); struct crypto_engine *crypto_engine_alloc_init(struct device *dev, bool rt); +struct crypto_engine *crypto_engine_alloc_init_and_set(struct device *dev, + bool (*cbk_can_enq)(struct crypto_engine *engine), + bool rt, int qlen); int crypto_engine_exit(struct crypto_engine *engine); #endif /* _CRYPTO_ENGINE_H */ -- 2.1.0