<Resend considering the wrap issue in the previous email, sorry for that> Hi community, The following VMAC(AES) patch, ported from http://fastcrypto.org/vmac, is used to support S3 memory integrity verification for Intel(R) Trusted Execution Technology (for more about Intel(R) TXT patches, see http://lkml.org/lkml/2009/6/22/578), since the VMAC algorithm is very fast to MAC the memory during S3 sleep, compared with other MAC algorithms. We request your feedback and suggestions. Thanks. Shane Signed-off-by: Shane Wang <shane.wang@xxxxxxxxx> Signed-off-by: Joseph Cihula <joseph.cihula@xxxxxxxxx> diff -r 973795c2770b crypto/Kconfig --- a/crypto/Kconfig Mon Jul 13 20:57:01 2009 -0700 +++ b/crypto/Kconfig Thu Jul 16 02:56:25 2009 -0700 @@ -261,6 +261,18 @@ config CRYPTO_XCBC http://www.ietf.org/rfc/rfc3566.txt http://csrc.nist.gov/encryption/modes/proposedmodes/ xcbc-mac/xcbc-mac-spec.pdf + +config CRYPTO_VMAC + tristate "VMAC support" + depends on EXPERIMENTAL + select CRYPTO_HASH + select CRYPTO_MANAGER + help + VMAC is a message authentication algorithm designed for + very high speed on 64-bit architectures. + + See also: + <http://fastcrypto.org/vmac> comment "Digest" diff -r 973795c2770b crypto/Makefile --- a/crypto/Makefile Mon Jul 13 20:57:01 2009 -0700 +++ b/crypto/Makefile Thu Jul 16 02:56:25 2009 -0700 @@ -33,6 +33,7 @@ cryptomgr-objs := algboss.o testmgr.o obj-$(CONFIG_CRYPTO_MANAGER2) += cryptomgr.o obj-$(CONFIG_CRYPTO_HMAC) += hmac.o +obj-$(CONFIG_CRYPTO_VMAC) += vmac.o obj-$(CONFIG_CRYPTO_XCBC) += xcbc.o obj-$(CONFIG_CRYPTO_NULL) += crypto_null.o obj-$(CONFIG_CRYPTO_MD4) += md4.o diff -r 973795c2770b crypto/tcrypt.c --- a/crypto/tcrypt.c Mon Jul 13 20:57:01 2009 -0700 +++ b/crypto/tcrypt.c Thu Jul 16 02:56:25 2009 -0700 @@ -700,6 +700,9 @@ static void do_test(int m) case 108: tcrypt_test("hmac(rmd160)"); break; + case 109: + tcrypt_test("vmac(aes)"); + break; case 200: test_cipher_speed("ecb(aes)", ENCRYPT, sec, NULL, 0, diff -r 973795c2770b crypto/testmgr.c --- a/crypto/testmgr.c Mon Jul 13 20:57:01 2009 -0700 +++ b/crypto/testmgr.c Thu Jul 16 02:56:25 2009 -0700 @@ -1968,6 +1968,15 @@ static const struct alg_test_desc alg_te } } }, { + .alg = "vmac(aes)", + .test = alg_test_hash, + .suite = { + .hash = { + .vecs = aes_vmac128_tv_template, + .count = VMAC_AES_TEST_VECTORS + } + } + }, { .alg = "wp256", .test = alg_test_hash, .suite = { diff -r 973795c2770b crypto/testmgr.h --- a/crypto/testmgr.h Mon Jul 13 20:57:01 2009 -0700 +++ b/crypto/testmgr.h Thu Jul 16 02:56:25 2009 -0700 @@ -1639,6 +1639,22 @@ static struct hash_testvec aes_xcbc128_t .np = 2, .ksize = 16, } +}; + +#define VMAC_AES_TEST_VECTORS 1 +static char vmac_string[128] = {'\x01', '\x01', '\x01', '\x01', + '\x02', '\x03', '\x02', '\x02', + '\x02', '\x04', '\x01', '\x07', + '\x04', '\x01', '\x04', '\x03',}; +static struct hash_testvec aes_vmac128_tv_template[] = { + { + .key = "\x00\x01\x02\x03\x04\x05\x06\x07" + "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f", + .plaintext = vmac_string, + .digest = "\xcb\xd7\x8a\xfd\xb7\x33\x79\xe7", + .psize = 128, + .ksize = 16, + }, }; /* diff -r 973795c2770b crypto/vmac.