On Mon, Mar 05, 2018 at 11:17:07AM -0800, Eric Biggers wrote: > Add a NEON-accelerated implementation of Speck128-XTS and Speck64-XTS > for ARM64. This is ported from the 32-bit version. It may be useful on > devices with 64-bit ARM CPUs that don't have the Cryptography > Extensions, so cannot do AES efficiently -- e.g. the Cortex-A53 > processor on the Raspberry Pi 3. > > It generally works the same way as the 32-bit version, but there are > some slight differences due to the different instructions, registers, > and syntax available in ARM64 vs. in ARM32. For example, in the 64-bit > version there are enough registers to hold the XTS tweaks for each > 128-byte chunk, so they don't need to be saved on the stack. > > Benchmarks on a Raspberry Pi 3 running a 64-bit kernel: > > Algorithm Encryption Decryption > --------- ---------- ---------- > Speck64/128-XTS (NEON) 92.2 MB/s 92.2 MB/s > Speck128/256-XTS (NEON) 75.0 MB/s 75.0 MB/s > Speck128/256-XTS (generic) 47.4 MB/s 35.6 MB/s > AES-128-XTS (NEON bit-sliced) 33.4 MB/s 29.6 MB/s > AES-256-XTS (NEON bit-sliced) 24.6 MB/s 21.7 MB/s > > The code performs well on higher-end ARM64 processors as well, though > such processors tend to have the Crypto Extensions which make AES > preferred. For example, here are the same benchmarks run on a HiKey960 > (with CPU affinity set for the A73 cores), with the Crypto Extensions > implementation of AES-256-XTS added: > > Algorithm Encryption Decryption > --------- ----------- ----------- > AES-256-XTS (Crypto Extensions) 1273.3 MB/s 1274.7 MB/s > Speck64/128-XTS (NEON) 359.8 MB/s 348.0 MB/s > Speck128/256-XTS (NEON) 292.5 MB/s 286.1 MB/s > Speck128/256-XTS (generic) 186.3 MB/s 181.8 MB/s > AES-128-XTS (NEON bit-sliced) 142.0 MB/s 124.3 MB/s > AES-256-XTS (NEON bit-sliced) 104.7 MB/s 91.1 MB/s > > Signed-off-by: Eric Biggers <ebiggers@xxxxxxxxxx> > --- > arch/arm64/crypto/Kconfig | 6 + > arch/arm64/crypto/Makefile | 3 + > arch/arm64/crypto/speck-neon-core.S | 352 ++++++++++++++++++++++++++++ > arch/arm64/crypto/speck-neon-glue.c | 282 ++++++++++++++++++++++ > 4 files changed, 643 insertions(+) > create mode 100644 arch/arm64/crypto/speck-neon-core.S > create mode 100644 arch/arm64/crypto/speck-neon-glue.c > > diff --git a/arch/arm64/crypto/Kconfig b/arch/arm64/crypto/Kconfig > index 285c36c7b408..cb5a243110c4 100644 > --- a/arch/arm64/crypto/Kconfig > +++ b/arch/arm64/crypto/Kconfig > @@ -113,4 +113,10 @@ config CRYPTO_AES_ARM64_BS > select CRYPTO_AES_ARM64 > select CRYPTO_SIMD > > +config CRYPTO_SPECK_NEON > + tristate "NEON accelerated Speck cipher algorithms" > + depends on KERNEL_MODE_NEON > + select CRYPTO_BLKCIPHER > + select CRYPTO_SPECK > + > endif > diff --git a/arch/arm64/crypto/Makefile b/arch/arm64/crypto/Makefile > index cee9b8d9830b..d94ebd15a859 100644 > --- a/arch/arm64/crypto/Makefile > +++ b/arch/arm64/crypto/Makefile > @@ -53,6 +53,9 @@ sha512-arm64-y := sha512-glue.o sha512-core.o > obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o > chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o > > +obj-$(CONFIG_CRYPTO_SPECK_NEON) += speck-neon.o > +speck-neon-y := speck-neon-core.o speck-neon-glue.o > + > obj-$(CONFIG_CRYPTO_AES_ARM64) += aes-arm64.o > aes-arm64-y := aes-cipher-core.o aes-cipher-glue.o > > diff --git a/arch/arm64/crypto/speck-neon-core.S b/arch/arm64/crypto/speck-neon-core.S > new file mode 100644 > index 000000000000..b14463438b09 > --- /dev/null > +++ b/arch/arm64/crypto/speck-neon-core.S > @@ -0,0 +1,352 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * ARM64 NEON-accelerated implementation of Speck128-XTS and Speck64-XTS > + * > + * Copyright (c) 2018 Google, Inc > + * > + * Author: Eric Biggers <ebiggers@xxxxxxxxxx> > + */ > + > +#include <linux/linkage.h> > + > + .text > + > + // arguments > + ROUND_KEYS .req x0 // const {u64,u32} *round_keys > + NROUNDS .req w1 // int nrounds > + NROUNDS_X .req x1 > + DST .req x2 // void *dst > + SRC .req x3 // const void *src > + NBYTES .req w4 // unsigned int nbytes > + TWEAK .req x5 // void *tweak > + > + // registers which hold the data being encrypted/decrypted > + // (underscores avoid a naming collision with ARM64 registers x0-x3) > + X_0 .req v0 > + Y_0 .req v1 > + X_1 .req v2 > + Y_1 .req v3 > + X_2 .req v4 > + Y_2 .req v5 > + X_3 .req v6 > + Y_3 .req v7 > + > + // the round key, duplicated in all lanes > + ROUND_KEY .req v8 > + > + // index vector for tbl-based 8-bit rotates > + ROTATE_TABLE .req v9 > + ROTATE_TABLE_Q .req q9 > + > + // temporary registers > + TMP0 .req v10 > + TMP1 .req v11 > + TMP2 .req v12 > + TMP3 .req v13 > + > + // multiplication table for updating XTS tweaks > + GFMUL_TABLE .req v14 > + GFMUL_TABLE_Q .req q14 > + > + // next XTS tweak value(s) > + TWEAKV_NEXT .req v15 > + > + // XTS tweaks for the blocks currently being encrypted/decrypted > + TWEAKV0 .req v16 > + TWEAKV1 .req v17 > + TWEAKV2 .req v18 > + TWEAKV3 .req v19 > + TWEAKV4 .req v20 > + TWEAKV5 .req v21 > + TWEAKV6 .req v22 > + TWEAKV7 .req v23 > + > + .align 4 > +.Lror64_8_table: > + .octa 0x080f0e0d0c0b0a090007060504030201 > +.Lror32_8_table: > + .octa 0x0c0f0e0d080b0a090407060500030201 > +.Lrol64_8_table: > + .octa 0x0e0d0c0b0a09080f0605040302010007 > +.Lrol32_8_table: > + .octa 0x0e0d0c0f0a09080b0605040702010003 > +.Lgf128mul_table: > + .octa 0x00000000000000870000000000000001 > +.Lgf64mul_table: > + .octa 0x0000000000000000000000002d361b00 Won't this put the data in the image in an endianness-dependent layout? Alternatively, if this doesn't matter, then why doesn't it matter? (I don't claim to understand the code fully here...) > + > +/* > + * _speck_round_128bytes() - Speck encryption round on 128 bytes at a time > + * > + * Do one Speck encryption round on the 128 bytes (8 blocks for Speck128, 16 for > + * Speck64) stored in X0-X3 and Y0-Y3, using the round key stored in all lanes > + * of ROUND_KEY. 