From: Fabio Checconi <fchecconi@xxxxxxxxx> BFQ is a proportional-share I/O scheduler, whose general structure, plus a lot of code, are borrowed from CFQ. - Each process doing I/O on a device is associated with a weight and a (bfq_)queue. - BFQ grants exclusive access to the device, for a while, to one queue (process) at a time, and implements this service model by associating every queue with a budget, measured in number of sectors. - After a queue is granted access to the device, the budget of the queue is decremented, on each request dispatch, by the size of the request. - The in-service queue is expired, i.e., its service is suspended, only if one of the following events occurs: 1) the queue finishes its budget, 2) the queue empties, 3) a "budget timeout" fires. - The budget timeout prevents processes doing random I/O from holding the device for too long and dramatically reducing throughput. - Actually, as in CFQ, a queue associated with a process issuing sync requests may not be expired immediately when it empties. In contrast, BFQ may idle the device for a short time interval, giving the process the chance to go on being served if it issues a new request in time. Device idling typically boosts the throughput on rotational devices, if processes do synchronous and sequential I/O. Besides, under BFQ, device idling is also instrumental in guaranteeing the desired throughput fraction to processes issuing sync requests (see [1] for details). - Queues are scheduled according to a variant of WF2Q+, named B-WF2Q+, and implemented using an augmented rb-tree to preserve an O(log N) overall complexity. See [1] for more details. B-WF2Q+ is also ready for hierarchical scheduling. However, for a cleaner logical breakdown, the code that enables and completes hierarchical support is provided in patch 4, which focuses exactly on this feature. - B-WF2Q+ guarantees a tight deviation with respect to an ideal, perfectly fair, and smooth service. In particular, B-WF2Q+ guarantees that each queue receives a fraction of the device throughput proportional to its weight, even if the throughput fluctuates, and regardless of: the device parameters, the current workload and the budgets assigned to the queue. - The last, budget-independence, property (although probably counterintuitive in the first place) is definitely beneficial, for the following reasons. - First, with any proportional-share scheduler, the maximum deviation with respect to an ideal service is proportional to the maximum budget (slice) assigned to queues. As a consequence, BFQ can keep this deviation tight not only because of the accurate service of B-WF2Q+, but also because BFQ *does not* need to assign a larger budget to a queue to let the queue receive a higher fraction of the device throughput. - Second, BFQ is free to choose, for every process (queue), the budget that best fits the needs of the process, or best leverages the I/O pattern of the process. In particular, BFQ updates queue budgets with a simple feedback-loop algorithm that allows a high throughput to be achieved, while still providing tight latency guarantees to time-sensitive applications. When the in-service queue expires, this algorithm computes the next budget of the queue so as to: - Let large budgets be eventually assigned to the queues associated with I/O-bound applications performing sequential I/O: in fact, the longer these applications are served once got access to the device, the higher the throughput is. - Let small budgets be eventually assigned to the queues associated with time-sensitive applications (which typically perform sporadic and short I/O), because, the smaller the budget assigned to a queue waiting for service is, the sooner B-WF2Q+ will serve that queue (Subsec 3.3 in [1]). - Weights can be assigned to processes only indirectly, through I/O priorities, and according to the relation: weight = IOPRIO_BE_NR - ioprio. The next two patches provide instead a cgroups interface through which weights can be assigned explicitly. - ioprio classes are served in strict priority order, i.e., lower-priority queues are not served as long as there are higher-priority queues. Among queues in the same class, the bandwidth is distributed in proportion to the weight of each queue. A very thin extra bandwidth is however guaranteed to the Idle class, to prevent it from starving. [1] P. Valente and M. Andreolini, "Improving Application Responsiveness with the BFQ Disk I/O Scheduler", Proceedings of the 5th Annual International Systems and Storage Conference (SYSTOR '12), June 2012. Slightly extended version: http://www.algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf Signed-off-by: Fabio Checconi <fchecconi@xxxxxxxxx> Signed-off-by: Paolo Valente <paolo.valente@xxxxxxxxxx> Signed-off-by: Arianna Avanzini <avanzini.arianna@xxxxxxxxx> --- block/Kconfig.iosched | 19 + block/Makefile | 1 + block/bfq-ioc.c | 34 + block/bfq-iosched.c | 2297 +++++++++++++++++++++++++++++++++++++++++++++++++ block/bfq-sched.c | 936 ++++++++++++++++++++ block/bfq.h | 467 ++++++++++ 6 files changed, 3754 insertions(+) create mode 100644 block/bfq-ioc.c create mode 100644 block/bfq-iosched.c create mode 100644 block/bfq-sched.c create mode 100644 block/bfq.h diff --git a/block/Kconfig.iosched b/block/Kconfig.iosched index 421bef9..8f98cc7 100644 --- a/block/Kconfig.iosched +++ b/block/Kconfig.iosched @@ -39,6 +39,15 @@ config CFQ_GROUP_IOSCHED ---help--- Enable group IO scheduling in CFQ. +config IOSCHED_BFQ + tristate "BFQ I/O scheduler" + default n + ---help--- + The BFQ I/O scheduler tries to distribute bandwidth among all + processes according to their weights. + It aims at distributing the bandwidth as desired, regardless + of the disk parameters and with any workload. + choice prompt "Default I/O scheduler" default DEFAULT_CFQ @@ -52,6 +61,15 @@ choice config DEFAULT_CFQ bool "CFQ" if IOSCHED_CFQ=y + config DEFAULT_BFQ + bool "BFQ" if IOSCHED_BFQ=y + help + Selects BFQ as the default I/O scheduler which will be + used by default for all block devices. + The BFQ I/O scheduler aims at distributing the bandwidth + as desired, regardless of the disk parameters and with + any workload. + config DEFAULT_NOOP bool "No-op" @@ -61,6 +79,7 @@ config DEFAULT_IOSCHED string default "deadline" if DEFAULT_DEADLINE default "cfq" if DEFAULT_CFQ + default "bfq" if DEFAULT_BFQ default "noop" if DEFAULT_NOOP endmenu diff --git a/block/Makefile b/block/Makefile index 20645e8..cbd83fb 100644 --- a/block/Makefile +++ b/block/Makefile @@ -16,6 +16,7 @@ obj-$(CONFIG_BLK_DEV_THROTTLING) += blk-throttle.o obj-$(CONFIG_IOSCHED_NOOP) += noop-iosched.o obj-$(CONFIG_IOSCHED_DEADLINE) += deadline-iosched.o obj-$(CONFIG_IOSCHED_CFQ) += cfq-iosched.o +obj-$(CONFIG_IOSCHED_BFQ) += bfq-iosched.o obj-$(CONFIG_BLOCK_COMPAT) += compat_ioctl.o obj-$(CONFIG_BLK_DEV_INTEGRITY) += blk-integrity.o diff --git a/block/bfq-ioc.c b/block/bfq-ioc.c new file mode 100644 index 0000000..adfb5a1 --- /dev/null +++ b/block/bfq-ioc.c @@ -0,0 +1,34 @@ +/* + * BFQ: I/O context handling. + * + * Based on ideas and code from CFQ: + * Copyright (C) 2003 Jens Axboe <axboe@xxxxxxxxx> + * + * Copyright (C) 2008 Fabio Checconi <fabio@xxxxxxxxxxxxxxxx> + * Paolo Valente <paolo.valente@xxxxxxxxxx> + */ + +/** + * icq_to_bic - convert iocontext queue structure to bfq_io_cq. + * @icq: the iocontext queue. + */ +static inline struct bfq_io_cq *icq_to_bic(struct io_cq *icq) +{ + /* bic->icq is the first member, %NULL will convert to %NULL */ + return container_of(icq, struct bfq_io_cq, icq); +} + +/** + * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. + * @bfqd: the lookup key. + * @ioc: the io_context of the process doing I/O. + * + * Queue lock must be held. + */ +static inline struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd, + struct io_context *ioc) +{ + if (ioc) + return icq_to_bic(ioc_lookup_icq(ioc, bfqd->queue)); + return NULL; +} diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c new file mode 100644 index 0000000..01a98be --- /dev/null +++ b/block/bfq-iosched.c @@ -0,0 +1,2297 @@ +/* + * Budget Fair Queueing (BFQ) disk scheduler. + * + * Based on ideas and code from CFQ: + * Copyright (C) 2003 Jens Axboe <axboe@xxxxxxxxx> + * + * Copyright (C) 2008 Fabio Checconi <fabio@xxxxxxxxxxxxxxxx> + * Paolo Valente <paolo.valente@xxxxxxxxxx> + * + * Licensed under the GPL-2 as detailed in the accompanying COPYING.BFQ + * file. + * + * BFQ is a proportional-share storage-I/O scheduling algorithm based on + * the slice-by-slice service scheme of CFQ. But BFQ assigns budgets, + * measured in number of sectors, to processes instead of time slices. The + * device is not granted to the in-service process for a given time slice, + * but until it has exhausted its assigned budget. This change from the time + * to the service domain allows BFQ to distribute the device throughput + * among processes as desired, without any distortion due to ZBR, workload + * fluctuations or other factors. BFQ uses an ad hoc internal scheduler, + * called B-WF2Q+, to schedule processes according to their budgets. More + * precisely, BFQ schedules queues associated to processes. Thanks to the + * accurate policy of B-WF2Q+, BFQ can afford to assign high budgets to + * I/O-bound processes issuing sequential requests (to boost the + * throughput), and yet guarantee a relatively low latency to interactive + * applications. + * + * BFQ is described in [1], where also a reference to the initial, more + * theoretical paper on BFQ can be found. The interested reader can find + * in the latter paper full details on the main algorithm, as well as + * formulas of the guarantees and formal proofs of all the properties. + * With respect to the version of BFQ presented in these papers, this + * implementation adds a hierarchical extension based on H-WF2Q+. + * + * B-WF2Q+ is based on WF2Q+, that is described in [2], together with + * H-WF2Q+, while the augmented tree used to implement B-WF2Q+ with O(log N) + * complexity derives from the one introduced with EEVDF in [3]. + * + * [1] P. Valente and M. Andreolini, ``Improving Application Responsiveness + * with the BFQ Disk I/O Scheduler'', + * Proceedings of the 5th Annual International Systems and Storage + * Conference (SYSTOR '12), June 2012. + * + * http://algogroup.unimo.it/people/paolo/disk_sched/bf1-v1-suite-results.pdf + * + * [2] Jon C.R. Bennett and H. Zhang, ``Hierarchical Packet Fair Queueing + * Algorithms,'' IEEE/ACM Transactions on Networking, 5(5):675-689, + * Oct 1997. + * + * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz + * + * [3] I. Stoica and H. Abdel-Wahab, ``Earliest Eligible Virtual Deadline + * First: A Flexible and Accurate Mechanism for Proportional Share + * Resource Allocation,'' technical report. + * + * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf + */ +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/blkdev.h> +#include <linux/cgroup.h> +#include <linux/elevator.h> +#include <linux/jiffies.h> +#include <linux/rbtree.h> +#include <linux/ioprio.h> +#include "bfq.h" +#include "blk.h" + +/* + * Array of async queues for all the processes, one queue + * per ioprio value per ioprio_class. + */ +struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR]; +/* Async queue for the idle class (ioprio is ignored) */ +struct bfq_queue *async_idle_bfqq; + +/* Max number of dispatches in one round of service. */ +static const int bfq_quantum = 4; + +/* Expiration time of sync (0) and async (1) requests, in jiffies. */ +static const int bfq_fifo_expire[2] = { HZ / 4, HZ / 8 }; + +/* Maximum backwards seek, in KiB. */ +static const int bfq_back_max = 16 * 1024; + +/* Penalty of a backwards