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/crypto/vmac.c Thu Jul 16 02:56:25 2009 -0700 @@ -0,0 +1,682 @@ +/* + * Modified to interface to the Linux kernel + * Copyright (c) 2009, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + */ + +/* -------------------------------------------------------------------------- + * VMAC and VHASH Implementation by Ted Krovetz (tdk@xxxxxxx) and Wei Dai. + * This implementation is herby placed in the public domain. + * The authors offers no warranty. Use at your own risk. + * Please send bug reports to the authors. + * Last modified: 17 APR 08, 1700 PDT + * ----------------------------------------------------------------------- */ + +#include <linux/init.h> +#include <linux/types.h> +#include <linux/crypto.h> +#include <linux/scatterlist.h> +#include <crypto/scatterwalk.h> +#include <crypto/vmac.h> +#include <crypto/internal/hash.h> +#include <crypto/internal/vmac.h> + +/* + * Enable code tuned for 64-bit registers; otherwise tuned for 32-bit + */ +#ifndef VMAC_ARCH_64 +#define VMAC_ARCH_64 (__x86_64__ || __ppc64__ || _M_X64) +#endif + +/* + * Native word reads. Update (or define via compiler) if incorrect + */ +#ifndef VMAC_ARCH_BIG_ENDIAN /* Assume big-endian unless on the list */ +#define VMAC_ARCH_BIG_ENDIAN \ + (!(__x86_64__ || __i386__ || _M_IX86 || \ + _M_X64 || __ARMEL__ || __MIPSEL__)) +#endif + +/* + * Constants and masks + */ +#define UINT64_C(x) x##ULL +const uint64_t p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */ +const uint64_t m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */ +const uint64_t m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */ +const uint64_t m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */ +const uint64_t mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */ + + +#if (VMAC_ARCH_BIG_ENDIAN) +#define get64BE(ptr) (*(uint64_t *)(ptr)) +#define get64LE(ptr) GET_REVERSED_64(ptr) +#define INDEX_HIGH 0 +#define INDEX_LOW 1 +#else /* assume little-endian */ +#define get64BE(ptr) GET_REVERSED_64(ptr) +#define get64LE(ptr) (*(uint64_t *)(ptr)) +#define INDEX_HIGH 1 +#define INDEX_LOW 0 +#endif + + +/* + * For highest performance the L1 NH and L2 polynomial hashes should be + * carefully implemented to take advantage of one's target architechture. + * Here these two hash functions are defined multiple time; once for + * 64-bit architectures, once for 32-bit SSE2 architectures, and once + * for the rest (32-bit) architectures. + * For each, nh_16 *must* be defined (works on multiples of 16 bytes). + * Optionally, nh_vmac_nhbytes can be defined (for multiples of + * VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two + * NH computations at once). + */ + +#if VMAC_ARCH_64 + +#define nh_16(mp, kp, nw, rh, rl) \ +{ int i; uint64_t th, tl; \ + rh = rl = 0; \ + for (i = 0; i < nw; i+= 2) { \ + MUL64(th,tl,get64LE((mp)+i )+(kp)[i ], \ + get64LE((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh,rl,th,tl); \ + } \ +} + +#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \ +{ int i; uint64_t th, tl; \ + rh1 = rl1 = rh = rl = 0; \ + for (i = 0; i < nw; i+= 2) { \ + MUL64(th,tl,get64LE((mp)+i )+(kp)[i ], \ + get64LE((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i )+(kp)[i+2], \ + get64LE((mp)+i+1)+(kp)[i+3]); \ + ADD128(rh1,rl1,th,tl); \ + } \ +} + +#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */ +#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ +{ int i; uint64_t th, tl; \ + rh = rl = 0; \ + for (i = 0; i < nw; i+= 8) { \ + MUL64(th,tl,get64LE((mp)+i )+(kp)[i ], \ + get64LE((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+2)+(kp)[i+2], \ + get64LE((mp)+i+3)+(kp)[i+3]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+4)+(kp)[i+4], \ + get64LE((mp)+i+5)+(kp)[i+5]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+6)+(kp)[i+6], \ + get64LE((mp)+i+7)+(kp)[i+7]); \ + ADD128(rh,rl,th,tl); \ + } \ +} + +#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \ +{ int i; uint64_t th, tl; \ + rh1 = rl1 = rh = rl = 0; \ + for (i = 0; i < nw; i+= 8) { \ + MUL64(th,tl,get64LE((mp)+i )+(kp)[i ], \ + get64LE((mp)+i+1)+(kp)[i+1]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i )+(kp)[i+2], \ + get64LE((mp)+i+1)+(kp)[i+3]); \ + ADD128(rh1,rl1,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+2)+(kp)[i+2], \ + get64LE((mp)+i+3)+(kp)[i+3]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+2)+(kp)[i+4], \ + get64LE((mp)+i+3)+(kp)[i+5]); \ + ADD128(rh1,rl1,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+4)+(kp)[i+4], \ + get64LE((mp)+i+5)+(kp)[i+5]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+4)+(kp)[i+6], \ + get64LE((mp)+i+5)+(kp)[i+7]); \ + ADD128(rh1,rl1,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+6)+(kp)[i+6], \ + get64LE((mp)+i+7)+(kp)[i+7]); \ + ADD128(rh,rl,th,tl); \ + MUL64(th,tl,get64LE((mp)+i+6)+(kp)[i+8], \ + get64LE((mp)+i+7)+(kp)[i+9]); \ + ADD128(rh1,rl1,th,tl); \ + } \ +} +#endif + +#define poly_step(ah, al, kh, kl, mh, ml) \ +{ uint64_t t1h, t1l, t2h, t2l, t3h, t3l, z=0; \ + /* compute ab*cd, put bd into result registers */ \ + PMUL64(t3h,t3l,al,kh); \ + PMUL64(t2h,t2l,ah,kl); \ + PMUL64(t1h,t1l,ah,2*kh); \ + PMUL64(ah,al,al,kl); \ + /* add 2 * ac to result */ \ + ADD128(ah,al,t1h,t1l); \ + /* add together ad + bc */ \ + ADD128(t2h,t2l,t3h,t3l); \ + /* now (ah,al), (t2l,2*t2h) need summing */ \ + /* first add the high registers, carrying into t2h */ \ + ADD128(t2h,ah,z,t2l); \ + /* double t2h and add top bit of ah */ \ + t2h = 2 * t2h + (ah >> 63); \ + ah &= m63; \ + /* now add the low registers */ \ + ADD128(ah,al,mh,ml); \ + ADD128(ah,al,z,t2h); \ +} + +#else /* not VMAC_ARCH_64 */ + +#ifndef nh_16 +#define nh_16(mp, kp, nw, rh, rl) \ +{ uint64_t t1,t2,m1,m2,t; \ + int i; \ + rh = rl = t = 0; \ + for (i = 0; i < nw; i+=2) { \ + t1 = get64LE(mp+i) + kp[i]; \ + t2 = get64LE(mp+i+1) + kp[i+1]; \ + m2 = MUL32(t1 >> 32, t2); \ + m1 = MUL32(t1, t2 >> 32); \ + ADD128(rh,rl,MUL32(t1 >> 32,t2 >> 32),MUL32(t1,t2)); \ + rh += (uint64_t)(uint32_t)(m1 >> 32) \ + + (uint32_t)(m2 >> 32); \ + t += (uint64_t)(uint32_t)m1 + (uint32_t)m2; \ + } \ + ADD128(rh,rl,(t >> 32),(t << 32)); \ +} +#endif + +static void poly_step_func(uint64_t *ahi, uint64_t *alo, + const uint64_t *kh, const uint64_t *kl, + const uint64_t *mh, const uint64_t *ml) +{ +#define a0 *(((uint32_t*)alo)+INDEX_LOW) +#define a1 *(((uint32_t*)alo)+INDEX_HIGH) +#define a2 *(((uint32_t*)ahi)+INDEX_LOW) +#define a3 *(((uint32_t*)ahi)+INDEX_HIGH) +#define k0 *(((uint32_t*)kl)+INDEX_LOW) +#define k1 *(((uint32_t*)kl)+INDEX_HIGH) +#define k2 *(((uint32_t*)kh)+INDEX_LOW) +#define k3 *(((uint32_t*)kh)+INDEX_HIGH) + + uint64_t p, q, t; + uint32_t t2; + + p = MUL32(a3, k3); + p += p; + p += *(uint64_t *)mh; + p += MUL32(a0, k2); + p += MUL32(a1, k1); + p += MUL32(a2, k0); + t = (uint32_t)(p); + p >>= 32; + p += MUL32(a0, k3); + p += MUL32(a1, k2); + p += MUL32(a2, k1); + p += MUL32(a3, k0); + t |= ((uint64_t)((uint32_t)p & 0x7fffffff)) << 32; + p >>= 31; + p += (uint64_t)(((uint32_t*)ml)[INDEX_LOW]); + p += MUL32(a0, k0); + q = MUL32(a1, k3); + q += MUL32(a2, k2); + q += MUL32(a3, k1); + q += q; + p += q; + t2 = (uint32_t)(p); + p >>= 32; + p += (uint64_t)(((uint32_t*)ml)[INDEX_HIGH]); + p += MUL32(a0, k1); + p += MUL32(a1, k0); + q = MUL32(a2, k3); + q += MUL32(a3, k2); + q += q; + p += q; + *(uint64_t *)(alo) = (p << 32) | t2; + p >>= 32; + *(uint64_t *)(ahi) = p + t; + +#undef a0 +#undef a1 +#undef a2 +#undef a3 +#undef k0 +#undef k1 +#undef k2 +#undef k3 +} + +#define poly_step(ah, al, kh, kl, mh, ml) \ + poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml)) + +#endif /* end of specialized NH and poly definitions */ + +/* At least nh_16 is defined. Defined others as needed here */ +#ifndef nh_16_2 +#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \ + nh_16(mp, kp, nw, rh, rl); \ + nh_16(mp, ((kp)+2), nw, rh2, rl2); +#endif +#ifndef nh_vmac_nhbytes +#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \ + nh_16(mp, kp, nw, rh, rl) +#endif +#ifndef nh_vmac_nhbytes_2 +#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \ + nh_vmac_nhbytes(mp, kp, nw, rh, rl); \ + nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); +#endif + +static void vhash_abort(struct vmac_ctx *ctx) +{ + ctx->polytmp[0] = ctx->polykey[0] ; + ctx->polytmp[1] = ctx->polykey[1] ; + ctx->first_block_processed = 0; +} + +static uint64_t l3hash( uint64_t p1, uint64_t p2, + uint64_t k1, uint64_t k2, uint64_t len) +{ + uint64_t rh, rl, t, z=0; + + /* fully reduce (p1,p2)+(len,0) mod p127 */ + t = p1 >> 63; + p1 &= m63; + ADD128(p1, p2, len, t); + /* At this point, (p1,p2) is at most 2^127+(len<<64) */ + t = (p1 > m63) + ((p1 == m63) && (p2 == m64)); + ADD128(p1, p2, z, t); + p1 &= m63; + + /* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */ + t = p1 + (p2 >> 32); + t += (t >> 32); + t += (uint32_t)t > 0xfffffffeu; + p1 += (t >> 32); + p2 += (p1 << 32); + + /* compute (p1+k1)%p64 and (p2+k2)%p64 */ + p1 += k1; + p1 += (0 - (p1 < k1)) & 257; + p2 += k2; + p2 += (0 - (p2 < k2)) & 257; + + /* compute (p1+k1)*(p2+k2)%p64 */ + MUL64(rh, rl, p1, p2); + t = rh >> 56; + ADD128(t, rl, z, rh); + rh <<= 8; + ADD128(t, rl, z, rh); + t += t << 8; + rl += t; + rl += (0 - (rl < t)) & 257; + rl += (0 - (rl > p64-1)) & 257; + return rl; +} + +static void vhash_update(unsigned char *m, + unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */ + struct vmac_ctx *ctx) +{ + uint64_t rh, rl, *mptr; + const uint64_t *kptr = (uint64_t *)ctx->nhkey; + int i; + uint64_t ch, cl; + uint64_t pkh = ctx->polykey[0]; + uint64_t pkl = ctx->polykey[1]; + + mptr = (uint64_t *)m; + i = mbytes / VMAC_NHBYTES; /* Must be non-zero */ + + ch = ctx->polytmp[0]; + cl = ctx->polytmp[1]; + + if ( ! ctx->first_block_processed) { + ctx->first_block_processed = 1; + nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl); + rh &= m62; + ADD128(ch,cl,rh,rl); + mptr += (VMAC_NHBYTES/sizeof(uint64_t)); + i--; + } + + while (i--) { + nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl); + rh &= m62; + poly_step(ch,cl,pkh,pkl,rh,rl); + mptr += (VMAC_NHBYTES/sizeof(uint64_t)); + } + + ctx->polytmp[0] = ch; + ctx->polytmp[1] = cl; +} + +static uint64_t vhash(unsigned char m[], unsigned int mbytes, + uint64_t *tagl, struct vmac_ctx *ctx) +{ + uint64_t rh, rl, *mptr; + const uint64_t *kptr = (uint64_t *)ctx->nhkey; + int i, remaining; + uint64_t ch, cl; + uint64_t pkh = ctx->polykey[0]; + uint64_t pkl = ctx->polykey[1]; + + mptr = (uint64_t *)m; + i = mbytes / VMAC_NHBYTES; + remaining = mbytes % VMAC_NHBYTES; + + if (ctx->first_block_processed) { + ch = ctx->polytmp[0]; + cl = ctx->polytmp[1]; + } + else if (i) { + nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,ch,cl); + ch &= m62; + ADD128(ch,cl,pkh,pkl); + mptr += (VMAC_NHBYTES/sizeof(uint64_t)); + i--; + } + else if (remaining) { + nh_16(mptr,kptr,2*((remaining+15)/16),ch,cl); + ch &= m62; + ADD128(ch,cl,pkh,pkl); + mptr += (VMAC_NHBYTES/sizeof(uint64_t)); + goto do_l3; + } + else {/* Empty String */ + ch = pkh; cl = pkl; + goto do_l3; + } + + while (i--) { + nh_vmac_nhbytes(mptr,kptr,VMAC_NHBYTES/8,rh,rl); + rh &= m62; + poly_step(ch,cl,pkh,pkl,rh,rl); + mptr += (VMAC_NHBYTES/sizeof(uint64_t)); + } + if (remaining) { + nh_16(mptr,kptr,2*((remaining+15)/16),rh,rl); + rh &= m62; + poly_step(ch,cl,pkh,pkl,rh,rl); + } + +do_l3: + vhash_abort(ctx); + remaining *= 8; + return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1],remaining); +} + +static uint64_t vmac( unsigned char m[], unsigned int mbytes, + unsigned char n[16], uint64_t *tagl, + vmac_ctx_t *ctx) +{ + uint64_t *in_n, *out_p; + uint64_t p, h; + int i; + + in_n = ctx->__vmac_ctx.cached_nonce; + out_p = ctx->__vmac_ctx.cached_aes; + + i = n[15] & 1; + if ( (*(uint64_t *)(n+8) != in_n[1]) || + (*(uint64_t *)(n ) != in_n[0])) { + + in_n[0] = *(uint64_t *)(n ); + in_n[1] = *(uint64_t *)(n+8); + ((unsigned char *)in_n)[15] &= 0xFE; + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out_p, (unsigned char *)in_n); + + ((unsigned char *)in_n)[15] |= (unsigned char)(1-i); + } + p = get64BE(out_p + i); + h = vhash(m, mbytes, (uint64_t *)0, &ctx->__vmac_ctx); + return p + h; +} + +static int vmac_set_key(unsigned char user_key[], vmac_ctx_t *ctx) +{ + uint64_t in[2] = {0}, out[2]; + unsigned i; + int err = 0; + + if ((err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN))) + return err; + + /* Fill nh key */ + ((unsigned char *)in)[0] = 0x80; + for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i+=2) { + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out, (unsigned char *)in); + ctx->__vmac_ctx.nhkey[i ] = get64BE(out); + ctx->__vmac_ctx.nhkey[i+1] = get64BE(out+1); + ((unsigned char *)in)[15] += 1; + } + + /* Fill poly key */ + ((unsigned char *)in)[0] = 0xC0; + in[1] = 0; + for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i+=2) { + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out, (unsigned char *)in); + ctx->__vmac_ctx.polytmp[i ] = + ctx->__vmac_ctx.polykey[i ] = get64BE(out) & mpoly; + ctx->__vmac_ctx.polytmp[i+1] = + ctx->__vmac_ctx.polykey[i+1] = get64BE(out+1) & mpoly; + ((unsigned char *)in)[15] += 1; + } + + /* Fill ip key */ + ((unsigned char *)in)[0] = 0xE0; + in[1] = 0; + for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i+=2) { + do { + crypto_cipher_encrypt_one(ctx->child, + (unsigned char *)out, (unsigned char *)in); + ctx->__vmac_ctx.l3key[i ] = get64BE(out); + ctx->__vmac_ctx.l3key[i+1] = get64BE(out+1); + ((unsigned char *)in)[15] += 1; + } while (ctx->__vmac_ctx.l3key[i] >= p64 + || ctx->__vmac_ctx.l3key[i+1] >= p64); + } + + /* Invalidate nonce/aes cache and reset other elements */ + ctx->__vmac_ctx.cached_nonce[0] = (uint64_t)-1; /* Ensure illegal nonce */ + ctx->__vmac_ctx.cached_nonce[1] = (uint64_t)0; /* Ensure illegal nonce */ + ctx->__vmac_ctx.first_block_processed = 0; + + return err; +} + +static int vmac_setkey(struct crypto_hash *parent, + const u8 *key, unsigned int keylen) +{ + vmac_ctx_t *ctx = crypto_hash_ctx(parent); + + if (keylen != VMAC_KEY_LEN) { + crypto_hash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN); + return -EINVAL; + } + + return vmac_set_key((u8 *)key, ctx); +} + +static int vmac_init(struct hash_desc *desc) +{ + vmac_ctx_t *ctx = crypto_hash_ctx(desc->tfm); + + memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); + return 