'n' is the lane size: 64 for Speck128, or 32 for Speck64. > + * 'lanes' is the lane specifier: "2d" for Speck128 or "4s" for Speck64. > + */ > +.macro _speck_round_128bytes n, lanes > + > + // x = ror(x, 8) > + tbl X_0.16b, {X_0.16b}, ROTATE_TABLE.16b > + tbl X_1.16b, {X_1.16b}, ROTATE_TABLE.16b > + tbl X_2.16b, {X_2.16b}, ROTATE_TABLE.16b > + tbl X_3.16b, {X_3.16b}, ROTATE_TABLE.16b > + > + // x += y > + add X_0.\lanes, X_0.\lanes, Y_0.\lanes > + add X_1.\lanes, X_1.\lanes, Y_1.\lanes > + add X_2.\lanes, X_2.\lanes, Y_2.\lanes > + add X_3.\lanes, X_3.\lanes, Y_3.\lanes > + > + // x ^= k > + eor X_0.16b, X_0.16b, ROUND_KEY.16b > + eor X_1.16b, X_1.16b, ROUND_KEY.16b > + eor X_2.16b, X_2.16b, ROUND_KEY.16b > + eor X_3.16b, X_3.16b, ROUND_KEY.16b > + > + // y = rol(y, 3) > + shl TMP0.\lanes, Y_0.\lanes, #3 > + shl TMP1.\lanes, Y_1.\lanes, #3 > + shl TMP2.\lanes, Y_2.\lanes, #3 > + shl TMP3.\lanes, Y_3.\lanes, #3 > + sri TMP0.\lanes, Y_0.\lanes, #(\n - 3) > + sri TMP1.\lanes, Y_1.\lanes, #(\n - 3) > + sri TMP2.\lanes, Y_2.\lanes, #(\n - 3) > + sri TMP3.\lanes, Y_3.\lanes, #(\n - 3) > + > + // y ^= x > + eor Y_0.16b, TMP0.16b, X_0.16b > + eor Y_1.16b, TMP1.16b, X_1.16b > + eor Y_2.16b, TMP2.16b, X_2.16b > + eor Y_3.16b, TMP3.16b, X_3.16b > +.endm > + > +/* > + * _speck_unround_128bytes() - Speck decryption round on 128 bytes at a time > + * > + * This is the inverse of _speck_round_128bytes(). > + */ > +.macro _speck_unround_128bytes n, lanes > + > + // y ^= x > + eor TMP0.16b, Y_0.16b, X_0.16b > + eor TMP1.16b, Y_1.16b, X_1.16b > + eor TMP2.16b, Y_2.16b, X_2.16b > + eor TMP3.16b, Y_3.16b, X_3.16b > + > + // y = ror(y, 3) > + ushr Y_0.\lanes, TMP0.\lanes, #3 > + ushr Y_1.\lanes, TMP1.\lanes, #3 > + ushr Y_2.\lanes, TMP2.\lanes, #3 > + ushr Y_3.\lanes, TMP3.\lanes, #3 > + sli Y_0.\lanes, TMP0.\lanes, #(\n - 3) > + sli Y_1.\lanes, TMP1.\lanes, #(\n - 3) > + sli Y_2.\lanes, TMP2.\lanes, #(\n - 3) > + sli Y_3.\lanes, TMP3.\lanes, #(\n - 3) > + > + // x ^= k > + eor X_0.16b, X_0.16b, ROUND_KEY.16b > + eor X_1.16b, X_1.16b, ROUND_KEY.16b > + eor X_2.16b, X_2.16b, ROUND_KEY.16b > + eor X_3.16b, X_3.16b, ROUND_KEY.16b > + > + // x -= y > + sub X_0.\lanes, X_0.\lanes, Y_0.\lanes > + sub X_1.\lanes, X_1.\lanes, Y_1.\lanes > + sub X_2.\lanes, X_2.\lanes, Y_2.\lanes > + sub X_3.\lanes, X_3.\lanes, Y_3.\lanes > + > + // x = rol(x, 8) > + tbl X_0.16b, {X_0.16b}, ROTATE_TABLE.16b > + tbl X_1.16b, {X_1.16b}, ROTATE_TABLE.16b > + tbl X_2.16b, {X_2.16b}, ROTATE_TABLE.16b > + tbl X_3.16b, {X_3.16b}, ROTATE_TABLE.16b > +.endm > + > +.macro _next_xts_tweak next, cur, tmp, n > +.if \n == 64 > + /* > + * Calculate the next tweak by multiplying the current one by x, > + * modulo p(x) = x^128 + x^7 + x^2 + x + 1. > + */ > + sshr \tmp\().2d, \cur\().2d, #63 > + and \tmp\().16b, \tmp\().16b, GFMUL_TABLE.16b > + shl \next\().2d, \cur\().2d, #1 > + ext \tmp\().16b, \tmp\().16b, \tmp\().16b, #8 > + eor \next\().16b, \next\().16b, \tmp\().16b > +.else > + /* > + * Calculate the next two tweaks by multiplying the current ones by x^2, > + * modulo p(x) = x^64 + x^4 + x^3 + x + 1. > + */ > + ushr \tmp\().2d, \cur\().2d, #62 > + shl \next\().2d, \cur\().2d, #2 > + tbl \tmp\().16b, {GFMUL_TABLE.16b}, \tmp\().16b > + eor \next\().16b, \next\().16b, \tmp\().16b > +.endif > +.endm > + > +/* > + * _speck_xts_crypt() - Speck-XTS encryption/decryption > + * > + * Encrypt or decrypt NBYTES bytes of data from the SRC buffer to the DST buffer > + * using Speck-XTS, specifically the variant with a block size of '2n' and round > + * count given by NROUNDS. The expanded round keys are given in ROUND_KEYS, and > + * the current XTS tweak value is given in TWEAK. It's assumed that NBYTES is a > + * nonzero multiple of 128. > + */ > +.macro _speck_xts_crypt n, lanes, decrypting > + > + /* > + * If decrypting, modify the ROUND_KEYS parameter to point to the last > + * round key rather than the first, since for decryption the round keys > + * are used in reverse order. > + */ > +.if \decrypting > + mov NROUNDS, NROUNDS /* zero the high 32 bits */ > +.if \n == 64 > + add ROUND_KEYS, ROUND_KEYS, NROUNDS_X, lsl #3 > + sub ROUND_KEYS, ROUND_KEYS, #8 > +.else > + add ROUND_KEYS, ROUND_KEYS, NROUNDS_X, lsl #2 > + sub ROUND_KEYS, ROUND_KEYS, #4 > +.endif > +.endif > + > + // Load the index vector for tbl-based 8-bit rotates > +.if \decrypting > + ldr ROTATE_TABLE_Q, .Lrol\n\()_8_table > +.else > + ldr ROTATE_TABLE_Q, .Lror\n\()_8_table > +.endif > + > + // One-time XTS preparation > +.if \n == 64 > + // Load first tweak > + ld1 {TWEAKV0.16b}, [TWEAK] > + > + // Load GF(2^128) multiplication table > + ldr GFMUL_TABLE_Q, .Lgf128mul_table > +.else > + // Load first tweak > + ld1 {TWEAKV0.8b}, [TWEAK] > + > + // Load GF(2^64) multiplication table > + ldr GFMUL_TABLE_Q, .Lgf64mul_table > + > + // Calculate second tweak, packing it together with the first > + ushr TMP0.2d, TWEAKV0.2d, #63 > + shl TMP1.2d, TWEAKV0.2d, #1 > + tbl TMP0.8b, {GFMUL_TABLE.16b}, TMP0.8b > + eor TMP0.8b, TMP0.8b, TMP1.8b > + mov TWEAKV0.d[1], TMP0.d[0] > +.endif > + > +.Lnext_128bytes_\@: > + > + // Calculate XTS tweaks for next 128 bytes > + _next_xts_tweak TWEAKV1, TWEAKV0, TMP0, \n > + _next_xts_tweak TWEAKV2, TWEAKV1, TMP0, \n > + _next_xts_tweak TWEAKV3, TWEAKV2, TMP0, \n > + _next_xts_tweak TWEAKV4, TWEAKV3, TMP0, \n > + _next_xts_tweak TWEAKV5, TWEAKV4, TMP0, \n > + _next_xts_tweak TWEAKV6, TWEAKV5, TMP0, \n > + _next_xts_tweak TWEAKV7, TWEAKV6, TMP0, \n > + _next_xts_tweak TWEAKV_NEXT, TWEAKV7, TMP0, \n > + > + // Load the next source blocks into {X,Y}[0-3] > + ld1 {X_0.16b-Y_1.16b}, [SRC], #64 > + ld1 {X_2.16b-Y_3.16b}, [SRC], #64 > + > + // XOR the source blocks with their XTS tweaks > + eor TMP0.16b, X_0.16b, TWEAKV0.16b > + eor Y_0.16b, Y_0.16b, TWEAKV1.16b > + eor TMP1.16b, X_1.16b, TWEAKV2.16b > + eor Y_1.16b, Y_1.16b, TWEAKV3.16b > + eor TMP2.16b, X_2.16b, TWEAKV4.16b > + eor Y_2.16b, Y_2.16b, TWEAKV5.16b > + eor TMP3.16b, X_3.16b, TWEAKV6.16b > + eor Y_3.16b, Y_3.16b, TWEAKV7.16b > + > + /* > + * De-interleave the 'x' and 'y' elements of each block, i.e. make it so > + * that the X[0-3] registers contain only the second halves of blocks, > + * and the Y[0-3] registers contain only the first halves of blocks. > + * (Speck uses the order (y, x) rather than the more intuitive (x, y).) > + */ > + uzp2 X_0.