seek, in number of sectors. */ +static const int bfq_back_penalty = 2; + +/* Idling period duration, in jiffies. */ +static int bfq_slice_idle = HZ / 125; + +/* Default maximum budget values, in sectors and number of requests. */ +static const int bfq_default_max_budget = 16 * 1024; +static const int bfq_max_budget_async_rq = 4; + +/* Default timeout values, in jiffies, approximating CFQ defaults. */ +static const int bfq_timeout_sync = HZ / 8; +static int bfq_timeout_async = HZ / 25; + +struct kmem_cache *bfq_pool; + +/* Below this threshold (in ms), we consider thinktime immediate. */ +#define BFQ_MIN_TT 2 + +/* hw_tag detection: parallel requests threshold and min samples needed. */ +#define BFQ_HW_QUEUE_THRESHOLD 4 +#define BFQ_HW_QUEUE_SAMPLES 32 + +#define BFQQ_SEEK_THR (sector_t)(8 * 1024) +#define BFQQ_SEEKY(bfqq) ((bfqq)->seek_mean > BFQQ_SEEK_THR) + +/* Budget feedback step. */ +#define BFQ_BUDGET_STEP 128 + +/* Min samples used for peak rate estimation (for autotuning). */ +#define BFQ_PEAK_RATE_SAMPLES 32 + +/* Shift used for peak rate fixed precision calculations. */ +#define BFQ_RATE_SHIFT 16 + +#define BFQ_SERVICE_TREE_INIT ((struct bfq_service_tree) \ + { RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 }) + +#define RQ_BIC(rq) ((struct bfq_io_cq *) (rq)->elv.priv[0]) +#define RQ_BFQQ(rq) ((rq)->elv.priv[1]) + +static inline void bfq_schedule_dispatch(struct bfq_data *bfqd); + +#include "bfq-ioc.c" +#include "bfq-sched.c" + +#define bfq_class_idle(bfqq) ((bfqq)->entity.ioprio_class ==\ + IOPRIO_CLASS_IDLE) +#define bfq_class_rt(bfqq) ((bfqq)->entity.ioprio_class ==\ + IOPRIO_CLASS_RT) + +#define bfq_sample_valid(samples) ((samples) > 80) + +/* + * We regard a request as SYNC, if either it's a read or has the SYNC bit + * set (in which case it could also be a direct WRITE). + */ +static inline int bfq_bio_sync(struct bio *bio) +{ + if (bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC)) + return 1; + + return 0; +} + +/* + * Scheduler run of queue, if there are requests pending and no one in the + * driver that will restart queueing. + */ +static inline void bfq_schedule_dispatch(struct bfq_data *bfqd) +{ + if (bfqd->queued != 0) { + bfq_log(bfqd, "schedule dispatch"); + kblockd_schedule_work(bfqd->queue, &bfqd->unplug_work); + } +} + +/* + * Lifted from AS - choose which of rq1 and rq2 that is best served now. + * We choose the request that is closesr to the head right now. Distance + * behind the head is penalized and only allowed to a certain extent. + */ +static struct request *bfq_choose_req(struct bfq_data *bfqd, + struct request *rq1, + struct request *rq2, + sector_t last) +{ + sector_t s1, s2, d1 = 0, d2 = 0; + unsigned long back_max; +#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ +#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ + unsigned wrap = 0; /* bit mask: requests behind the disk head? */ + + if (rq1 == NULL || rq1 == rq2) + return rq2; + if (rq2 == NULL) + return rq1; + + if (rq_is_sync(rq1) && !rq_is_sync(rq2)) + return rq1; + else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) + return rq2; + if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) + return rq1; + else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) + return rq2; + + s1 = blk_rq_pos(rq1); + s2 = blk_rq_pos(rq2); + + /* + * By definition, 1KiB is 2 sectors. + */ + back_max = bfqd->bfq_back_max * 2; + + /* + * Strict one way elevator _except_ in the case where we allow + * short backward seeks which are biased as twice the cost of a + * similar forward seek. + */ + if (s1 >= last) + d1 = s1 - last; + else if (s1 + back_max >= last) + d1 = (last - s1) * bfqd->bfq_back_penalty; + else + wrap |= BFQ_RQ1_WRAP; + + if (s2 >= last) + d2 = s2 - last; + else if (s2 + back_max >= last) + d2 = (last - s2) * bfqd->bfq_back_penalty; + else + wrap |= BFQ_RQ2_WRAP; + + /* Found required data */ + + /* + * By doing switch() on the bit mask "wrap" we avoid having to + * check two variables for all permutations: --> faster! + */ + switch (wrap) { + case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ + if (d1 < d2) + return rq1; + else if (d2 < d1) + return rq2; + else { + if (s1 >= s2) + return rq1; + else + return rq2; + } + + case BFQ_RQ2_WRAP: + return rq1; + case BFQ_RQ1_WRAP: + return rq2; + case (BFQ_RQ1_WRAP|BFQ_RQ2_WRAP): /* both rqs wrapped */ + default: + /* + * Since both rqs are wrapped, + * start with the one that's further behind head + * (--> only *one* back seek required), + * since back seek takes more time than forward. + */ + if (s1 <= s2) + return rq1; + else + return rq2; + } +} + +static struct request *bfq_find_next_rq(struct bfq_data *bfqd, + struct bfq_queue *bfqq, + struct request *last) +{ + struct rb_node *rbnext = rb_next(&last->rb_node); + struct rb_node *rbprev = rb_prev(&last->rb_node); + struct request *next = NULL, *prev = NULL; + + if (rbprev != NULL) + prev = rb_entry_rq(rbprev); + + if (rbnext != NULL) + next = rb_entry_rq(rbnext); + else { + rbnext = rb_first(&bfqq->sort_list); + if (rbnext && rbnext != &last->rb_node) + next = rb_entry_rq(rbnext); + } + + return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); +} + +static inline unsigned long bfq_serv_to_charge(struct request *rq, + struct bfq_queue *bfqq) +{ + return blk_rq_sectors(rq); +} + +/** + * bfq_updated_next_req - update the queue after a new next_rq selection. + * @bfqd: the device data the queue belongs to. + * @bfqq: the queue to update. + * + * If the first request of a queue changes we make sure that the queue + * has enough budget to serve at least its first request (if the + * request has grown). We do this because if the queue has not enough + * budget for its first request, it has to go through two dispatch + * rounds to actually get it dispatched. + */ +static void bfq_updated_next_req(struct bfq_data *bfqd, + struct bfq_queue *bfqq) +{ + struct bfq_entity *entity = &bfqq->entity; + struct request *next_rq = bfqq->next_rq; + unsigned long new_budget; + + if (next_rq == NULL) + return; + + if (bfqq == bfqd->in_service_queue) + /* + * In order not to break guarantees, budgets cannot be + * changed after an entity has been selected. + */ + return; + + new_budget = max_t(unsigned long, bfqq->max_budget, + bfq_serv_to_charge(next_rq, bfqq)); + if (entity->budget != new_budget) { + entity->budget = new_budget; + bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", + new_budget); + bfq_activate_bfqq(bfqd, bfqq); + } +} + +static void bfq_add_request(struct request *rq) +{ + struct bfq_queue *bfqq = RQ_BFQQ(rq); + struct bfq_entity *entity = &bfqq->entity; + struct bfq_data *bfqd = bfqq->bfqd; + struct request *next_rq, *prev; + + bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); + bfqq->queued[rq_is_sync(rq)]++; + bfqd->queued++; + + elv_rb_add(&bfqq->sort_list, rq); + + /* + * Check if this request is a better next-serve candidate. + */ + prev = bfqq->next_rq; + next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); + bfqq->next_rq = next_rq; + + if (!bfq_bfqq_busy(bfqq)) { + entity->budget = max_t(unsigned long, bfqq->max_budget, + bfq_serv_to_charge(next_rq, bfqq)); + bfq_add_bfqq_busy(bfqd, bfqq); + } else { + if (prev != bfqq->next_rq) + bfq_updated_next_req(bfqd, bfqq); + } +} + +static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, + struct bio *bio) +{ + struct task_struct *tsk = current; + struct bfq_io_cq *bic; + struct bfq_queue *bfqq; + + bic = bfq_bic_lookup(bfqd, tsk->io_context); + if (bic == NULL) + return NULL; + + bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio)); + if (bfqq != NULL) + return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); + + return NULL; +} + +static void bfq_activate_request(struct request_queue *q, struct request *rq) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + + bfqd->rq_in_driver++; + bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); + bfq_log(bfqd, "activate_request: new bfqd->last_position %llu", + (long long unsigned)bfqd->last_position); +} + +static inline void bfq_deactivate_request(struct request_queue *q, + struct request *rq) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + + bfqd->rq_in_driver--; +} + +static void bfq_remove_request(struct request *rq) +{ + struct bfq_queue *bfqq = RQ_BFQQ(rq); + struct bfq_data *bfqd = bfqq->bfqd; + const int sync = rq_is_sync(rq); + + if (bfqq->next_rq == rq) { + bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); + bfq_updated_next_req(bfqd, bfqq); + } + + list_del_init(&rq->queuelist); + bfqq->queued[sync]--; + bfqd->queued--; + elv_rb_del(&bfqq->sort_list, rq); + + if (RB_EMPTY_ROOT(&bfqq->sort_list)) { + if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) + bfq_del_bfqq_busy(bfqd, bfqq, 1); + } + + if (rq->cmd_flags & REQ_META) + bfqq->meta_pending--; +} + +static int bfq_merge(struct request_queue *q, struct request **req, + struct bio *bio) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct request *__rq; + + __rq = bfq_find_rq_fmerge(bfqd, bio); + if (__rq != NULL && elv_rq_merge_ok(__rq, bio)) { + *req = __rq; + return ELEVATOR_FRONT_MERGE; + } + + return ELEVATOR_NO_MERGE; +} + +static void bfq_merged_request(struct request_queue *q, struct request *req, + int type) +{ + if (type == ELEVATOR_FRONT_MERGE && + rb_prev(&req->rb_node) && + blk_rq_pos(req) < + blk_rq_pos(container_of(rb_prev(&req->rb_node), + struct request, rb_node))) { + struct bfq_queue *bfqq = RQ_BFQQ(req); + struct bfq_data *bfqd = bfqq->bfqd; + struct request *prev, *next_rq; + + /* Reposition request in its sort_list */ + elv_rb_del(&bfqq->sort_list, req); + elv_rb_add(&bfqq->sort_list, req); + /* Choose next request to be served for bfqq */ + prev = bfqq->next_rq; + next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, + bfqd->last_position); + bfqq->next_rq = next_rq; + /* + * If next_rq changes, update the queue's budget to fit + * the new request. + */ + if (prev != bfqq->next_rq) + bfq_updated_next_req(bfqd, bfqq); + } +} + +static void bfq_merged_requests(struct request_queue *q, struct request *rq, + struct request *next) +{ + struct bfq_queue *bfqq = RQ_BFQQ(rq); + + /* + * Reposition in fifo if next is older than rq. + */ + if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && + time_before(next->fifo_time, rq->fifo_time)) { + list_move(&rq->queuelist, &next->queuelist); + rq->fifo_time = next->fifo_time; + } + + if (bfqq->next_rq == next) + bfqq->next_rq = rq; + + bfq_remove_request(next); +} + +static int bfq_allow_merge(struct request_queue *q, struct request *rq, + struct bio *bio) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct bfq_io_cq *bic; + struct bfq_queue *bfqq; + + /* + * Disallow merge of a sync bio into an async request. + */ + if (bfq_bio_sync(bio) && !rq_is_sync(rq)) + return 0; + + /* + * Lookup the bfqq that this bio will be queued with. Allow + * merge only if rq is queued there. + * Queue lock is held here. + */ + bic = bfq_bic_lookup(bfqd, current->io_context); + if (bic == NULL) + return 0; + + bfqq = bic_to_bfqq(bic, bfq_bio_sync(bio)); + return bfqq == RQ_BFQQ(rq); +} + +static void __bfq_set_in_service_queue(struct bfq_data *bfqd, + struct bfq_queue *bfqq) +{ + if (bfqq != NULL) { + bfq_mark_bfqq_must_alloc(bfqq); + bfq_mark_bfqq_budget_new(bfqq); + bfq_clear_bfqq_fifo_expire(bfqq); + + bfqd->budgets_assigned = (bfqd->budgets_assigned*7 + 256) / 8; + + bfq_log_bfqq(bfqd, bfqq, + "set_in_service_queue, cur-budget = %lu", + bfqq->entity.budget); + } + + bfqd->in_service_queue = bfqq; +} + +/* + * Get and set a new queue for service. + */ +static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) +{ + struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); + + __bfq_set_in_service_queue(bfqd, bfqq); + return