0; +} + +static int vmac_update2(struct hash_desc *desc, + struct scatterlist *sg, unsigned int nbytes) +{ + vmac_ctx_t *ctx = crypto_hash_ctx(desc->tfm); + + for (;;) { + struct page *pg = sg_page(sg); + unsigned int offset = sg->offset; + unsigned int slen = sg->length; + char *data; + + if (unlikely(slen > nbytes)) + slen = nbytes; + + nbytes -= slen; + data = crypto_kmap(pg, 0) + offset; + vhash_update((u8 *)data, slen, &ctx->__vmac_ctx); + crypto_kunmap(data, 0); + crypto_yield(desc->flags); + + if (!nbytes) + break; + sg = scatterwalk_sg_next(sg); + } + + return 0; +} + +static int vmac_update(struct hash_desc *desc, + struct scatterlist *sg, unsigned int nbytes) +{ + if (WARN_ON_ONCE(in_irq())) + return -EDEADLK; + + return vmac_update2(desc, sg, nbytes); +} + +static int vmac_final(struct hash_desc *desc, u8 *out) +{ + vmac_ctx_t *ctx = crypto_hash_ctx(desc->tfm); + vmac_t mac; + u8 nonce[16] = {}; + + mac = vmac(NULL, 0, nonce, NULL, ctx); + memcpy(out, &mac, sizeof(vmac_t)); + memset(&mac, 0, sizeof(vmac_t)); + memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx)); + return 0; +} + +static int vmac_digest(struct hash_desc *desc, + struct scatterlist *sg, unsigned int nbytes, u8 *out) +{ + if (WARN_ON_ONCE(in_irq())) + return -EDEADLK; + + vmac_init(desc); + vmac_update2(desc, sg, nbytes); + return vmac_final(desc, out); +} + +static int vmac_init_tfm(struct crypto_tfm *tfm) +{ + struct crypto_cipher *cipher; + struct crypto_instance *inst = (void *)tfm->__crt_alg; + struct crypto_spawn *spawn = crypto_instance_ctx(inst); + vmac_ctx_t *ctx = crypto_hash_ctx(__crypto_hash_cast(tfm)); + + cipher = crypto_spawn_cipher(spawn); + if (IS_ERR(cipher)) + return PTR_ERR(cipher); + + ctx->child = cipher; + return 0; +} + +static void vmac_exit_tfm(struct crypto_tfm *tfm) +{ + vmac_ctx_t *ctx = crypto_hash_ctx(__crypto_hash_cast(tfm)); + crypto_free_cipher(ctx->child); +} + +static void vmac_free(struct crypto_instance *inst) +{ + crypto_drop_spawn(crypto_instance_ctx(inst)); + kfree(inst); +} + +static struct crypto_instance *vmac_alloc(struct rtattr **tb) +{ + struct crypto_instance *inst; + struct crypto_alg *alg; + int err; + + err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_HASH); + if (err) + return ERR_PTR(err); + + alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, + CRYPTO_ALG_TYPE_MASK); + if (IS_ERR(alg)) + return ERR_CAST(alg); + + inst = crypto_alloc_instance("vmac", alg); + if (IS_ERR(inst)) + goto out_put_alg; + + inst->alg.cra_flags = CRYPTO_ALG_TYPE_HASH; + inst->alg.cra_priority = alg->cra_priority; + inst->alg.cra_blocksize = alg->cra_blocksize; + inst->alg.cra_alignmask = alg->cra_alignmask; + inst->alg.cra_type = &crypto_hash_type; + + inst->alg.cra_hash.digestsize = sizeof(vmac_t); + inst->alg.cra_ctxsize = sizeof(vmac_ctx_t); + inst->alg.cra_init = vmac_init_tfm; + inst->alg.cra_exit = vmac_exit_tfm; + + inst->alg.cra_hash.init = vmac_init; + inst->alg.cra_hash.update = vmac_update; + inst->alg.cra_hash.final = vmac_final; + inst->alg.cra_hash.digest = vmac_digest; + inst->alg.cra_hash.setkey = vmac_setkey; + +out_put_alg: + crypto_mod_put(alg); + return inst; +} + +static struct crypto_template vmac_tmpl = { + .name = "vmac", + .alloc = vmac_alloc, + .free = vmac_free, + .module = THIS_MODULE, +}; + +static int __init vmac_module_init(void) +{ + return crypto_register_template(&vmac_tmpl); +} + +static void __exit vmac_module_exit(void) +{ + crypto_unregister_template(&vmac_tmpl); +} + +module_init(vmac_module_init); +module_exit(vmac_module_exit); + +MODULE_LICENSE("GPL"); +MODULE_DESCRIPTION("VMAC hash algorithm"); + diff -r 973795c2770b include/crypto/internal/vmac.