Speed up the GHASH algorithm based on 64-bit polynomial multiplication by adding support for 4-way aggregation. This improves throughput by ~60% on Cortex-A53, from 1.70 cycles per byte to 1.05 cycles per byte. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@xxxxxxxxxx> --- arch/arm/crypto/Kconfig | 1 + arch/arm/crypto/ghash-ce-core.S | 101 ++++++++++++++++++++++++++++++-- arch/arm/crypto/ghash-ce-glue.c | 38 ++++++++---- 3 files changed, 124 insertions(+), 16 deletions(-) diff --git a/arch/arm/crypto/Kconfig b/arch/arm/crypto/Kconfig index 925d1364727a..07dd12efeea4 100644 --- a/arch/arm/crypto/Kconfig +++ b/arch/arm/crypto/Kconfig @@ -99,6 +99,7 @@ config CRYPTO_GHASH_ARM_CE depends on KERNEL_MODE_NEON select CRYPTO_HASH select CRYPTO_CRYPTD + select CRYPTO_GF128MUL help Use an implementation of GHASH (used by the GCM AEAD chaining mode) that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64) diff --git a/arch/arm/crypto/ghash-ce-core.S b/arch/arm/crypto/ghash-ce-core.S index 2f78c10b1881..c982c63877a6 100644 --- a/arch/arm/crypto/ghash-ce-core.S +++ b/arch/arm/crypto/ghash-ce-core.S @@ -63,6 +63,27 @@ k48 .req d31 SHASH2_p64 .req d31 + HH .req q10 + HH3 .req q11 + HH4 .req q12 + HH34 .req q13 + + HH_L .req d20 + HH_H .req d21 + HH3_L .req d22 + HH3_H .req d23 + HH4_L .req d24 + HH4_H .req d25 + HH34_L .req d26 + HH34_H .req d27 + SHASH2_H .req d29 + + XL2 .req q5 + XM2 .req q6 + XH2 .req q7 + XL3 .req q8 + XM3 .req q9 + .text .fpu crypto-neon-fp-armv8 @@ -175,12 +196,76 @@ beq 0f vld1.64 {T1}, [ip] teq r0, #0 - b 1f + b 3f + +0: .ifc \pn, p64 + tst r0, #3 // skip until #blocks is a + bne 2f // round multiple of 4 + +1: vld1.8 {XL2-XM2}, [r2]! + vld1.8 {XL3}, [r2]! + vrev64.8 T1, XL2 + + subs r0, r0, #4 + + vext.8 T2, T1, T1, #8 + veor T1_H, T1_H, XL_L + veor XL, XL, T2 + + vmull.p64 XH, HH4_H, XL_H // a1 * b1 + veor T1_H, T1_H, XL_H + vmull.p64 XL, HH4_L, XL_L // a0 * b0 + vmull.p64 XM, HH34_H, T1_H // (a1 + a0)(b1 + b0) + + vrev64.8 T1, XM2 + + vmull.p64 XH2, HH3_H, T1_L // a1 * b1 + veor T1_L, T1_L, T1_H + vmull.p64 XL2, HH3_L, T1_H // a0 * b0 + vmull.p64 XM2, HH34_L, T1_L // (a1 + a0)(b1 + b0) + + vrev64.8 T1, XL3 + + vmull.p64 XL3, HH_H, T1_L // a1 * b1 + veor T1_L, T1_L, T1_H + veor XH2, XH2, XL3 + vmull.p64 XL3, HH_L, T1_H // a0 * b0 + vmull.p64 XM3, SHASH2_H, T1_L // (a1 + a0)(b1 + b0) + + vld1.8 {T1}, [r2]! + veor XL2, XL2, XL3 + vrev64.8 T1, T1 + veor XM2, XM2, XM3 + + vmull.p64 XL3, SHASH_H, T1_L // a1 * b1 + veor T1_L, T1_L, T1_H + veor XH2, XH2, XL3 + vmull.p64 XL3, SHASH_L, T1_H // a0 * b0 + vmull.p64 XM3, SHASH2_p64, T1_L // (a1 + a0)(b1 + b0) -0: vld1.64 {T1}, [r2]! + veor XL2, XL2, XL3 + veor XM2, XM2, XM3 + + veor XL, XL, XL2 + veor XH, XH, XH2 + veor XM, XM, XM2 + + veor T1, XL, XH + veor XM, XM, T1 + + __pmull_reduce_p64 + + veor T1, T1, XH + veor XL, XL, T1 + + beq 4f + b 1b + .endif + +2: vld1.64 {T1}, [r2]! subs r0, r0, #1 -1: /* multiply XL by SHASH in GF(2^128) */ +3: /* multiply XL by SHASH in GF(2^128) */ #ifndef CONFIG_CPU_BIG_ENDIAN vrev64.8 T1, T1 #endif @@ -203,7 +288,7 @@ bne 0b - vst1.64 {XL}, [r1] +4: vst1.64 {XL}, [r1] bx lr .endm @@ -212,8 +297,14 @@ * struct ghash_key const *k, const char *head) */ ENTRY(pmull_ghash_update_p64) - vld1.64 {SHASH}, [r3] + vld1.64 {SHASH}, [r3]! + vld1.64 {HH}, [r3]! + vld1.64 {HH3-HH4}, [r3] + veor SHASH2_p64, SHASH_L, SHASH_H + veor SHASH2_H, HH_L, HH_H + veor HH34_L, HH3_L, HH3_H + veor HH34_H, HH4_L, HH4_H vmov.i8 MASK, #0xe1 vshl.u64 MASK, MASK, #57 diff --git a/arch/arm/crypto/ghash-ce-glue.c b/arch/arm/crypto/ghash-ce-glue.c index 8930fc4e7c22..b7d30b6cf49c 100644 --- a/arch/arm/crypto/ghash-ce-glue.c +++ b/arch/arm/crypto/ghash-ce-glue.c @@ -1,7 +1,7 @@ /* * Accelerated GHASH implementation with ARMv8 vmull.p64 instructions. * - * Copyright (C) 2015 Linaro Ltd. <ard.biesheuvel@xxxxxxxxxx> + * Copyright (C) 2015 - 2018 Linaro Ltd. <ard.biesheuvel@xxxxxxxxxx> * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published @@ -28,8 +28,10 @@ MODULE_ALIAS_CRYPTO("ghash"); #define GHASH_DIGEST_SIZE 16 struct ghash_key { - u64 a; - u64 b; + u64 h[2]; + u64 h2[2]; + u64 h3[2]; + u64 h4[2]; }; struct ghash_desc_ctx { @@ -117,26 +119,40 @@ static int ghash_final(struct shash_desc *desc, u8 *dst) return 0; } +static void ghash_reflect(u64 h[], const be128 *k) +{ + u64 carry = be64_to_cpu(k->a) >> 63; + + h[0] = (be64_to_cpu(k->b) << 1) | carry; + h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); + + if (carry) + h[1] ^= 0xc200000000000000UL; +} + static int ghash_setkey(struct crypto_shash *tfm, const u8 *inkey, unsigned int keylen) { struct ghash_key *key = crypto_shash_ctx(tfm); - u64 a, b; + be128 h, k; if (keylen != GHASH_BLOCK_SIZE) { crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } - /* perform multiplication by 'x' in GF(2^128) */ - b = get_unaligned_be64(inkey); - a = get_unaligned_be64(inkey + 8); + memcpy(&k, inkey, GHASH_BLOCK_SIZE); + ghash_reflect(key->h, &k); + + h = k; + gf128mul_lle(&h, &k); + ghash_reflect(key->h2, &h); - key->a = (a << 1) | (b >> 63); - key->b = (b << 1) | (a >> 63); + gf128mul_lle(&h, &k); + ghash_reflect(key->h3, &h); - if (b >> 63) - key->b ^= 0xc200000000000000UL; + gf128mul_lle(&h, &k); + ghash_reflect(key->h4, &h); return 0; } -- 2.18.0