bfqq; +} + +/* + * If enough samples have been computed, return the current max budget + * stored in bfqd, which is dynamically updated according to the + * estimated disk peak rate; otherwise return the default max budget + */ +static inline unsigned long bfq_max_budget(struct bfq_data *bfqd) +{ + if (bfqd->budgets_assigned < 194) + return bfq_default_max_budget; + else + return bfqd->bfq_max_budget; +} + + /* + * bfq_default_budget - return the default budget for @bfqq on @bfqd. + * @bfqd: the device descriptor. + * @bfqq: the queue to consider. + * + * We use 3/4 of the @bfqd maximum budget as the default value + * for the max_budget field of the queues. This lets the feedback + * mechanism to start from some middle ground, then the behavior + * of the process will drive the heuristics towards high values, if + * it behaves as a greedy sequential reader, or towards small values + * if it shows a more intermittent behavior. + */ +static unsigned long bfq_default_budget(struct bfq_data *bfqd, + struct bfq_queue *bfqq) +{ + unsigned long budget; + + /* + * When we need an estimate of the peak rate we need to avoid + * to give budgets that are too short due to previous measurements. + * So, in the first 10 assignments use a ``safe'' budget value. + */ + if (bfqd->budgets_assigned < 194 && bfqd->bfq_user_max_budget == 0) + budget = bfq_default_max_budget; + else + budget = bfqd->bfq_max_budget; + + return budget - budget / 4; +} + +/* + * Return min budget, which is a fraction of the current or default + * max budget (trying with 1/32) + */ +static inline unsigned long bfq_min_budget(struct bfq_data *bfqd) +{ + if (bfqd->budgets_assigned < 194) + return bfq_default_max_budget / 32; + else + return bfqd->bfq_max_budget / 32; +} + +static void bfq_arm_slice_timer(struct bfq_data *bfqd) +{ + struct bfq_queue *bfqq = bfqd->in_service_queue; + struct bfq_io_cq *bic; + unsigned long sl; + + /* Processes have exited, don't wait. */ + bic = bfqd->in_service_bic; + if (bic == NULL || atomic_read(&bic->icq.ioc->active_ref) == 0) + return; + + bfq_mark_bfqq_wait_request(bfqq); + + /* + * We don't want to idle for seeks, but we do want to allow + * fair distribution of slice time for a process doing back-to-back + * seeks. So allow a little bit of time for him to submit a new rq. + */ + sl = bfqd->bfq_slice_idle; + /* + * Grant only minimum idle time if the queue has been seeky for long + * enough. + */ + if (bfq_sample_valid(bfqq->seek_samples) && BFQQ_SEEKY(bfqq)) + sl = min(sl, msecs_to_jiffies(BFQ_MIN_TT)); + bfqd->last_idling_start = ktime_get(); + mod_timer(&bfqd->idle_slice_timer, jiffies + sl); + bfq_log(bfqd, "arm idle: %u/%u ms", + jiffies_to_msecs(sl), jiffies_to_msecs(bfqd->bfq_slice_idle)); +} + +/* + * Set the maximum time for the in-service queue to consume its + * budget. This prevents seeky processes from lowering the disk + * throughput (always guaranteed with a time slice scheme as in CFQ). + */ +static void bfq_set_budget_timeout(struct bfq_data *bfqd) +{ + struct bfq_queue *bfqq = bfqd->in_service_queue; + unsigned int timeout_coeff = bfqq->entity.weight / + bfqq->entity.orig_weight; + + bfqd->last_budget_start = ktime_get(); + + bfq_clear_bfqq_budget_new(bfqq); + bfqq->budget_timeout = jiffies + + bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * timeout_coeff; + + bfq_log_bfqq(bfqd, bfqq, "set budget_timeout %u", + jiffies_to_msecs(bfqd->bfq_timeout[bfq_bfqq_sync(bfqq)] * + timeout_coeff)); +} + +/* + * Move request from internal lists to the request queue dispatch list. + */ +static void bfq_dispatch_insert(struct request_queue *q, struct request *rq) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct bfq_queue *bfqq = RQ_BFQQ(rq); + + /* + * For consistency, the next instruction should have been executed + * after removing the request from the queue and dispatching it. + * We execute instead this instruction before bfq_remove_request() + * (and hence introduce a temporary inconsistency), for efficiency. + * In fact, in a forced_dispatch, this prevents two counters related + * to bfqq->dispatched to risk to be uselessly decremented if bfqq + * is not in service, and then to be incremented again after + * incrementing bfqq->dispatched. + */ + bfqq->dispatched++; + bfq_remove_request(rq); + elv_dispatch_sort(q, rq); + + if (bfq_bfqq_sync(bfqq)) + bfqd->sync_flight++; +} + +/* + * Return expired entry, or NULL to just start from scratch in rbtree. + */ +static struct request *bfq_check_fifo(struct bfq_queue *bfqq) +{ + struct request *rq = NULL; + + if (bfq_bfqq_fifo_expire(bfqq)) + return NULL; + + bfq_mark_bfqq_fifo_expire(bfqq); + + if (list_empty(&bfqq->fifo)) + return NULL; + + rq = rq_entry_fifo(bfqq->fifo.next); + + if (time_before(jiffies, rq->fifo_time)) + return NULL; + + return rq; +} + +static inline unsigned long bfq_bfqq_budget_left(struct bfq_queue *bfqq) +{ + struct bfq_entity *entity = &bfqq->entity; + return entity->budget - entity->service; +} + +static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq) +{ + __bfq_bfqd_reset_in_service(bfqd); + + if (RB_EMPTY_ROOT(&bfqq->sort_list)) + bfq_del_bfqq_busy(bfqd, bfqq, 1); + else + bfq_activate_bfqq(bfqd, bfqq); +} + +/** + * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. + * @bfqd: device data. + * @bfqq: queue to update. + * @reason: reason for expiration. + * + * Handle the feedback on @bfqq budget. See the body for detailed + * comments. + */ +static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, + struct bfq_queue *bfqq, + enum bfqq_expiration reason) +{ + struct request *next_rq; + unsigned long budget, min_budget; + + budget = bfqq->max_budget; + min_budget = bfq_min_budget(bfqd); + + bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %lu, budg left %lu", + bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); + bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %lu, min budg %lu", + budget, bfq_min_budget(bfqd)); + bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", + bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); + + if (bfq_bfqq_sync(bfqq)) { + switch (reason) { + /* + * Caveat: in all the following cases we trade latency + * for throughput. + */ + case BFQ_BFQQ_TOO_IDLE: + if (budget > min_budget + BFQ_BUDGET_STEP) + budget -= BFQ_BUDGET_STEP; + else + budget = min_budget; + break; + case BFQ_BFQQ_BUDGET_TIMEOUT: + budget = bfq_default_budget(bfqd, bfqq); + break; + case BFQ_BFQQ_BUDGET_EXHAUSTED: + /* + * The process still has backlog, and did not + * let either the budget timeout or the disk + * idling timeout expire. Hence it is not + * seeky, has a short thinktime and may be + * happy with a higher budget too. So + * definitely increase the budget of this good + * candidate to boost the disk throughput. + */ + budget = min(budget + 8 * BFQ_BUDGET_STEP, + bfqd->bfq_max_budget); + break; + case BFQ_BFQQ_NO_MORE_REQUESTS: + /* + * Leave the budget unchanged. + */ + default: + return; + } + } else /* async queue */ + /* async queues get always the maximum possible budget + * (their ability to dispatch is limited by + * @bfqd->bfq_max_budget_async_rq). + */ + budget = bfqd->bfq_max_budget; + + bfqq->max_budget = budget; + + if (bfqd->budgets_assigned >= 194 && bfqd->bfq_user_max_budget == 0 && + bfqq->max_budget > bfqd->bfq_max_budget) + bfqq->max_budget = bfqd->bfq_max_budget; + + /* + * Make sure that we have enough budget for the next request. + * Since the finish time of the bfqq must be kept in sync with + * the budget, be sure to call __bfq_bfqq_expire() after the + * update. + */ + next_rq = bfqq->next_rq; + if (next_rq != NULL) + bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, + bfq_serv_to_charge(next_rq, bfqq)); + else + bfqq->entity.budget = bfqq->max_budget; + + bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %lu", + next_rq != NULL ? blk_rq_sectors(next_rq) : 0, + bfqq->entity.budget); +} + +static unsigned long bfq_calc_max_budget(u64 peak_rate, u64 timeout) +{ + unsigned long max_budget; + + /* + * The max_budget calculated when autotuning is equal to the + * amount of sectors transfered in timeout_sync at the + * estimated peak rate. + */ + max_budget = (unsigned long)(peak_rate * 1000 * + timeout >> BFQ_RATE_SHIFT); + + return max_budget; +} + +/* + * In addition to updating the peak rate, checks whether the process + * is "slow", and returns 1 if so. This slow flag is used, in addition + * to the budget timeout, to reduce the amount of service provided to + * seeky processes, and hence reduce their chances to lower the + * throughput. See the code for more details. + */ +static int bfq_update_peak_rate(struct bfq_data *bfqd, struct bfq_queue *bfqq, + int compensate) +{ + u64 bw, usecs, expected, timeout; + ktime_t delta; + int update = 0; + + if (!bfq_bfqq_sync(bfqq) || bfq_bfqq_budget_new(bfqq)) + return 0; + + if (compensate) + delta = bfqd->last_idling_start; + else + delta = ktime_get(); + delta = ktime_sub(delta, bfqd->last_budget_start); + usecs = ktime_to_us(delta); + + /* Don't trust short/unrealistic values. */ + if (usecs < 100 || usecs >= LONG_MAX) + return 0; + + /* + * Calculate the bandwidth for the last slice. We use a 64 bit + * value to store the peak rate, in sectors per usec in fixed + * point math. We do so to have enough precision in the estimate + * and to avoid overflows. + */ + bw = (u64)bfqq->entity.service << BFQ_RATE_SHIFT; + do_div(bw, (unsigned long)usecs); + + timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]); + + /* + * Use only long (> 20ms) intervals to filter out spikes for + * the peak rate estimation. + */ + if (usecs > 20000) { + if (bw > bfqd->peak_rate) { + bfqd->peak_rate = bw; + update = 1; + bfq_log(bfqd, "new peak_rate=%llu", bw); + } + + update |= bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES - 1; + + if (bfqd->peak_rate_samples < BFQ_PEAK_RATE_SAMPLES) + bfqd->peak_rate_samples++; + + if (bfqd->peak_rate_samples == BFQ_PEAK_RATE_SAMPLES && + update && bfqd->bfq_user_max_budget == 0) { + bfqd->bfq_max_budget = + bfq_calc_max_budget(bfqd->peak_rate, + timeout); + bfq_log(bfqd, "new max_budget=%lu", + bfqd->bfq_max_budget); + } + } + + /* + * A process is considered ``slow'' (i.e., seeky, so that we + * cannot treat it fairly in the service domain, as it would + * slow down too much the other processes) if, when a slice + * ends for whatever reason, it has received service at a + * rate that would not be high enough to complete the budget + * before the budget timeout expiration. + */ + expected = bw * 1000 * timeout >> BFQ_RATE_SHIFT; + + /* + * Caveat: processes doing IO in the slower disk zones will + * tend to be slow(er) even if not seeky. And the estimated + * peak rate will actually be an average over the disk + * surface. Hence, to not be too harsh with unlucky processes, + * we keep a budget/3 margin of safety before declaring a + * process slow. + */ + return expected > (4 * bfqq->entity.budget) / 3; +} + +/** + * bfq_bfqq_expire - expire a queue. + * @bfqd: device owning the queue. + * @bfqq: the queue to expire. + * @compensate: if true, compensate for the time spent idling. + * @reason: the reason causing the expiration. + * + * + * If the process associated to the queue is slow (i.e., seeky), or in + * case of budget timeout, or, finally, if it is async, we + * artificially charge it an entire budget (independently of the + * actual service it received). As a consequence, the queue will get + * higher timestamps than the correct ones upon reactivation, and + * hence it will be rescheduled as if it had received more service + * than what it actually received. In the end, this class of processes + * will receive less service in proportion to how slowly they consume + * their budgets (and hence how seriously they tend to lower the + * throughput). + * + * In contrast, when a queue expires because it has been idling for + * too much or because it exhausted its budget, we do not touch the + * amount of service it has received. Hence when the queue will be + * reactivated and its timestamps updated, the latter will be in sync + * with the actual service received by the queue until expiration. + * + * Charging a full budget to the first type of queues and the exact + * service to the others has the effect of using the WF2Q+ policy to + * schedule the former on a timeslice basis, without violating the + * service domain guarantees of the latter. + */ +static void bfq_bfqq_expire(struct bfq_data *bfqd, + struct bfq_queue *bfqq, + int compensate, + enum bfqq_expiration reason) +{ + int slow; + + /* Update disk peak rate for autotuning and check whether the + * process is slow (see bfq_update_peak_rate). + */ + slow = bfq_update_peak_rate(bfqd, bfqq, compensate); + + /* + * As above explained, 'punish' slow (i.e., seeky), timed-out + * and async queues, to favor sequential sync workloads. + */ + if (slow || reason == BFQ_BFQQ_BUDGET_TIMEOUT) + bfq_bfqq_charge_full_budget(bfqq); + + bfq_log_bfqq(bfqd, bfqq, + "expire (%d, slow %d, num_disp %d, idle_win %d)", reason, + slow, bfqq->dispatched, bfq_bfqq_idle_window(bfqq)); + + /* + * Increase, decrease or leave budget unchanged according to + * reason. + */ + __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); + __bfq_bfqq_expire(bfqd, bfqq); +} + +/* + * Budget timeout is not implemented through a dedicated timer, but + * just checked on request arrivals and completions, as well as on + * idle timer expirations. + */ +static int bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) +{ + if (bfq_bfqq_budget_new(bfqq) || + time_before(jiffies, bfqq->budget_timeout)) + return 0; + return 1; +} + +/* + * If we expire a queue that is waiting for the arrival of a new + * request, we may prevent the fictitious timestamp back-shifting that + * allows the guarantees of the queue to be preserved (see [1] for + * this tricky aspect). Hence we return true only if this condition + * does not hold, or if the queue is slow enough to deserve only to be + * kicked off for preserving a high throughput. +*/ +static inline int bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) +{ + bfq_log_bfqq(bfqq->bfqd, bfqq, + "may_budget_timeout: wait_request %d left %d timeout %d", + bfq_bfqq_wait_request(bfqq), + bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, + bfq_bfqq_budget_timeout(bfqq)); + + return (!bfq_bfqq_wait_request(bfqq) || + bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) + && + bfq_bfqq_budget_timeout(bfqq); +} + +/* + * Device idling is allowed only for sync queues that have a non-null + * idle window. + */ +static inline bool bfq_bfqq_must_not_expire(struct bfq_queue *bfqq) +{ + return bfq_bfqq_sync(bfqq) && bfq_bfqq_idle_window(bfqq); +} + +/* + * If the in-service queue is empty, but it is sync and the queue has its + * idle window set (in this case, waiting for a new request for the queue + * is likely to boost the throughput), then: + * 1) the queue must remain in service and cannot be expired, and + * 2) the disk must be idled to wait for the possible arrival of a new + * request for the queue. + */ +static inline bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) +{ + struct bfq_data *bfqd = bfqq->bfqd; + + return RB_EMPTY_ROOT(&bfqq->sort_list) && bfqd->bfq_slice_idle != 0 && + bfq_bfqq_must_not_expire(bfqq); +} + +/* + * Select a queue for service. If we have a current queue in service, + * check whether to continue servicing it, or retrieve and set a new one. + */ +static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) +{ + struct bfq_queue *bfqq; + struct request *next_rq; + enum bfqq_expiration reason = BFQ_BFQQ_BUDGET_TIMEOUT; + + bfqq = bfqd->in_service_queue; + if (bfqq == NULL) + goto new_queue; + + bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); + + if (bfq_may_expire_for_budg_timeout(bfqq) && + !timer_pending(&bfqd->idle_slice_timer) && + !bfq_bfqq_must_idle(bfqq)) + goto expire; + + next_rq = bfqq->next_rq; + /* + * If bfqq has requests queued and it has enough budget left to + * serve them, keep the queue, otherwise expire it. + */ + if (next_rq != NULL) { + if (bfq_serv_to_charge(next_rq, bfqq) > + bfq_bfqq_budget_left(bfqq)) { + reason = BFQ_BFQQ_BUDGET_EXHAUSTED; + goto expire; + } else { + /* + * The idle timer may be pending because we may + * not disable disk idling even when a new request + * arrives. + */ + if (timer_pending(&bfqd->idle_slice_timer)) { + /* + * If we get here: 1) at least a new request + * has arrived but we have not disabled the + * timer because the request was too small, + * 2) then the block layer has unplugged + * the device, causing the dispatch to be + * invoked. + * + * Since the device is unplugged, now the + * requests are probably large enough to + * provide a reasonable throughput. + * So we disable idling. + */ + bfq_clear_bfqq_wait_request(bfqq); + del_timer(&bfqd->idle_slice_timer); + } + goto keep_queue; + } + } + + /* + * No requests pending. If the in-service queue still has requests + * in flight (possibly waiting for a completion) or is idling for a + * new request, then keep it. + */ + if (timer_pending(&bfqd->idle_slice_timer) || + (bfqq->dispatched != 0 && bfq_bfqq_must_not_expire(bfqq))) { + bfqq = NULL; + goto keep_queue; + } + + reason = BFQ_BFQQ_NO_MORE_REQUESTS; +expire: + bfq_bfqq_expire(bfqd, bfqq, 0, reason); +new_queue: + bfqq = bfq_set_in_service_queue(bfqd); + bfq_log(bfqd, "select_queue: new queue %d returned", + bfqq != NULL ? bfqq->pid : 0); +keep_queue: + return bfqq; +} + +/* + * Dispatch one request from bfqq, moving it to the request queue + * dispatch list. + */ +static int bfq_dispatch_request(struct bfq_data *bfqd, + struct bfq_queue *bfqq) +{ + int dispatched = 0; + struct request *rq; + unsigned long service_to_charge; + + /* Follow expired path, else get first next available. */ + rq = bfq_check_fifo(bfqq); + if (rq == NULL) + rq = bfqq->next_rq; + service_to_charge = bfq_serv_to_charge(rq, bfqq); + + if (service_to_charge > bfq_bfqq_budget_left(bfqq)) { + /* + * This may happen if the next rq is chosen in fifo order + * instead of sector order. The budget is properly + * dimensioned to be always sufficient to serve the next + * request only if it is chosen in sector order. The reason + * is that it would be quite inefficient and little useful + * to always make sure that the budget is large enough to + * serve even the possible next rq in fifo order. + * In fact, requests are seldom served in fifo order. + * + * Expire the queue for budget exhaustion, and make sure + * that the next act_budget is enough to serve the next + * request, even if it comes from the fifo expired path. + */ + bfqq->next_rq = rq; + /* + * Since this dispatch is failed, make sure that + * a new one will be performed + */ + if (!bfqd->rq_in_driver) + bfq_schedule_dispatch(bfqd); + goto expire; + } + + /* Finally, insert request into driver dispatch list. */ + bfq_bfqq_served(bfqq, service_to_charge); + bfq_dispatch_insert(bfqd->queue, rq); + + bfq_log_bfqq(bfqd, bfqq, + "dispatched %u sec req (%llu), budg left %lu", + blk_rq_sectors(rq), + (long long unsigned)blk_rq_pos(rq), + bfq_bfqq_budget_left(bfqq)); + + dispatched++; + + if (bfqd->in_service_bic == NULL) { + atomic_long_inc(&RQ_BIC(rq)->icq.ioc->refcount); + bfqd->in_service_bic = RQ_BIC(rq); + } + + if (bfqd->busy_queues > 1 && ((!bfq_bfqq_sync(bfqq) && + dispatched >= bfqd->bfq_max_budget_async_rq) || + bfq_class_idle(bfqq))) + goto expire; + + return dispatched; + +expire: + bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_EXHAUSTED); + return dispatched; +} + +static int __bfq_forced_dispatch_bfqq(struct bfq_queue *bfqq) +{ + int dispatched = 0; + + while (bfqq->next_rq != NULL) { + bfq_dispatch_insert(bfqq->bfqd->queue, bfqq->next_rq); + dispatched++; + } + + return dispatched; +} + +/* + * Drain our current requests. + * Used for barriers and when switching io schedulers on-the-fly. + */ +static int bfq_forced_dispatch(struct bfq_data *bfqd) +{ + struct bfq_queue *bfqq, *n; + struct bfq_service_tree *st; + int dispatched = 0; + + bfqq = bfqd->in_service_queue; + if (bfqq != NULL) + __bfq_bfqq_expire(bfqd, bfqq); + + /* + * Loop through classes, and be careful to leave the scheduler + * in a consistent state, as feedback mechanisms and vtime + * updates cannot be disabled during the process. + */ + list_for_each_entry_safe(bfqq, n, &bfqd->active_list, bfqq_list) { + st = bfq_entity_service_tree(&bfqq->entity); + + dispatched += __bfq_forced_dispatch_bfqq(bfqq); + bfqq->max_budget = bfq_max_budget(bfqd); + + bfq_forget_idle(st); + } + + return dispatched; +} + +static int bfq_dispatch_requests(struct request_queue *q, int force) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct bfq_queue *bfqq; + int max_dispatch; + + bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues); + if (bfqd->busy_queues == 0) + return 0; + + if (unlikely(force)) + return bfq_forced_dispatch(bfqd); + + bfqq = bfq_select_queue(bfqd); + if (bfqq == NULL) + return 0; + + max_dispatch = bfqd->bfq_quantum; + if (bfq_class_idle(bfqq)) + max_dispatch = 1; + + if (!bfq_bfqq_sync(bfqq)) + max_dispatch = bfqd->bfq_max_budget_async_rq; + + if (bfqq->dispatched >= max_dispatch) { + if (bfqd->busy_queues > 1) + return 0; + if (bfqq->dispatched >= 4 * max_dispatch) + return 0; + } + + if (bfqd->sync_flight != 0 && !bfq_bfqq_sync(bfqq)) + return 0; + + bfq_clear_bfqq_wait_request(bfqq); + + if (!bfq_dispatch_request(bfqd, bfqq)) + return 0; + + bfq_log_bfqq(bfqd, bfqq, "dispatched one request of %d (max_disp %d)", + bfqq->pid, max_dispatch); + + return 1; +} + +/* + * Task holds one reference to the queue, dropped when task exits. Each rq + * in-flight on this queue also holds a reference, dropped when rq is freed. + * + * Queue lock must be held here. + */ +static void bfq_put_queue(struct bfq_queue *bfqq) +{ + struct bfq_data *bfqd = bfqq->bfqd; + + bfq_log_bfqq(bfqd, bfqq, "put_queue: %p %d", bfqq, + atomic_read(&bfqq->ref)); + if (!atomic_dec_and_test(&bfqq->ref)) + return; + + bfq_log_bfqq(bfqd, bfqq, "put_queue: %p freed", bfqq); + + kmem_cache_free(bfq_pool, bfqq); +} + +static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) +{ + if (bfqq == bfqd->in_service_queue) { + __bfq_bfqq_expire(bfqd, bfqq); + bfq_schedule_dispatch(bfqd); + } + + bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, + atomic_read(&bfqq->ref)); + + bfq_put_queue(bfqq); +} + +static inline void bfq_init_icq(struct io_cq *icq) +{ + icq_to_bic(icq)->ttime.last_end_request = jiffies; +} + +static void bfq_exit_icq(struct io_cq *icq) +{ + struct bfq_io_cq *bic = icq_to_bic(icq); + struct bfq_data *bfqd = bic_to_bfqd(bic); + + if (bic->bfqq[BLK_RW_ASYNC]) { + bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_ASYNC]); + bic->bfqq[BLK_RW_ASYNC] = NULL; + } + + if (bic->bfqq[BLK_RW_SYNC]) { + bfq_exit_bfqq(bfqd, bic->bfqq[BLK_RW_SYNC]); + bic->bfqq[BLK_RW_SYNC] = NULL; + } +} + +/* + * Update the entity prio values; note that the new values will not + * be used until the next (re)activation. + */ +static void bfq_init_prio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) +{ + struct task_struct *tsk = current; + int ioprio_class; + + if (!bfq_bfqq_prio_changed(bfqq)) + return; + + ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); + switch (ioprio_class) { + default: + dev_err(bfqq->bfqd->queue->backing_dev_info.dev, + "bfq: bad prio %x\n", ioprio_class); + case IOPRIO_CLASS_NONE: + /* + * No prio set, inherit CPU scheduling settings. + */ + bfqq->entity.new_ioprio = task_nice_ioprio(tsk); + bfqq->entity.new_ioprio_class = task_nice_ioclass(tsk); + break; + case IOPRIO_CLASS_RT: + bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); + bfqq->entity.new_ioprio_class = IOPRIO_CLASS_RT; + break; + case IOPRIO_CLASS_BE: + bfqq->entity.new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio); + bfqq->entity.new_ioprio_class = IOPRIO_CLASS_BE; + break; + case IOPRIO_CLASS_IDLE: + bfqq->entity.new_ioprio_class = IOPRIO_CLASS_IDLE; + bfqq->entity.new_ioprio = 7; + bfq_clear_bfqq_idle_window(bfqq); + break; + } + + bfqq->entity.ioprio_changed = 1; + + bfq_clear_bfqq_prio_changed(bfqq); +} + +static void bfq_changed_ioprio(struct bfq_io_cq *bic) +{ + struct bfq_data *bfqd; + struct bfq_queue *bfqq, *new_bfqq; + unsigned long uninitialized_var(flags); + int ioprio = bic->icq.ioc->ioprio; + + bfqd = bfq_get_bfqd_locked(&(bic->icq.q->elevator->elevator_data), + &flags); + /* + * This condition may trigger on a newly created bic, be sure to + * drop the lock before returning. + */ + if (unlikely(bfqd == NULL) || likely(bic->ioprio == ioprio)) + goto out; + + bfqq = bic->bfqq[BLK_RW_ASYNC]; + if (bfqq != NULL) { + new_bfqq = bfq_get_queue(bfqd, BLK_RW_ASYNC, bic, + GFP_ATOMIC); + if (new_bfqq != NULL) { + bic->bfqq[BLK_RW_ASYNC] = new_bfqq; + bfq_log_bfqq(bfqd, bfqq, + "changed_ioprio: bfqq %p %d", + bfqq, atomic_read(&bfqq->ref)); + bfq_put_queue(bfqq); + } + } + + bfqq = bic->bfqq[BLK_RW_SYNC]; + if (bfqq != NULL) + bfq_mark_bfqq_prio_changed(bfqq); + + bic->ioprio = ioprio; + +out: + bfq_put_bfqd_unlock(bfqd, &flags); +} + +static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, + pid_t pid, int is_sync) +{ + RB_CLEAR_NODE(&bfqq->entity.rb_node); + INIT_LIST_HEAD(&bfqq->fifo); + + atomic_set(&bfqq->ref, 0); + bfqq->bfqd = bfqd; + + bfq_mark_bfqq_prio_changed(bfqq); + + if (is_sync) { + if (!bfq_class_idle(bfqq)) + bfq_mark_bfqq_idle_window(bfqq); + bfq_mark_bfqq_sync(bfqq); + } + + /* Tentative initial value to trade off between thr and lat */ + bfqq->max_budget = bfq_default_budget(bfqd, bfqq); + bfqq->pid = pid; +} + +static struct bfq_queue *bfq_find_alloc_queue(struct bfq_data *bfqd, + int is_sync, + struct bfq_io_cq *bic, + gfp_t gfp_mask) +{ + struct bfq_queue *bfqq, *new_bfqq = NULL; + +retry: + /* bic always exists here */ + bfqq = bic_to_bfqq(bic, is_sync); + + /* + * Always try a new alloc if we fall back to the OOM bfqq + * originally, since it should just be a temporary situation. + */ + if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) { + bfqq = NULL; + if (new_bfqq != NULL) { + bfqq = new_bfqq; + new_bfqq = NULL; + } else if (gfp_mask & __GFP_WAIT) { + spin_unlock_irq(bfqd->queue->queue_lock); + new_bfqq = kmem_cache_alloc_node(bfq_pool, + gfp_mask | __GFP_ZERO, + bfqd->queue->node); + spin_lock_irq(bfqd->queue->queue_lock); + if (new_bfqq != NULL) + goto retry; + } else { + bfqq = kmem_cache_alloc_node(bfq_pool, + gfp_mask | __GFP_ZERO, + bfqd->queue->node); + } + + if (bfqq != NULL) { + bfq_init_bfqq(bfqd, bfqq, current->pid, is_sync); + bfq_log_bfqq(bfqd, bfqq, "allocated"); + } else { + bfqq = &bfqd->oom_bfqq; + bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); + } + + bfq_init_prio_data(bfqq, bic); + } + + if (new_bfqq != NULL) + kmem_cache_free(bfq_pool, new_bfqq); + + return bfqq; +} + +static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, + int ioprio_class, int ioprio) +{ + switch (ioprio_class) { + case IOPRIO_CLASS_RT: + return &async_bfqq[0][ioprio]; + case IOPRIO_CLASS_NONE: + ioprio = IOPRIO_NORM; + /* fall through */ + case IOPRIO_CLASS_BE: + return &async_bfqq[1][ioprio]; + case IOPRIO_CLASS_IDLE: + return &async_idle_bfqq; + default: + BUG(); + } +} + +static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, + int is_sync, struct bfq_io_cq *bic, + gfp_t gfp_mask) +{ + const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio); + const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); + struct bfq_queue **async_bfqq = NULL; + struct bfq_queue *bfqq = NULL; + + if (!is_sync) { + async_bfqq = bfq_async_queue_prio(bfqd, ioprio_class, ioprio); + bfqq = *async_bfqq; + } + + if (bfqq == NULL) + bfqq = bfq_find_alloc_queue(bfqd, is_sync, bic, gfp_mask); + + /* + * Pin the queue now that it's allocated, scheduler exit will + * prune it. + */ + if (!is_sync && *async_bfqq == NULL) { + atomic_inc(&bfqq->ref); + bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", + bfqq, atomic_read(&bfqq->ref)); + *async_bfqq = bfqq; + } + + atomic_inc(&bfqq->ref); + bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, + atomic_read(&bfqq->ref)); + return bfqq; +} + +static void bfq_update_io_thinktime(struct bfq_data *bfqd, + struct bfq_io_cq *bic) +{ + unsigned long elapsed = jiffies - bic->ttime.last_end_request; + unsigned long ttime = min(elapsed, 2UL * bfqd->bfq_slice_idle); + + bic->ttime.ttime_samples = (7*bic->ttime.ttime_samples + 256) / 8; + bic->ttime.ttime_total = (7*bic->ttime.ttime_total + 256*ttime) / 8; + bic->ttime.ttime_mean = (bic->ttime.ttime_total + 128) / + bic->ttime.ttime_samples; +} + +static void bfq_update_io_seektime(struct bfq_data *bfqd, + struct bfq_queue *bfqq, + struct request *rq) +{ + sector_t sdist; + u64 total; + + if (bfqq->last_request_pos < blk_rq_pos(rq)) + sdist = blk_rq_pos(rq) - bfqq->last_request_pos; + else + sdist = bfqq->last_request_pos - blk_rq_pos(rq); + + /* + * Don't allow the seek distance to get too large from the + * odd fragment, pagein, etc. + */ + if (bfqq->seek_samples == 0) /* first request, not really a seek */ + sdist = 0; + else if (bfqq->seek_samples <= 60) /* second & third seek */ + sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*1024); + else + sdist = min(sdist, (bfqq->seek_mean * 4) + 2*1024*64); + + bfqq->seek_samples = (7*bfqq->seek_samples + 256) / 8; + bfqq->seek_total = (7*bfqq->seek_total + (u64)256*sdist) / 8; + total = bfqq->seek_total + (bfqq->seek_samples/2); + do_div(total, bfqq->seek_samples); + bfqq->seek_mean = (sector_t)total; + + bfq_log_bfqq(bfqd, bfqq, "dist=%llu mean=%llu", (u64)sdist, + (u64)bfqq->seek_mean); +} + +/* + * Disable idle window if the process thinks too long or seeks so much that + * it doesn't matter. + */ +static void bfq_update_idle_window(struct bfq_data *bfqd, + struct bfq_queue *bfqq, + struct bfq_io_cq *bic) +{ + int enable_idle; + + /* Don't idle for async or idle io prio class. */ + if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq)) + return; + + enable_idle = bfq_bfqq_idle_window(bfqq); + + if (atomic_read(&bic->icq.ioc->active_ref) == 0 || + bfqd->bfq_slice_idle == 0 || + (bfqd->hw_tag && BFQQ_SEEKY(bfqq))) + enable_idle = 0; + else if (bfq_sample_valid(bic->ttime.ttime_samples)) { + if (bic->ttime.ttime_mean > bfqd->bfq_slice_idle) + enable_idle = 0; + else + enable_idle = 1; + } + bfq_log_bfqq(bfqd, bfqq, "update_idle_window: enable_idle %d", + enable_idle); + + if (enable_idle) + bfq_mark_bfqq_idle_window(bfqq); + else + bfq_clear_bfqq_idle_window(bfqq); +} + +/* + * Called when a new fs request (rq) is added to bfqq. Check if there's + * something we should do about it. + */ +static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, + struct request *rq) +{ + struct bfq_io_cq *bic = RQ_BIC(rq); + + if (rq->cmd_flags & REQ_META) + bfqq->meta_pending++; + + bfq_update_io_thinktime(bfqd, bic); + bfq_update_io_seektime(bfqd, bfqq, rq); + if (bfqq->entity.service > bfq_max_budget(bfqd) / 8 || + !BFQQ_SEEKY(bfqq)) + bfq_update_idle_window(bfqd, bfqq, bic); + + bfq_log_bfqq(bfqd, bfqq, + "rq_enqueued: idle_window=%d (seeky %d, mean %llu)", + bfq_bfqq_idle_window(bfqq), BFQQ_SEEKY(bfqq), + (long long unsigned)bfqq->seek_mean); + + bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); + + if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { + int small_req = bfqq->queued[rq_is_sync(rq)] == 1 && + blk_rq_sectors(rq) < 32; + int budget_timeout = bfq_bfqq_budget_timeout(bfqq); + + /* + * There is just this request queued: if the request + * is small and the queue is not to be expired, then + * just exit. + * + * In this way, if the disk is being idled to wait for + * a new request from the in-service queue, we avoid + * unplugging the device and committing the disk to serve + * just a small request. On the contrary, we wait for + * the block layer to decide when to unplug the device: + * hopefully, new requests will be merged to this one + * quickly, then the device will be unplugged and + * larger requests will be dispatched. + */ + if (small_req && !budget_timeout) + return; + + /* + * A large enough request arrived, or the queue is to + * be expired: in both cases disk idling is to be + * stopped, so clear wait_request flag and reset + * timer. + */ + bfq_clear_bfqq_wait_request(bfqq); + del_timer(&bfqd->idle_slice_timer); + + /* + * The queue is not empty, because a new request just + * arrived. Hence we can safely expire the queue, in + * case of budget timeout, without risking that the + * timestamps of the queue are not updated correctly. + * See [1] for more details. + */ + if (budget_timeout) + bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT); + + /* + * Let the request rip immediately, or let a new queue be + * selected if bfqq has just been expired. + */ + __blk_run_queue(bfqd->queue); + } +} + +static void bfq_insert_request(struct request_queue *q, struct request *rq) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct bfq_queue *bfqq = RQ_BFQQ(rq); + + assert_spin_locked(bfqd->queue->queue_lock); + + bfq_init_prio_data(bfqq, RQ_BIC(rq)); + + bfq_add_request(rq); + + rq->fifo_time = jiffies + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; + list_add_tail(&rq->queuelist, &bfqq->fifo); + + bfq_rq_enqueued(bfqd, bfqq, rq); +} + +static void bfq_update_hw_tag(struct bfq_data *bfqd) +{ + bfqd->max_rq_in_driver = max(bfqd->max_rq_in_driver, + bfqd->rq_in_driver); + + if (bfqd->hw_tag == 1) + return; + + /* + * This sample is valid if the number of outstanding requests + * is large enough to allow a queueing behavior. Note that the + * sum is not exact, as it's not taking into account deactivated + * requests. + */ + if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD) + return; + + if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) + return; + + bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; + bfqd->max_rq_in_driver = 0; + bfqd->hw_tag_samples = 0; +} + +static void bfq_completed_request(struct request_queue *q, struct request *rq) +{ + struct bfq_queue *bfqq = RQ_BFQQ(rq); + struct bfq_data *bfqd = bfqq->bfqd; + bool sync = bfq_bfqq_sync(bfqq); + + bfq_log_bfqq(bfqd, bfqq, "completed one req with %u sects left (%d)", + blk_rq_sectors(rq), sync); + + bfq_update_hw_tag(bfqd); + + bfqd->rq_in_driver--; + bfqq->dispatched--; + + if (sync) { + bfqd->sync_flight--; + RQ_BIC(rq)->ttime.last_end_request = jiffies; + } + + /* + * If this is the in-service queue, check if it needs to be expired, + * or if we want to idle in case it has no pending requests. + */ + if (bfqd->in_service_queue == bfqq) { + if (bfq_bfqq_budget_new(bfqq)) + bfq_set_budget_timeout(bfqd); + + if (bfq_bfqq_must_idle(bfqq)) { + bfq_arm_slice_timer(bfqd); + goto out; + } else if (bfq_may_expire_for_budg_timeout(bfqq)) + bfq_bfqq_expire(bfqd, bfqq, 0, BFQ_BFQQ_BUDGET_TIMEOUT); + else if (RB_EMPTY_ROOT(&bfqq->sort_list) && + (bfqq->dispatched == 0 || + !bfq_bfqq_must_not_expire(bfqq))) + bfq_bfqq_expire(bfqd, bfqq, 0, + BFQ_BFQQ_NO_MORE_REQUESTS); + } + + if (!bfqd->rq_in_driver) + bfq_schedule_dispatch(bfqd); + +out: + return; +} + +static inline int __bfq_may_queue(struct bfq_queue *bfqq) +{ + if (bfq_bfqq_wait_request(bfqq) && bfq_bfqq_must_alloc(bfqq)) { + bfq_clear_bfqq_must_alloc(bfqq); + return ELV_MQUEUE_MUST; + } + + return ELV_MQUEUE_MAY; +} + +static int bfq_may_queue(struct request_queue *q, int rw) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct task_struct *tsk = current; + struct bfq_io_cq *bic; + struct bfq_queue *bfqq; + + /* + * Don't force setup of a queue from here, as a call to may_queue + * does not necessarily imply that a request actually will be + * queued. So just lookup a possibly existing queue, or return + * 'may queue' if that fails. + */ + bic = bfq_bic_lookup(bfqd, tsk->io_context); + if (bic == NULL) + return ELV_MQUEUE_MAY; + + bfqq = bic_to_bfqq(bic, rw_is_sync(rw)); + if (bfqq != NULL) { + bfq_init_prio_data(bfqq, bic); + + return __bfq_may_queue(bfqq); + } + + return ELV_MQUEUE_MAY; +} + +/* + * Queue lock held here. + */ +static void bfq_put_request(struct request *rq) +{ + struct bfq_queue *bfqq = RQ_BFQQ(rq); + + if (bfqq != NULL) { + const int rw = rq_data_dir(rq); + + bfqq->allocated[rw]--; + + rq->elv.priv[0] = NULL; + rq->elv.priv[1] = NULL; + + bfq_log_bfqq(bfqq->bfqd, bfqq, "put_request %p, %d", + bfqq, atomic_read(&bfqq->ref)); + bfq_put_queue(bfqq); + } +} + +/* + * Allocate bfq data structures associated with this request. + */ +static int bfq_set_request(struct request_queue *q, struct request *rq, + struct bio *bio, gfp_t gfp_mask) +{ + struct bfq_data *bfqd = q->elevator->elevator_data; + struct bfq_io_cq *bic = icq_to_bic(rq->elv.icq); + const int rw = rq_data_dir(rq); + const int is_sync = rq_is_sync(rq); + struct bfq_queue *bfqq; + unsigned long flags; + + might_sleep_if(gfp_mask & __GFP_WAIT); + + bfq_changed_ioprio(bic); + + spin_lock_irqsave(q->queue_lock, flags); + + if (bic == NULL) + goto queue_fail; + + bfqq = bic_to_bfqq(bic, is_sync); + if (bfqq == NULL || bfqq == &bfqd->oom_bfqq) { + bfqq = bfq_get_queue(bfqd, is_sync, bic, gfp_mask); + bic_set_bfqq(bic, bfqq, is_sync); + } + + bfqq->allocated[rw]++; + atomic_inc(&bfqq->ref); + bfq_log_bfqq(bfqd, bfqq, "set_request: bfqq %p, %d", bfqq, + atomic_read(&bfqq->ref)); + + rq->elv.priv[0] = bic; + rq->elv.priv[1] = bfqq; + + spin_unlock_irqrestore(q->queue_lock, flags); + + return 0; + +queue_fail: + bfq_schedule_dispatch(bfqd); + spin_unlock_irqrestore(q->queue_lock, flags); + + return 1; +} + +static void bfq_kick_queue(struct work_struct *work) +{ + struct bfq_data *bfqd = + container_of(work, struct bfq_data, unplug_work); + struct request_queue *q = bfqd->queue; + + spin_lock_irq(q->queue_lock); + __blk_run_queue(q); + spin_unlock_irq(q->queue_lock); +} + +/* + * Handler of the expiration of the timer running if the in-service queue + * is idling inside its time slice. + */ +static void bfq_idle_slice_timer(unsigned long data) +{ + struct bfq_data *bfqd = (struct bfq_data *)data; + struct bfq_queue *bfqq; + unsigned long flags; + enum bfqq_expiration reason; + + spin_lock_irqsave(bfqd->queue->queue_lock, flags); + + bfqq = bfqd->in_service_queue; + /* + * Theoretical race here: the in-service queue can be NULL or + * different from the queue that was idling if the timer handler + * spins on the queue_lock and a new request arrives for the + * current queue and there is a full dispatch cycle that changes + * the in-service queue. This can hardly happen, but in the worst + * case we just expire a queue too early. + */ + if (bfqq != NULL) { + bfq_log_bfqq(bfqd, bfqq, "slice_timer expired"); + if (bfq_bfqq_budget_timeout(bfqq)) + /* + * Also here the queue can be safely expired + * for budget timeout without wasting + * guarantees + */ + reason = BFQ_BFQQ_BUDGET_TIMEOUT; + else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) + /* + * The queue may not be empty upon timer expiration, + * because we may not disable the timer when the + * first request of the in-service queue arrives + * during disk idling. + */ + reason = BFQ_BFQQ_TOO_IDLE; + else + goto schedule_dispatch; + + bfq_bfqq_expire(bfqd, bfqq, 1, reason); + } + +schedule_dispatch: + bfq_schedule_dispatch(bfqd); + + spin_unlock_irqrestore(bfqd->queue->queue_lock, flags); +} + +static void bfq_shutdown_timer_wq(struct bfq_data *bfqd) +{ + del_timer_sync(&bfqd->idle_slice_timer); + cancel_work_sync(&bfqd->unplug_work); +} + +static inline void __bfq_put_async_bfqq(struct bfq_data *bfqd, + struct bfq_queue **bfqq_ptr) +{ + struct bfq_queue *bfqq = *bfqq_ptr; + + bfq_log(bfqd, "put_async_bfqq: %p", bfqq); + if (bfqq != NULL) { + bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", + bfqq, atomic_read(&bfqq->ref)); + bfq_put_queue(bfqq); + *bfqq_ptr = NULL; + } +} + +/* + * Release the extra reference of the async queues as the device + * goes away. + */ +static void bfq_put_async_queues(struct bfq_data *bfqd) +{ + int i, j; + + for (i = 0; i < 2; i++) + for (j = 0; j < IOPRIO_BE_NR; j++) + __bfq_put_async_bfqq(bfqd, &async_bfqq[i][j]); + + __bfq_put_async_bfqq(bfqd, &async_idle_bfqq); +} + +static void bfq_exit_queue(struct elevator_queue *e) +{ + struct bfq_data *bfqd = e->elevator_data; + struct request_queue *q = bfqd->queue; + struct bfq_queue *bfqq, *n; + + bfq_shutdown_timer_wq(bfqd); + + spin_lock_irq(q->queue_lock); + + list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) + bfq_deactivate_bfqq(bfqd, bfqq, 0); + + bfq_put_async_queues(bfqd); + spin_unlock_irq(q->queue_lock); + + bfq_shutdown_timer_wq(bfqd); + + synchronize_rcu(); + + kfree(bfqd); +} + +static int bfq_init_queue(struct request_queue *q, struct elevator_type *e) +{ + struct bfq_data *bfqd; + struct elevator_queue *eq; + + eq = elevator_alloc(q, e); + if (eq == NULL) + return -ENOMEM; + + bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); + if (bfqd == NULL) { + kobject_put(&eq->kobj); + return -ENOMEM; + } + eq->elevator_data = bfqd; + + /* + * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. + * Grab a permanent reference to it, so that the normal code flow + * will not attempt to free it. + */ + bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, 1, 0); + atomic_inc(&bfqd->oom_bfqq.ref); + + bfqd->queue = q; + + spin_lock_irq(q->queue_lock); + q->elevator = eq; + spin_unlock_irq(q->queue_lock); + + init_timer(&bfqd->idle_slice_timer); + bfqd->idle_slice_timer.function = bfq_idle_slice_timer; + bfqd->idle_slice_timer.data = (unsigned long)bfqd; + + INIT_WORK(&bfqd->unplug_work, bfq_kick_queue); + + INIT_LIST_HEAD(&bfqd->active_list); + INIT_LIST_HEAD(&bfqd->idle_list); + + bfqd->hw_tag = -1; + + bfqd->bfq_max_budget = bfq_default_max_budget; + + bfqd->bfq_quantum = bfq_quantum; + bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; + bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; + bfqd->bfq_back_max = bfq_back_max; + bfqd->bfq_back_penalty = bfq_back_penalty; + bfqd->bfq_slice_idle = bfq_slice_idle; + bfqd->bfq_class_idle_last_service = 0; + bfqd->bfq_max_budget_async_rq = bfq_max_budget_async_rq; + bfqd->bfq_timeout[BLK_RW_ASYNC] = bfq_timeout_async; + bfqd->bfq_timeout[BLK_RW_SYNC] = bfq_timeout_sync; + + return 0; +} + +static void bfq_slab_kill(void) +{ + if (bfq_pool != NULL) + kmem_cache_destroy(bfq_pool); +} + +static int __init bfq_slab_setup(void) +{ + bfq_pool = KMEM_CACHE(bfq_queue, 0); + if (bfq_pool == NULL) + return -ENOMEM; + return 0; +} + +static ssize_t bfq_var_show(unsigned int var, char *page) +{ + return sprintf(page, "%d\n", var); +} + +static ssize_t bfq_var_store(unsigned long *var, const char *page, + size_t count) +{ + unsigned long new_val; + int ret = kstrtoul(page, 10, &new_val); + + if (ret == 0) + *var = new_val; + + return count; +} + +static ssize_t bfq_weights_show(struct elevator_queue *e, char *page) +{ + struct bfq_queue *bfqq; + struct bfq_data *bfqd = e->elevator_data; + ssize_t num_char = 0; + + num_char += sprintf(page + num_char, "Tot reqs queued %d\n\n", + bfqd->queued); + + spin_lock_irq(bfqd->queue->queue_lock); + + num_char += sprintf(page + num_char, "Active:\n"); + list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list) { + num_char += sprintf(page + num_char, + "pid%d: weight %hu, nr_queued %d %d\n", + bfqq->pid, + bfqq->entity.weight, + bfqq->queued[0], + bfqq->queued[1]); + } + + num_char += sprintf(page + num_char, "Idle:\n"); + list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) { + num_char += sprintf(page + num_char, + "pid%d: weight %hu\n", + bfqq->pid, + bfqq->entity.weight); + } + + spin_unlock_irq(bfqd->queue->queue_lock); + + return num_char; +} + +#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ +static ssize_t __FUNC(struct elevator_queue *e, char *page) \ +{ \ + struct bfq_data *bfqd = e->elevator_data; \ + unsigned int __data = __VAR; \ + if (__CONV) \ + __data = jiffies_to_msecs(__data); \ + return bfq_var_show(__data, (page)); \ +} +SHOW_FUNCTION(bfq_quantum_show, bfqd->bfq_quantum, 0); +SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 1); +SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 1); +SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); +SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); +SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 1); +SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); +SHOW_FUNCTION(bfq_max_budget_async_rq_show, + bfqd->bfq_max_budget_async_rq, 0); +SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout[BLK_RW_SYNC], 1); +SHOW_FUNCTION(bfq_timeout_async_show, bfqd->bfq_timeout[BLK_RW_ASYNC], 1); +#undef SHOW_FUNCTION + +#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ +static ssize_t \ +__FUNC(struct elevator_queue *e, const char *page, size_t count) \ +{ \ + struct bfq_data *bfqd = e->elevator_data; \ + unsigned long uninitialized_var(__data); \ + int ret = bfq_var_store(&__data, (page), count); \ + if (__data < (MIN)) \ + __data = (MIN); \ + else if (__data > (MAX)) \ + __data = (MAX); \ + if (__CONV) \ + *(__PTR) = msecs_to_jiffies(__data); \ + else \ + *(__PTR) = __data; \ + return ret; \ +} +STORE_FUNCTION(bfq_quantum_store, &bfqd->bfq_quantum, 1, INT_MAX, 0); +STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, + INT_MAX, 1); +STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, + INT_MAX, 1); +STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); +STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, + INT_MAX, 0); +STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 1); +STORE_FUNCTION(bfq_max_budget_async_rq_store, &bfqd->bfq_max_budget_async_rq, + 1, INT_MAX, 0); +STORE_FUNCTION(bfq_timeout_async_store, &bfqd->bfq_timeout[BLK_RW_ASYNC], 0, + INT_MAX, 1); +#undef STORE_FUNCTION + +/* do nothing for the moment */ +static ssize_t bfq_weights_store(struct elevator_queue *e, + const char *page, size_t count) +{ + return count; +} + +static inline unsigned long bfq_estimated_max_budget(struct bfq_data *bfqd) +{ + u64 timeout = jiffies_to_msecs(bfqd->bfq_timeout[BLK_RW_SYNC]); + + if (bfqd->peak_rate_samples >= BFQ_PEAK_RATE_SAMPLES) + return bfq_calc_max_budget(bfqd->peak_rate, timeout); + else + return bfq_default_max_budget; +} + +static ssize_t bfq_max_budget_store(struct elevator_queue *e, + const char *page, size_t count) +{ + struct bfq_data *bfqd = e->elevator_data; + unsigned long uninitialized_var(__data); + int ret = bfq_var_store(&__data, (page), count); + + if (__data == 0) + bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); + else { + if (__data > INT_MAX) + __data = INT_MAX; + bfqd->bfq_max_budget = __data; + } + + bfqd->bfq_user_max_budget = __data; + + return ret; +} + +static ssize_t bfq_timeout_sync_store(struct elevator_queue *e, + const char *page, size_t count) +{ + struct bfq_data *bfqd = e->elevator_data; + unsigned long uninitialized_var(__data); + int ret = bfq_var_store(&__data, (page), count); + + if (__data < 1) + __data = 1; + else if (__data > INT_MAX) + __data = INT_MAX; + + bfqd->bfq_timeout[BLK_RW_SYNC] = msecs_to_jiffies(__data); + if (bfqd->bfq_user_max_budget == 0) + bfqd->bfq_max_budget = bfq_estimated_max_budget(bfqd); + + return ret; +} + +#define BFQ_ATTR(name) \ + __ATTR(name, S_IRUGO|S_IWUSR, bfq_##name##_show, bfq_##name##_store) + +static struct elv_fs_entry bfq_attrs[] = { + BFQ_ATTR(quantum), + BFQ_ATTR(fifo_expire_sync), + BFQ_ATTR(fifo_expire_async), + BFQ_ATTR(back_seek_max), + BFQ_ATTR(back_seek_penalty), + BFQ_ATTR(slice_idle), + BFQ_ATTR(max_budget), + BFQ_ATTR(max_budget_async_rq), + BFQ_ATTR(timeout_sync), + BFQ_ATTR(timeout_async), + BFQ_ATTR(weights), + __ATTR_NULL +}; + +static struct elevator_type iosched_bfq = { + .ops = { + .elevator_merge_fn = bfq_merge, + .elevator_merged_fn = bfq_merged_request, + .elevator_merge_req_fn = bfq_merged_requests, + .elevator_allow_merge_fn = bfq_allow_merge, + .elevator_dispatch_fn = bfq_dispatch_requests, + .elevator_add_req_fn = bfq_insert_request, + .elevator_activate_req_fn = bfq_activate_request, + .elevator_deactivate_req_fn = bfq_deactivate_request, + .elevator_completed_req_fn = bfq_completed_request, + .elevator_former_req_fn = elv_rb_former_request, + .elevator_latter_req_fn = elv_rb_latter_request, + .elevator_init_icq_fn = bfq_init_icq, + .elevator_exit_icq_fn = bfq_exit_icq, + .elevator_set_req_fn = bfq_set_request, + .elevator_put_req_fn = bfq_put_request, + .elevator_may_queue_fn = bfq_may_queue, + .elevator_init_fn = bfq_init_queue, + .elevator_exit_fn = bfq_exit_queue, + }, + .icq_size = sizeof(struct bfq_io_cq), + .icq_align = __alignof__(struct bfq_io_cq), + .elevator_attrs = bfq_attrs, + .elevator_name = "bfq", + .elevator_owner = THIS_MODULE, +}; + +static int __init bfq_init(void) +{ + /* + * Can be 0 on HZ < 1000 setups. + */ + if (bfq_slice_idle == 0) + bfq_slice_idle = 1; + + if (bfq_timeout_async == 0) + bfq_timeout_async = 1; + + if (bfq_slab_setup()) + return -ENOMEM; + + elv_register(&iosched_bfq); + pr_info("BFQ I/O-scheduler version: v0"); + + return 0; +} + +static void __exit bfq_exit(void) +{ + elv_unregister(&iosched_bfq); + bfq_slab_kill(); +} + +module_init(bfq_init); +module_exit(bfq_exit); + +MODULE_AUTHOR("Fabio Checconi, Paolo Valente"); +MODULE_LICENSE("GPL"); diff --git a/block/bfq-sched.c b/block/bfq-sched.c new file mode 100644 index 0000000..a9142f5 --- /dev/null +++ b/block/bfq-sched.c @@ -0,0 +1,936 @@ +/* + * BFQ: Hierarchical B-WF2Q+ scheduler. + * + * Based on ideas and code from CFQ: + * Copyright (C) 2003 Jens Axboe <axboe@xxxxxxxxx> + * + * Copyright (C) 2008 Fabio Checconi <fabio@xxxxxxxxxxxxxxxx> + * Paolo Valente <paolo.valente@xxxxxxxxxx> + */ + +#define for_each_entity(entity) \ + for (; entity != NULL; entity = NULL) + +#define for_each_entity_safe(entity, parent) \ + for (parent = NULL; entity != NULL; entity = parent) + +static inline int bfq_update_next_in_service(struct bfq_sched_data *sd) +{ + return 0; +} + +static inline void bfq_check_next_in_service(struct bfq_sched_data *sd, + struct bfq_entity *entity) +{ +} + +static inline void bfq_update_budget(struct bfq_entity *next_in_service) +{ +} + +/* + * Shift for timestamp calculations. This actually limits the maximum + * service allowed in one timestamp delta (small shift values increase it), + * the maximum total weight that can be used for the queues in the system + * (big shift values increase it), and the period of virtual time + * wraparounds. + */ +#define WFQ_SERVICE_SHIFT 22 + +/** + * bfq_gt - compare two timestamps. + * @a: first ts. + * @b: second ts. + * + * Return @a > @b, dealing with wrapping correctly. + */ +static inline int bfq_gt(u64 a, u64 b) +{ + return (s64)(a - b) > 0; +} + +static inline struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = NULL; + + if (entity->my_sched_data == NULL) + bfqq = container_of(entity, struct bfq_queue, entity); + + return bfqq; +} + + +/** + * bfq_delta - map service into the virtual time domain. + * @service: amount of service. + * @weight: scale factor (weight of an entity or weight sum). + */ +static inline u64 bfq_delta(unsigned long service, + unsigned long weight) +{ + u64 d = (u64)service << WFQ_SERVICE_SHIFT; + + do_div(d, weight); + return d; +} + +/** + * bfq_calc_finish - assign the finish time to an entity. + * @entity: the entity to act upon. + * @service: the service to be charged to the entity. + */ +static inline void bfq_calc_finish(struct bfq_entity *entity, + unsigned long service) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + + entity->finish = entity->start + + bfq_delta(service, entity->weight); + + if (bfqq != NULL) { + bfq_log_bfqq(bfqq->bfqd, bfqq, + "calc_finish: serv %lu, w %d", + service, entity->weight); + bfq_log_bfqq(bfqq->bfqd, bfqq, + "calc_finish: start %llu, finish %llu, delta %llu", + entity->start, entity->finish, + bfq_delta(service, entity->weight)); + } +} + +/** + * bfq_entity_of - get an entity from a node. + * @node: the node field of the entity. + * + * Convert a node pointer to the relative entity. This is used only + * to simplify the logic of some functions and not as the generic + * conversion mechanism because, e.g., in the tree walking functions, + * the check for a %NULL value would be redundant. + */ +static inline struct bfq_entity *bfq_entity_of(struct rb_node *node) +{ + struct bfq_entity *entity = NULL; + + if (node != NULL) + entity = rb_entry(node, struct bfq_entity, rb_node); + + return entity; +} + +/** + * bfq_extract - remove an entity from a tree. + * @root: the tree root. + * @entity: the entity to remove. + */ +static inline void bfq_extract(struct rb_root *root, + struct bfq_entity *entity) +{ + entity->tree = NULL; + rb_erase(&entity->rb_node, root); +} + +/** + * bfq_idle_extract - extract an entity from the idle tree. + * @st: the service tree of the owning @entity. + * @entity: the entity being removed. + */ +static void bfq_idle_extract(struct bfq_service_tree *st, + struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + struct rb_node *next; + + if (entity == st->first_idle) { + next = rb_next(&entity->rb_node); + st->first_idle = bfq_entity_of(next); + } + + if (entity == st->last_idle) { + next = rb_prev(&entity->rb_node); + st->last_idle = bfq_entity_of(next); + } + + bfq_extract(&st->idle, entity); + + if (bfqq != NULL) + list_del(&bfqq->bfqq_list); +} + +/** + * bfq_insert - generic tree insertion. + * @root: tree root. + * @entity: entity to insert. + * + * This is used for the idle and the active tree, since they are both + * ordered by finish time. + */ +static void bfq_insert(struct rb_root *root, struct bfq_entity *entity) +{ + struct bfq_entity *entry; + struct rb_node **node = &root->rb_node; + struct rb_node *parent = NULL; + + while (*node != NULL) { + parent = *node; + entry = rb_entry(parent, struct bfq_entity, rb_node); + + if (bfq_gt(entry->finish, entity->finish)) + node = &parent->rb_left; + else + node = &parent->rb_right; + } + + rb_link_node(&entity->rb_node, parent, node); + rb_insert_color(&entity->rb_node, root); + + entity->tree = root; +} + +/** + * bfq_update_min - update the min_start field of a entity. + * @entity: the entity to update. + * @node: one of its children. + * + * This function is called when @entity may store an invalid value for + * min_start due to updates to the active tree. The function assumes + * that the subtree rooted at @node (which may be its left or its right + * child) has a valid min_start value. + */ +static inline void bfq_update_min(struct bfq_entity *entity, + struct rb_node *node) +{ + struct bfq_entity *child; + + if (node != NULL) { + child = rb_entry(node, struct bfq_entity, rb_node); + if (bfq_gt(entity->min_start, child->min_start)) + entity->min_start = child->min_start; + } +} + +/** + * bfq_update_active_node - recalculate min_start. + * @node: the node to update. + * + * @node may have changed position or one of its children may have moved, + * this function updates its min_start value. The left and right subtrees + * are assumed to hold a correct min_start value. + */ +static inline void bfq_update_active_node(struct rb_node *node) +{ + struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node); + + entity->min_start = entity->start; + bfq_update_min(entity, node->rb_right); + bfq_update_min(entity, node->rb_left); +} + +/** + * bfq_update_active_tree - update min_start for the whole active tree. + * @node: the starting node. + * + * @node must be the deepest modified node after an update. This function + * updates its min_start using the values held by its children, assuming + * that they did not change, and then updates all the nodes that may have + * changed in the path to the root. The only nodes that may have changed + * are the ones in the path or their siblings. + */ +static void bfq_update_active_tree(struct rb_node *node) +{ + struct rb_node *parent; + +up: + bfq_update_active_node(node); + + parent = rb_parent(node); + if (parent == NULL) + return; + + if (node == parent->rb_left && parent->rb_right != NULL) + bfq_update_active_node(parent->rb_right); + else if (parent->rb_left != NULL) + bfq_update_active_node(parent->rb_left); + + node = parent; + goto up; +} + +/** + * bfq_active_insert - insert an entity in the active tree of its + * group/device. + * @st: the service tree of the entity. + * @entity: the entity being inserted. + * + * The active tree is ordered by finish time, but an extra key is kept + * per each node, containing the minimum value for the start times of + * its children (and the node itself), so it's possible to search for + * the eligible node with the lowest finish time in logarithmic time. + */ +static void bfq_active_insert(struct bfq_service_tree *st, + struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + struct rb_node *node = &entity->rb_node; + + bfq_insert(&st->active, entity); + + if (node->rb_left != NULL) + node = node->rb_left; + else if (node->rb_right != NULL) + node = node->rb_right; + + bfq_update_active_tree(node); + + if (bfqq != NULL) + list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list); +} + +/** + * bfq_ioprio_to_weight - calc a weight from an ioprio. + * @ioprio: the ioprio value to convert. + */ +static inline unsigned short bfq_ioprio_to_weight(int ioprio) +{ + return IOPRIO_BE_NR - ioprio; +} + +/** + * bfq_weight_to_ioprio - calc an ioprio from a weight. + * @weight: the weight value to convert. + * + * To preserve as mush as possible the old only-ioprio user interface, + * 0 is used as an escape ioprio value for weights (numerically) equal or + * larger than IOPRIO_BE_NR + */ +static inline unsigned short bfq_weight_to_ioprio(int weight) +{ + return IOPRIO_BE_NR - weight < 0 ? 