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/crypto/internal/vmac.h Thu Jul 16 02:56:25 2009 -0700 @@ -0,0 +1,186 @@ +/* + * Modified to interface to the Linux kernel + * Copyright (c) 2009, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + */ + +/* -------------------------------------------------------------------------- + * VMAC and VHASH Implementation by Ted Krovetz (tdk@xxxxxxx) and Wei Dai. + * This implementation is herby placed in the public domain. + * The authors offers no warranty. Use at your own risk. + * Please send bug reports to the authors. + * Last modified: 17 APR 08, 1700 PDT + * ----------------------------------------------------------------------- */ + +#ifndef _CRYPTO_INTERNAL_VMAC_H +#define _CRYPTO_INTERNAL_VMAC_H + +/* + * The following routines are used in this implementation. They are + * written via macros to simulate zero-overhead call-by-reference. + * All have default implemantations for when they are not defined in an + * architecture-specific manner. + * + * MUL64: 64x64->128-bit multiplication + * PMUL64: assumes top bits cleared on inputs + * ADD128: 128x128->128-bit addition + * GET_REVERSED_64: load and byte-reverse 64-bit word + */ + +/* x86_64 or amd64 */ +#if (__GNUC__ && (__x86_64__ || __amd64__)) + +#define ADD128(rh,rl,ih,il) \ + asm ("addq %3, %1 \n\t" \ + "adcq %2, %0" \ + : "+r"(rh),"+r"(rl) \ + : "r"(ih),"r"(il) : "cc"); + +#define MUL64(rh,rl,i1,i2) \ + asm ("mulq %3" : "=a"(rl), "=d"(rh) : "a"(i1), "r"(i2) : "cc") + +#define PMUL64 MUL64 + +#define GET_REVERSED_64(p) \ + ({uint64_t x; \ + asm ("bswapq %0" : "=r" (x) : "0"(*(uint64_t *)(p))); x;}) +/* i386 */ +#elif (__GNUC__ && __i386__) + +#define GET_REVERSED_64(p) \ + ({ uint64_t x; \ + uint32_t *tp = (uint32_t *)(p); \ + asm ( "bswap %%edx\n\t" \ + "bswap %%eax" \ + : "=A"(x) \ + : "a"(tp[1]), "d"(tp[0])); \ + x; }) +/* ppc64 */ +#elif (__GNUC__ && __ppc64__) + +#define ADD128(rh,rl,ih,il)\ + asm volatile ( "addc %1, %1, %3 \n\t" \ + "adde %0, %0, %2" \ + : "+r"(rh),"+r"(rl) \ + : "r"(ih),"r"(il)); + +#define MUL64(rh,rl,i1,i2) \ +{ \ + uint64_t _i1 = (i1), _i2 = (i2); \ + rl = _i1 * _i2; \ + asm volatile ( "mulhdu %0, %1, %2" \ + : "=r" (rh) \ + : "r" (_i1), "r" (_i2)); \ +} + +#define PMUL64 MUL64 + +#define GET_REVERSED_64(p) \ + ({ uint32_t hi, lo, *_p = (uint32_t *)(p); \ + asm volatile (" lwbrx %0, %1, %2" \ + : "=r"(lo) \ + : "b%"(0), "r"(_p) ); \ + asm volatile (" lwbrx %0, %1, %2" \ + : "=r"(hi) \ + : "b%"(4), "r"(_p) ); \ + ((uint64_t)hi << 32) | (uint64_t)lo; } ) + +/* ppc */ +#elif (__GNUC__ && (__ppc__ || __PPC__)) + +#define GET_REVERSED_64(p)\ + ({ uint32_t hi, lo, *_p = (uint32_t *)(p); \ + asm volatile (" lwbrx %0, %1, %2" \ + : "=r"(lo) \ + : "b%"(0), "r"(_p) ); \ + asm volatile (" lwbrx %0, %1, %2" \ + : "=r"(hi) \ + : "b%"(4), "r"(_p) ); \ + ((uint64_t)hi << 32) | (uint64_t)lo; } ) + +/* armel or arm */ +#elif (__GNUC__ && (__ARMEL__ || __ARM__)) + +#define bswap32(v) \ + ({ uint32_t tmp,out; \ + asm volatile ( "eor %1, %2, %2, ror #16\n" \ + "bic %1, %1, #0x00ff0000\n" \ + "mov %0, %2, ror #8\n" \ + "eor %0, %0, %1, lsr #8" \ + : "=r" (out), "=&r" (tmp) \ + : "r" (v)); \ + out; } ) +#endif + +/* + * Default implementations, if not defined above + */ + +#ifndef ADD128 +#define ADD128(rh,rl,ih,il) \ + { uint64_t _il = (il); \ + (rl) += (_il); \ + if ((rl) < (_il)) (rh)++; \ + (rh) += (ih); \ + } +#endif + +#ifndef MUL32 +#define MUL32(i1,i2) ((uint64_t)(uint32_t)(i1)*(uint32_t)(i2)) +#endif + +#ifndef PMUL64 /* rh may not be same as i1 or i2 */ +#define PMUL64(rh,rl,i1,i2) /* Assumes m doesn't overflow */ \ + { uint64_t _i1 = (i1), _i2 = (i2); \ + uint64_t m = MUL32(_i1,_i2>>32) + MUL32(_i1>>32,_i2); \ + rh = MUL32(_i1>>32,_i2>>32); \ + rl = MUL32(_i1,_i2); \ + ADD128(rh,rl,(m >> 32),(m << 32)); \ + } +#endif + +#ifndef MUL64 +#define MUL64(rh,rl,i1,i2) \ + { uint64_t _i1 = (i1), _i2 = (i2); \ + uint64_t m1= MUL32(_i1,_i2>>32); \ + uint64_t m2= MUL32(_i1>>32,_i2); \ + rh = MUL32(_i1>>32,_i2>>32); \ + rl = MUL32(_i1,_i2); \ + ADD128(rh,rl,(m1 >> 32),(m1 << 32)); \ + ADD128(rh,rl,(m2 >> 32),(m2 << 32)); \ + } +#endif + +#ifndef GET_REVERSED_64 +#ifndef bswap64 +#ifndef bswap32 +#define bswap32(x) \ + ({ uint32_t bsx = (x); \ + ((((bsx) & 0xff000000u) >> 24) \ + | (((bsx) & 0x00ff0000u) >> 8) \ + | (((bsx) & 0x0000ff00u) << 8) \ + | (((bsx) & 0x000000ffu) << 24)); }) +#endif +#define bswap64(x)\ + ({ union { uint64_t ll; uint32_t l[2]; } w, r; \ + w.ll = (x); \ + r.l[0] = bswap32 (w.l[1]); \ + r.l[1] = bswap32 (w.l[0]); \ + r.ll; }) +#endif +#define GET_REVERSED_64(p) bswap64(*(uint64_t *)(p)) +#endif + +#endif /* _CRYPTO_INTERNAL_VMAC_H */ diff -r 973795c2770b include/crypto/vmac.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/crypto/vmac.h Thu Jul 16 02:56:25 2009 -0700 @@ -0,0 +1,61 @@ +/* + * Modified to interface to the Linux kernel + * Copyright (c) 2009, Intel Corporation. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms and conditions of the GNU General Public License, + * version 2, as published by the Free Software Foundation. + * + * This program is distributed in the hope it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 59 Temple + * Place - Suite 330, Boston, MA 02111-1307 USA. + */ + +#ifndef __CRYPTO_VMAC_H +#define __CRYPTO_VMAC_H + +/* -------------------------------------------------------------------------- + * VMAC and VHASH Implementation by Ted Krovetz (tdk@xxxxxxx) and Wei Dai. + * This implementation is herby placed in the public domain. + * The authors offers no warranty. Use at your own risk. + * Please send bug reports to the authors. + * Last modified: 17 APR 08, 1700 PDT + * ----------------------------------------------------------------------- */ + +/* + * User definable settings. + */ +#define VMAC_TAG_LEN 64 +#define VMAC_KEY_SIZE 128/* Must be 128, 192 or 256 */ +#define VMAC_KEY_LEN (VMAC_KEY_SIZE/8) +#define VMAC_NHBYTES 128/* Must 2^i for any 3 < i < 13 Standard = 128*/ + +/* + * This implementation uses uint32_t and uint64_t as names for unsigned 32- + * and 64-bit integer types. These are defined in C99 stdint.h. The + * following may need adaptation if you are not running a C99 or + * Microsoft C environment. + */ +struct vmac_ctx { + uint64_t nhkey [(VMAC_NHBYTES/8)+2*(VMAC_TAG_LEN/64-1)]; + uint64_t polykey[2*VMAC_TAG_LEN/64]; + uint64_t l3key [2*VMAC_TAG_LEN/64]; + uint64_t polytmp[2*VMAC_TAG_LEN/64]; + uint64_t cached_nonce[2]; + uint64_t cached_aes[2]; + int first_block_processed; +}; + +typedef uint64_t vmac_t; + +typedef struct { + struct crypto_cipher *child; + struct vmac_ctx __vmac_ctx; +} vmac_ctx_t; + +#endif /* __CRYPTO_VMAC_H */ -- To unsubscribe from this list: send the line "unsubscribe linux-crypto" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html