\lanes, TMP0.\lanes, Y_0.\lanes > + uzp1 Y_0.\lanes, TMP0.\lanes, Y_0.\lanes > + uzp2 X_1.\lanes, TMP1.\lanes, Y_1.\lanes > + uzp1 Y_1.\lanes, TMP1.\lanes, Y_1.\lanes > + uzp2 X_2.\lanes, TMP2.\lanes, Y_2.\lanes > + uzp1 Y_2.\lanes, TMP2.\lanes, Y_2.\lanes > + uzp2 X_3.\lanes, TMP3.\lanes, Y_3.\lanes > + uzp1 Y_3.\lanes, TMP3.\lanes, Y_3.\lanes > + > + // Do the cipher rounds > + mov x6, ROUND_KEYS > + mov w7, NROUNDS > +.Lnext_round_\@: > +.if \decrypting > + ld1r {ROUND_KEY.\lanes}, [x6] > + sub x6, x6, #( \n / 8 ) > + _speck_unround_128bytes \n, \lanes > +.else > + ld1r {ROUND_KEY.\lanes}, [x6], #( \n / 8 ) > + _speck_round_128bytes \n, \lanes > +.endif > + subs w7, w7, #1 > + bne .Lnext_round_\@ > + > + // Re-interleave the 'x' and 'y' elements of each block > + zip1 TMP0.\lanes, Y_0.\lanes, X_0.\lanes > + zip2 Y_0.\lanes, Y_0.\lanes, X_0.\lanes > + zip1 TMP1.\lanes, Y_1.\lanes, X_1.\lanes > + zip2 Y_1.\lanes, Y_1.\lanes, X_1.\lanes > + zip1 TMP2.\lanes, Y_2.\lanes, X_2.\lanes > + zip2 Y_2.\lanes, Y_2.\lanes, X_2.\lanes > + zip1 TMP3.\lanes, Y_3.\lanes, X_3.\lanes > + zip2 Y_3.\lanes, Y_3.\lanes, X_3.\lanes > + > + // XOR the encrypted/decrypted blocks with the tweaks calculated earlier > + eor X_0.16b, TMP0.16b, TWEAKV0.16b > + eor Y_0.16b, Y_0.16b, TWEAKV1.16b > + eor X_1.16b, TMP1.16b, TWEAKV2.16b > + eor Y_1.16b, Y_1.16b, TWEAKV3.16b > + eor X_2.16b, TMP2.16b, TWEAKV4.16b > + eor Y_2.16b, Y_2.16b, TWEAKV5.16b > + eor X_3.16b, TMP3.16b, TWEAKV6.16b > + eor Y_3.16b, Y_3.16b, TWEAKV7.16b > + mov TWEAKV0.16b, TWEAKV_NEXT.16b > + > + // Store the ciphertext in the destination buffer > + st1 {X_0.16b-Y_1.16b}, [DST], #64 > + st1 {X_2.16b-Y_3.16b}, [DST], #64 > + > + // Continue if there are more 128-byte chunks remaining > + subs NBYTES, NBYTES, #128 > + bne .Lnext_128bytes_\@ > + > + // Store the next tweak and return > +.if \n == 64 > + st1 {TWEAKV_NEXT.16b}, [TWEAK] > +.else > + st1 {TWEAKV_NEXT.8b}, [TWEAK] > +.endif > + ret > +.endm > + > +ENTRY(speck128_xts_encrypt_neon) > + _speck_xts_crypt n=64, lanes=2d, decrypting=0 > +ENDPROC(speck128_xts_encrypt_neon) > + > +ENTRY(speck128_xts_decrypt_neon) > + _speck_xts_crypt n=64, lanes=2d, decrypting=1 > +ENDPROC(speck128_xts_decrypt_neon) > + > +ENTRY(speck64_xts_encrypt_neon) > + _speck_xts_crypt n=32, lanes=4s, decrypting=0 > +ENDPROC(speck64_xts_encrypt_neon) > + > +ENTRY(speck64_xts_decrypt_neon) > + _speck_xts_crypt n=32, lanes=4s, decrypting=1 > +ENDPROC(speck64_xts_decrypt_neon) > diff --git a/arch/arm64/crypto/speck-neon-glue.c b/arch/arm64/crypto/speck-neon-glue.c > new file mode 100644 > index 000000000000..6e233aeb4ff4 > --- /dev/null > +++ b/arch/arm64/crypto/speck-neon-glue.c > @@ -0,0 +1,282 @@ > +// SPDX-License-Identifier: GPL-2.0 > +/* > + * NEON-accelerated implementation of Speck128-XTS and Speck64-XTS > + * (64-bit version; based on the 32-bit version) > + * > + * Copyright (c) 2018 Google, Inc > + */ > + > +#include <asm/hwcap.h> > +#include <asm/neon.h> > +#include <asm/simd.h> > +#include <crypto/algapi.h> > +#include <crypto/gf128mul.h> > +#include <crypto/internal/skcipher.h> > +#include <crypto/speck.h> > +#include <crypto/xts.h> > +#include <linux/kernel.h> > +#include <linux/module.h> > + > +/* The assembly functions only handle multiples of 128 bytes */ > +#define SPECK_NEON_CHUNK_SIZE 128 > + > +/* Speck128 */ > + > +struct speck128_xts_tfm_ctx { > + struct speck128_tfm_ctx main_key; > + struct speck128_tfm_ctx tweak_key; > +}; > + > +asmlinkage void speck128_xts_encrypt_neon(const u64 *round_keys, int nrounds, > + void *dst, const void *src, > + unsigned int nbytes, void *tweak); > + > +asmlinkage void speck128_xts_decrypt_neon(const u64 *round_keys, int nrounds, > + void *dst, const void *src, > + unsigned int nbytes, void *tweak); > + > +typedef void (*speck128_crypt_one_t)(const struct speck128_tfm_ctx *, > + u8 *, const u8 *); > +typedef void (*speck128_xts_crypt_many_t)(const u64 *, int, void *, > + const void *, unsigned int, void *); > + > +static __always_inline int > +__speck128_xts_crypt(struct skcipher_request *req, > + speck128_crypt_one_t crypt_one, > + speck128_xts_crypt_many_t crypt_many) > +{ > + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); > + const struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); > + struct skcipher_walk walk; > + le128 tweak; > + int err; > + > + err = skcipher_walk_virt(&walk, req, true); > + > + crypto_speck128_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv); > + > + while (walk.nbytes > 0) { > + unsigned int nbytes = walk.nbytes; > + u8 *dst = walk.dst.virt.addr; > + const u8 *src = walk.src.virt.addr; > + > + if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) { > + unsigned int count; > + > + count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE); > + kernel_neon_begin(); > + (*crypt_many)(ctx->main_key.round_keys, > + ctx->main_key.nrounds, > + dst, src, count, &tweak); Nitlet: you don't really need the (* ... ) around crypt_many here. (If you want confirmation that it doesn't do anything, try (****crypt_many).) > + kernel_neon_end(); > + dst += count; > + src += count; > + nbytes -= count; > + } > + > + /* Handle any remainder with generic code */ > + while (nbytes >= sizeof(tweak)) { > + le128_xor((le128 *)dst, (const le128 *)src, &tweak); > + (*crypt_one)(&ctx->main_key, dst, dst); (Also here, and in a couple of other places for speck64. This is just a stylistic thing though.) > + le128_xor((le128 *)dst, (const le128 *)dst, &tweak); > + gf128mul_x_ble(&tweak, &tweak); > + > + dst += sizeof(tweak); > + src += sizeof(tweak); > + nbytes -= sizeof(tweak); > + } > + err = skcipher_walk_done(&walk, nbytes); > + } > + > + return err; > +} > + > +static int speck128_xts_encrypt(struct