On 1 October 2018 at 10:00, Ondrej Mosnacek <omosnace@xxxxxxxxxx> wrote: > On Sun, Sep 30, 2018 at 1:14 PM Ard Biesheuvel > <ard.biesheuvel@xxxxxxxxxx> wrote: >> On 30 September 2018 at 10:58, Ard Biesheuvel <ard.biesheuvel@xxxxxxxxxx> wrote: >> > Use the correct __le32 annotation and accessors to perform the >> > single round of AES encryption performed inside the AEGIS transform. >> > Otherwise, tcrypt reports: >> > >> > alg: aead: Test 1 failed on encryption for aegis128-generic >> > 00000000: 6c 25 25 4a 3c 10 1d 27 2b c1 d4 84 9a ef 7f 6e >> > alg: aead: Test 1 failed on encryption for aegis128l-generic >> > 00000000: cd c6 e3 b8 a0 70 9d 8e c2 4f 6f fe 71 42 df 28 >> > alg: aead: Test 1 failed on encryption for aegis256-generic >> > 00000000: aa ed 07 b1 96 1d e9 e6 f2 ed b5 8e 1c 5f dc 1c >> > >> > While at it, let's refer to the first precomputed table only, and >> > derive the other ones by rotation. This reduces the D-cache footprint >> > by 75%, and shouldn't be too costly or free on load/store architectures >> > (and X86 has its own AES-NI based implementation) >> > >> > Fixes: f606a88e5823 ("crypto: aegis - Add generic AEGIS AEAD implementations") >> > Cc: <stable@xxxxxxxxxxxxxxx> # v4.18+ >> > Signed-off-by: Ard Biesheuvel <ard.biesheuvel@xxxxxxxxxx> >> > --- >> > crypto/aegis.h | 23 +++++++++----------- >> > 1 file changed, 10 insertions(+), 13 deletions(-) >> > >> > diff --git a/crypto/aegis.h b/crypto/aegis.h >> > index f1c6900ddb80..84d3e07a3c33 100644 >> > --- a/crypto/aegis.h >> > +++ b/crypto/aegis.h >> > @@ -21,7 +21,7 @@ >> > >> > union aegis_block { >> > __le64 words64[AEGIS_BLOCK_SIZE / sizeof(__le64)]; >> > - u32 words32[AEGIS_BLOCK_SIZE / sizeof(u32)]; >> > + __le32 words32[AEGIS_BLOCK_SIZE / sizeof(__le32)]; >> > u8 bytes[AEGIS_BLOCK_SIZE]; >> > }; >> > >> > @@ -59,22 +59,19 @@ static void crypto_aegis_aesenc(union aegis_block *dst, >> > { >> > u32 *d = dst->words32; >> > const u8 *s = src->bytes; >> > - const u32 *k = key->words32; >> > + const __le32 *k = key->words32; >> > const u32 *t0 = crypto_ft_tab[0]; >> > - const u32 *t1 = crypto_ft_tab[1]; >> > - const u32 *t2 = crypto_ft_tab[2]; >> > - const u32 *t3 = crypto_ft_tab[3]; >> > u32 d0, d1, d2, d3; >> > >> > - d0 = t0[s[ 0]] ^ t1[s[ 5]] ^ t2[s[10]] ^ t3[s[15]] ^ k[0]; >> > - d1 = t0[s[ 4]] ^ t1[s[ 9]] ^ t2[s[14]] ^ t3[s[ 3]] ^ k[1]; >> > - d2 = t0[s[ 8]] ^ t1[s[13]] ^ t2[s[ 2]] ^ t3[s[ 7]] ^ k[2]; >> > - d3 = t0[s[12]] ^ t1[s[ 1]] ^ t2[s[ 6]] ^ t3[s[11]] ^ k[3]; >> > + d0 = t0[s[ 0]] ^ rol32(t0[s[ 5]], 8) ^ rol32(t0[s[10]], 16) ^ rol32(t0[s[15]], 24); >> > + d1 = t0[s[ 4]] ^ rol32(t0[s[ 9]], 8) ^ rol32(t0[s[14]], 16) ^ rol32(t0[s[ 3]], 24); >> > + d2 = t0[s[ 8]] ^ rol32(t0[s[13]], 8) ^ rol32(t0[s[ 2]], 16) ^ rol32(t0[s[ 7]], 24); >> > + d3 = t0[s[12]] ^ rol32(t0[s[ 1]], 8) ^ rol32(t0[s[ 6]], 16) ^ rol32(t0[s[11]], 24); >> > >> > - d[0] = d0; >> > - d[1] = d1; >> > - d[2] = d2; >> > - d[3] = d3; >> > + d[0] = cpu_to_le32(d0 ^ le32_to_cpu(k[0])); >> > + d[1] = cpu_to_le32(d1 ^ le32_to_cpu(k[1])); >> > + d[2] = cpu_to_le32(d2 ^ le32_to_cpu(k[2])); >> > + d[3] = cpu_to_le32(d3 ^ le32_to_cpu(k[3])); >> >> >> I suppose this >> >> > + d[0] = cpu_to_le32(d0) ^ k[0]; >> > + d[1] = cpu_to_le32(d1) ^ k[1]; >> > + d[2] = cpu_to_le32(d2) ^ k[2]; >> > + d[3] = cpu_to_le32(d3) ^ k[3]; >> >> should work fine as well > > Yeah, that looks nicer, but I'm not sure if it is completely OK to do > bitwise/arithmetic operations directly on the __[lb]e* types... Maybe > yes, but the code I've seen that used them usually seemed to treat > them as opaque types. > No, xor is fine with __le/__be types