
Device mapper io stacks are configured in bottom-up fashion. Target driver
devices are stacked by referencing a lower level mapped device as a target
device of a higher level mapped device. Since a single mapped device may map
to one or more target devices, each of which may themselves be a mapped
device, a device mapper io stack may be more accurately viewed as an inverted
device tree with a single mapped device as the top or root node of the inverted
tree. The leaf nodes of the tree are the only target devices which are not device
mapper managed devices. The root node is only a mapped device. Every non-
root, nonleaf node is both a mapped and target device.
The minimum device tree consists of a single mapped device and a single target
device. A device tree need not be balanced as there may be device branches
which are deeper than others. The depth of the tree may be viewed as the tree
branch which has the maximum number of transitions from the root mapped
device to leaf node target device. There are no design limits on either the depth
or breadth of a device tree. Although each target device at each level of a device
mapper tree is visible and accessible outside the scope of the device mapper
framework, concurrent open of a target device for other purposes requiring its
exclusive use such as is required for partition management and file system
mounting is prohibited. Target devices are exclusively recognized or claimed by
a mapped device by being referenced as a target of a mapped device. That is, a
target device may only be used as a target of a single mapped device. This
restriction prohibits both the inclusion of the same target device within multiple
device trees and multiple references to the same target device within the same
device tree, that is, loops within a device tree are not allowed.
It is strictly the responsibility of user space components associated with each
target driver
To

 • discover the set of associated target devices associated with each mapped
device managed by that driver

• create the mapping tables containing this configuration information
• pass the mapping table information into the kernel
• possibly save this mapping information in persistent storage for later retrieval.

The multipath path configurator fulfills this role for the multipathing target
driver. The lvm(8), dmraid(8), and dmsetup(8) commands perform these tasks
for the logical volume management, software raid, and the device encryption
target drivers respectively.
While the device mapper registers with the kernel as a block device driver,
target drivers in turn register callbacks with the device mapper for initializing
and terminating target device metadata; suspending and resuming io on a
mapped device; filtering io dispatch and io completion; and retrieving mapped

device configuration and status information. The device mapper also provides
key services, (e.g., io suspension/ resumption, bio cloning, and the propagation
of io resource restrictions), for use by all target drivers to facilitate the flow of
io dispatch and io completion events through the device mapper framework.
The device mapper framework is itself a component driver within the outermost
generic_make_request framework for block devices.
The generic_make_request framework also provides for stacking block device
filter drivers. Therefore, given this architecture, it should be at least
architecturally possible to stack device mapper drivers both above and below
multidisk drivers for the same target device. The device mapper processes all
read and write block io requests which pass through the block io subsystem’s
generic_make_request and/or submit_bio interfaces and is directed to a mapped
device. Architectural symmetry is achieved for io dispatch and io completion
handling since io completion handling within the device mapper framework is
done in the inverse order of io dispatch. All read/write bios are treated as
asynchronous io within all portions of the block io subsystem. This design
results in separate, asynchronous and inversely ordered code paths through both
the generic_make_request and the device mapper frameworks for both io
dispatch and completion processing. A major impact of this design is that it is
not necessary to process either an io dispatch or completion either immediately
or in the same context in which they are first seen.
Bio movement through a device mapper device tree may involve fan-out on bio
dispatch and fan-in on bio completion. As a bio is dispatched down the device
tree at each mapped device, one or more cloned copies of the bio are created
and sent to target devices. The same process is repeated at each level of the
device tree where a target device is also a mapped device. Therefore, assuming
a very wide and deep device tree, a single bio dispatched to a mapped device
can branch out to spawn a practically unbounded number of bios to be sent to a
practically unbounded number of target devices. Since bios are potentially
coalesced at the device at the bottom of the generic_make_request framework,
the io request(s) actually queued to one or more target devices at the bottom
may bear little relationship to the single bio initially sent to a mapped device at
the top. For bio completion, at each level of the device tree, the target driver
managing the set of target devices at that level consumes the completion for
each bio dispatched to one of its devices, and passes up a single bio completion
for the single bio dispatched to the mapped device.
This process repeats until the original bio submitted to the root mapped device
is completed. The device mapper dispatches bios recursively from top (root
node) to bottom (leaf node) through the tree of device mapper mapped and
target devices in process context. Each level of recursion moves down one level
of the device tree from the root mapped device to one or more leaf target nodes.
At each level, the device mapper clones a single bio to one or more bios

depending on target mapping information previously pushed into the kernel for
each mapped device in the io stack since a bio is not permitted to span multiple
map targets/segments. Also at each level, each cloned bio is passed to the map
callout of the target driver managing a mapped device. The target driver has the
option of

1. queuing the io internal to that driver to be serviced at a later time by that
driver,

2. redirecting the io to one or more different 0target devices and possibly a
different sector
on each of those target devices, or

3. returning an error status for the bio to the device mapper.

Both the first or third options stop the recursion through the device tree and the
generic_make_request framework for that matter.
Otherwise, a bio being directed to the first target device which is not managed
by the device mapper causes the bio to exit the device mapper framework,
although the bio continues recursing through the generic_make_request
framework until the bottom device is reached.
The device mapper processes bio completions recursively from a leaf device to
the root mapped device in soft interrupt context. At each level in a device tree,
bio completions are filtered by the device mapper as a result of redirecting the
bio completion callback at that level during bio dispatch. The device mapper
callout to the target driver responsible for servicing a mapped device is enabled
by associating a target_io structure with the bi_private field of a bio, also during
bio dispatch. In this fashion, each bio completion is serviced by the target driver
which dispatched the bio.
The device mapper supports a variety of push/pull interfaces to enhance
communication across the system call boundary. Each of these interfaces is
accessed from user space via the device mapper library which currently issues
ioctls to the device mapper character interface. The occurrence of target driver
derived io related events can be passed to user space via the device mapper
event mechanism. Target driver specific map contents and mapped device status
can be pulled from the kernel using device mapper messages. Typed messages
and status information are encoded as ASCII strings and decoded back to their
original form according dictated by their type.