skcipher_request *req) > +{ > + return __speck128_xts_crypt(req, crypto_speck128_encrypt, > + speck128_xts_encrypt_neon); > +} > + > +static int speck128_xts_decrypt(struct skcipher_request *req) > +{ > + return __speck128_xts_crypt(req, crypto_speck128_decrypt, > + speck128_xts_decrypt_neon); > +} > + > +static int speck128_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, > + unsigned int keylen) > +{ > + struct speck128_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); > + int err; > + > + err = xts_verify_key(tfm, key, keylen); > + if (err) > + return err; > + > + keylen /= 2; > + > + err = crypto_speck128_setkey(&ctx->main_key, key, keylen); > + if (err) > + return err; > + > + return crypto_speck128_setkey(&ctx->tweak_key, key + keylen, keylen); > +} > + > +/* Speck64 */ > + > +struct speck64_xts_tfm_ctx { > + struct speck64_tfm_ctx main_key; > + struct speck64_tfm_ctx tweak_key; > +}; > + > +asmlinkage void speck64_xts_encrypt_neon(const u32 *round_keys, int nrounds, > + void *dst, const void *src, > + unsigned int nbytes, void *tweak); > + > +asmlinkage void speck64_xts_decrypt_neon(const u32 *round_keys, int nrounds, > + void *dst, const void *src, > + unsigned int nbytes, void *tweak); > + > +typedef void (*speck64_crypt_one_t)(const struct speck64_tfm_ctx *, > + u8 *, const u8 *); > +typedef void (*speck64_xts_crypt_many_t)(const u32 *, int, void *, > + const void *, unsigned int, void *); > + > +static __always_inline int > +__speck64_xts_crypt(struct skcipher_request *req, speck64_crypt_one_t crypt_one, > + speck64_xts_crypt_many_t crypt_many) > +{ > + struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); > + const struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); > + struct skcipher_walk walk; > + __le64 tweak; > + int err; > + > + err = skcipher_walk_virt(&walk, req, true); > + > + crypto_speck64_encrypt(&ctx->tweak_key, (u8 *)&tweak, walk.iv); > + > + while (walk.nbytes > 0) { > + unsigned int nbytes = walk.nbytes; > + u8 *dst = walk.dst.virt.addr; > + const u8 *src = walk.src.virt.addr; > + > + if (nbytes >= SPECK_NEON_CHUNK_SIZE && may_use_simd()) { > + unsigned int count; > + > + count = round_down(nbytes, SPECK_NEON_CHUNK_SIZE); > + kernel_neon_begin(); > + (*crypt_many)(ctx->main_key.round_keys, > + ctx->main_key.nrounds, > + dst, src, count, &tweak); > + kernel_neon_end(); > + dst += count; > + src += count; > + nbytes -= count; > + } > + > + /* Handle any remainder with generic code */ > + while (nbytes >= sizeof(tweak)) { > + *(__le64 *)dst = *(__le64 *)src ^ tweak; > + (*crypt_one)(&ctx->main_key, dst, dst); > + *(__le64 *)dst ^= tweak; > + tweak = cpu_to_le64((le64_to_cpu(tweak) << 1) ^ > + ((tweak & cpu_to_le64(1ULL << 63)) ? > + 0x1B : 0)); > + dst += sizeof(tweak); > + src += sizeof(tweak); > + nbytes -= sizeof(tweak); > + } > + err = skcipher_walk_done(&walk, nbytes); > + } > + > + return err; > +} > + > +static int speck64_xts_encrypt(struct skcipher_request *req) > +{ > + return __speck64_xts_crypt(req, crypto_speck64_encrypt, > + speck64_xts_encrypt_neon); > +} > + > +static int speck64_xts_decrypt(struct skcipher_request *req) > +{ > + return __speck64_xts_crypt(req, crypto_speck64_decrypt, > + speck64_xts_decrypt_neon); > +} > + > +static int speck64_xts_setkey(struct crypto_skcipher *tfm, const u8 *key, > + unsigned int keylen) > +{ > + struct speck64_xts_tfm_ctx *ctx = crypto_skcipher_ctx(tfm); > + int err; > + > + err = xts_verify_key(tfm, key, keylen); > + if (err) > + return err; > + > + keylen /= 2; > + > + err = crypto_speck64_setkey(&ctx->main_key, key, keylen); > + if (err) > + return err; > + > + return crypto_speck64_setkey(&ctx->tweak_key, key + keylen, keylen); > +} > + > +static struct skcipher_alg speck_algs[] = { > + { > + .base.cra_name = "xts(speck128)", > + .base.cra_driver_name = "xts-speck128-neon", > + .base.cra_priority = 300, > + .base.cra_blocksize = SPECK128_BLOCK_SIZE, > + .base.cra_ctxsize = sizeof(struct speck128_xts_tfm_ctx), > + .base.cra_alignmask = 7, > + .base.cra_module = THIS_MODULE, > + .min_keysize = 2 * SPECK128_128_KEY_SIZE, > + .max_keysize = 2 * SPECK128_256_KEY_SIZE, > + .ivsize = SPECK128_BLOCK_SIZE, > + .walksize = SPECK_NEON_CHUNK_SIZE, > + .setkey = speck128_xts_setkey, > + .encrypt = speck128_xts_encrypt, > + .decrypt = speck128_xts_decrypt, > + }, { > + .base.cra_name = "xts(speck64)", > + .base.cra_driver_name = "xts-speck64-neon", > + .base.cra_priority = 300, > + .base.cra_blocksize = SPECK64_BLOCK_SIZE, > + .base.cra_ctxsize = sizeof(struct speck64_xts_tfm_ctx), > + .base.cra_alignmask = 7, > + .base.cra_module = THIS_MODULE, > + .min_keysize = 2 * SPECK64_96_KEY_SIZE, > + .max_keysize = 2 * SPECK64_128_KEY_SIZE, > + .ivsize = SPECK64_BLOCK_SIZE, > + .walksize = SPECK_NEON_CHUNK_SIZE, > + .setkey = speck64_xts_setkey, > + .encrypt = speck64_xts_encrypt, > + .decrypt = speck64_xts_decrypt, > + } > +}; > + > +static int __init speck_neon_module_init(void) > +{ > + if (!(elf_hwcap & HWCAP_ASIMD)) > + return -ENODEV; > + return crypto_register_skciphers(speck_algs, ARRAY_SIZE(speck_algs)); I haven't tried to understand everything here, but the kernel-mode NEON integration looks OK to me. > +} > + > +static void __exit speck_neon_module_exit(void) > +{ > + crypto_unregister_skciphers(speck_algs, ARRAY_SIZE(speck_algs)); > +} Cheers ---Dave > + > +module_init(speck_neon_module_init); > +module_exit(speck_neon_module_exit); > + > +MODULE_DESCRIPTION("Speck block cipher (NEON-accelerated)"); > +MODULE_LICENSE("GPL"); > +MODULE_AUTHOR("Eric Biggers <ebiggers@xxxxxxxxxx>"); > +MODULE_ALIAS_CRYPTO("xts(speck128)"); > +MODULE_ALIAS_CRYPTO("xts-speck128-neon"); > +MODULE_ALIAS_CRYPTO("xts(speck64)"); > +MODULE_ALIAS_CRYPTO("xts-speck64-neon"); > -- > 2.16.2.395.g2e18187dfd-goog > > > _______________________________________________ > linux-arm-kernel mailing list > linux-arm-kernel@xxxxxxxxxxxxxxxxxxx > http://lists.infradead.org/mailman/listinfo/linux-arm-kernel