0 : IOPRIO_BE_NR - weight; +} + +static inline void bfq_get_entity(struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + + if (bfqq != NULL) { + atomic_inc(&bfqq->ref); + bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d", + bfqq, atomic_read(&bfqq->ref)); + } +} + +/** + * bfq_find_deepest - find the deepest node that an extraction can modify. + * @node: the node being removed. + * + * Do the first step of an extraction in an rb tree, looking for the + * node that will replace @node, and returning the deepest node that + * the following modifications to the tree can touch. If @node is the + * last node in the tree return %NULL. + */ +static struct rb_node *bfq_find_deepest(struct rb_node *node) +{ + struct rb_node *deepest; + + if (node->rb_right == NULL && node->rb_left == NULL) + deepest = rb_parent(node); + else if (node->rb_right == NULL) + deepest = node->rb_left; + else if (node->rb_left == NULL) + deepest = node->rb_right; + else { + deepest = rb_next(node); + if (deepest->rb_right != NULL) + deepest = deepest->rb_right; + else if (rb_parent(deepest) != node) + deepest = rb_parent(deepest); + } + + return deepest; +} + +/** + * bfq_active_extract - remove an entity from the active tree. + * @st: the service_tree containing the tree. + * @entity: the entity being removed. + */ +static void bfq_active_extract(struct bfq_service_tree *st, + struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + struct rb_node *node; + + node = bfq_find_deepest(&entity->rb_node); + bfq_extract(&st->active, entity); + + if (node != NULL) + bfq_update_active_tree(node); + + if (bfqq != NULL) + list_del(&bfqq->bfqq_list); +} + +/** + * bfq_idle_insert - insert an entity into the idle tree. + * @st: the service tree containing the tree. + * @entity: the entity to insert. + */ +static void bfq_idle_insert(struct bfq_service_tree *st, + struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + struct bfq_entity *first_idle = st->first_idle; + struct bfq_entity *last_idle = st->last_idle; + + if (first_idle == NULL || bfq_gt(first_idle->finish, entity->finish)) + st->first_idle = entity; + if (last_idle == NULL || bfq_gt(entity->finish, last_idle->finish)) + st->last_idle = entity; + + bfq_insert(&st->idle, entity); + + if (bfqq != NULL) + list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list); +} + +/** + * bfq_forget_entity - remove an entity from the wfq trees. + * @st: the service tree. + * @entity: the entity being removed. + * + * Update the device status and forget everything about @entity, putting + * the device reference to it, if it is a queue. Entities belonging to + * groups are not refcounted. + */ +static void bfq_forget_entity(struct bfq_service_tree *st, + struct bfq_entity *entity) +{ + struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity); + struct bfq_sched_data *sd; + + entity->on_st = 0; + st->wsum -= entity->weight; + if (bfqq != NULL) { + sd = entity->sched_data; + bfq_log_bfqq(bfqq->bfqd, bfqq, "forget_entity: %p %d", + bfqq, atomic_read(&bfqq->ref)); + bfq_put_queue(bfqq); + } +} + +/** + * bfq_put_idle_entity - release the idle tree ref of an entity. + * @st: service tree for the entity. + * @entity: the entity being released. + */ +static void bfq_put_idle_entity(struct bfq_service_tree *st, + struct bfq_entity *entity) +{ + bfq_idle_extract(st, entity); + bfq_forget_entity(st, entity); +} + +/** + * bfq_forget_idle - update the idle tree if necessary. + * @st: the service tree to act upon. + * + * To preserve the global O(log N) complexity we only remove one entry here; + * as the idle tree will not grow indefinitely this can be done safely. + */ +static void bfq_forget_idle(struct bfq_service_tree *st) +{ + struct bfq_entity *first_idle = st->first_idle; + struct bfq_entity *last_idle = st->last_idle; + + if (RB_EMPTY_ROOT(&st->active) && last_idle != NULL && + !bfq_gt(last_idle->finish, st->vtime)) { + /* + * Forget the whole idle tree, increasing the vtime past + * the last finish time of idle entities. + */ + st->vtime = last_idle->finish; + } + + if (first_idle != NULL && !bfq_gt(first_idle->finish, st->vtime)) + bfq_put_idle_entity(st, first_idle); +} + +static struct bfq_service_tree * +__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st, + struct bfq_entity *entity) +{ + struct bfq_service_tree *new_st = old_st; + + if (entity->ioprio_changed) { + old_st->wsum -= entity->weight; + + if (entity->new_weight != entity->orig_weight) { + entity->orig_weight = entity->new_weight; + entity->ioprio = + bfq_weight_to_ioprio(entity->orig_weight); + } else if (entity->new_ioprio != entity->ioprio) { + entity->ioprio = entity->new_ioprio; + entity->orig_weight = + bfq_ioprio_to_weight(entity->ioprio); + } else + entity->new_weight = entity->orig_weight = + bfq_ioprio_to_weight(entity->ioprio); + + entity->ioprio_class = entity->new_ioprio_class; + entity->ioprio_changed = 0; + + /* + * NOTE: here we may be changing the weight too early, + * this will cause unfairness. The correct approach + * would have required additional complexity to defer + * weight changes to the proper time instants (i.e., + * when entity->finish <= old_st->vtime). + */ + new_st = bfq_entity_service_tree(entity); + entity->weight = entity->orig_weight; + new_st->wsum += entity->weight; + + if (new_st != old_st) + entity->start = new_st->vtime; + } + + return new_st; +} + +/** + * bfq_bfqq_served - update the scheduler status after selection for + * service. + * @bfqq: the queue being served. + * @served: bytes to transfer. + * + * NOTE: this can be optimized, as the timestamps of upper level entities + * are synchronized every time a new bfqq is selected for service. By now, + * we keep it to better check consistency. + */ +static void bfq_bfqq_served(struct bfq_queue *bfqq, unsigned long served) +{ + struct bfq_entity *entity = &bfqq->entity; + struct bfq_service_tree *st; + + for_each_entity(entity) { + st = bfq_entity_service_tree(entity); + + entity->service += served; + + st->vtime += bfq_delta(served, st->wsum); + bfq_forget_idle(st); + } + bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %lu secs", served); +} + +/** + * bfq_bfqq_charge_full_budget - set the service to the entity budget. + * @bfqq: the queue that needs a service update. + * + * When it's not possible to be fair in the service domain, because + * a queue is not consuming its budget fast enough (the meaning of + * fast depends on the timeout parameter), we charge it a full + * budget. In this way we should obtain a sort of time-domain + * fairness among all the seeky/slow queues. + */ +static inline void bfq_bfqq_charge_full_budget(struct bfq_queue *bfqq) +{ + struct bfq_entity *entity = &bfqq->entity; + + bfq_log_bfqq(bfqq->bfqd, bfqq, "charge_full_budget"); + + bfq_bfqq_served(bfqq, entity->budget - entity->service); +} + +/** + * __bfq_activate_entity - activate an entity. + * @entity: the entity being activated. + * + * Called whenever an entity is activated, i.e., it is not active and one + * of its children receives a new request, or has to be reactivated due to + * budget exhaustion. It uses the current budget of the entity (and the + * service received if @entity is active) of the queue to calculate its + * timestamps. + */ +static void __bfq_activate_entity(struct bfq_entity *entity) +{ + struct bfq_sched_data *sd = entity->sched_data; + struct bfq_service_tree *st = bfq_entity_service_tree(entity); + + if (entity == sd->in_service_entity) { + /* + * If we are requeueing the current entity we have + * to take care of not charging to it service it has + * not received. + */ + bfq_calc_finish(entity, entity->service); + entity->start = entity->finish; + sd->in_service_entity = NULL; + } else if (entity->tree == &st->active) { + /* + * Requeueing an entity due to a change of some + * next_in_service entity below it. We reuse the + * old start time. + */ + bfq_active_extract(st, entity); + } else if (entity->tree == &st->idle) { + /* + * Must be on the idle tree, bfq_idle_extract() will + * check for that. + */ + bfq_idle_extract(st, entity); + entity->start = bfq_gt(st->vtime, entity->finish) ? + st->vtime : entity->finish; + } else { + /* + * The finish time of the entity may be invalid, and + * it is in the past for sure, otherwise the queue + * would have been on the idle tree. + */ + entity->start = st->vtime; + st->wsum += entity->weight; + bfq_get_entity(entity); + + entity->on_st = 1; + } + + st = __bfq_entity_update_weight_prio(st, entity); + bfq_calc_finish(entity, entity->budget); + bfq_active_insert(st, entity); +} + +/** + * bfq_activate_entity - activate an entity and its ancestors if necessary. + * @entity: the entity to activate. + * + * Activate @entity and all the entities on the path from it to the root. + */ +static void bfq_activate_entity(struct bfq_entity *entity) +{ + struct bfq_sched_data *sd; + + for_each_entity(entity) { + __bfq_activate_entity(entity); + + sd = entity->sched_data; + if (!bfq_update_next_in_service(sd)) + /* + * No need to propagate the activation to the + * upper entities, as they will be updated when + * the in-service entity is rescheduled. + */ + break; + } +} + +/** + * __bfq_deactivate_entity - deactivate an entity from its service tree. + * @entity: the entity to deactivate. + * @requeue: if false, the entity will not be put into the idle tree. + * + * Deactivate an entity, independently from its previous state. If the + * entity was not on a service tree just return, otherwise if it is on + * any scheduler tree, extract it from that tree, and if necessary + * and if the caller did not specify @requeue, put it on the idle tree. + * + * Return %1 if the caller should update the entity hierarchy, i.e., + * if the entity was in service or if it was the next_in_service for + * its sched_data; return %0 otherwise. + */ +static int __bfq_deactivate_entity(struct bfq_entity *entity, int requeue) +{ + struct bfq_sched_data *sd = entity->sched_data; + struct bfq_service_tree *st = bfq_entity_service_tree(entity); + int was_in_service = entity == sd->in_service_entity; + int ret = 0; + + if (!entity->on_st) + return 0; + + if (was_in_service) { + bfq_calc_finish(entity, entity->service); + sd->in_service_entity = NULL; + } else if (entity->tree == &st->active) + bfq_active_extract(st, entity); + else if (entity->tree == &st->idle) + bfq_idle_extract(st, entity); + + if (was_in_service || sd->next_in_service == entity) + ret = bfq_update_next_in_service(sd); + + if (!requeue || !bfq_gt(entity->finish, st->vtime)) + bfq_forget_entity(st, entity); + else + bfq_idle_insert(st, entity); + + return ret; +} + +/** + * bfq_deactivate_entity - deactivate an entity. + * @entity: the entity to deactivate. + * @requeue: true if the entity can be put on the idle tree + */ +static void bfq_deactivate_entity(struct bfq_entity *entity, int requeue) +{ + struct bfq_sched_data *sd; + struct bfq_entity *parent; + + for_each_entity_safe(entity, parent) { + sd = entity->sched_data; + + if (!__bfq_deactivate_entity(entity, requeue)) + /* + * The parent entity is still backlogged, and + * we don't need to update it as it is still + * in service. + */ + break; + + if (sd->next_in_service != NULL) + /* + * The parent entity is still backlogged and + * the budgets on the path towards the root + * need to be updated. + */ + goto update; + + /* + * If we reach there the parent is no more backlogged and + * we want to propagate the dequeue upwards. + */ + requeue = 1; + } + + return; + +update: + entity = parent; + for_each_entity(entity) { + __bfq_activate_entity(entity); + + sd = entity->sched_data; + if (!bfq_update_next_in_service(sd)) + break; + } +} + +/** + * bfq_update_vtime - update vtime if necessary. + * @st: the service tree to act upon. + * + * If necessary update the service tree vtime to have at least one + * eligible entity, skipping to its start time. Assumes that the + * active tree of the device is not empty. + * + * NOTE: this hierarchical implementation updates vtimes quite often, + * we may end up with reactivated processes getting timestamps after a + * vtime skip done because we needed a ->first_active entity on some + * intermediate node. + */ +static void bfq_update_vtime(struct bfq_service_tree *st) +{ + struct bfq_entity *entry; + struct rb_node *node = st->active.rb_node; + + entry = rb_entry(node, struct bfq_entity, rb_node); + if (bfq_gt(entry->min_start, st->vtime)) { + st->vtime = entry->min_start; + bfq_forget_idle(st); + } +} + +/** + * bfq_first_active_entity - find the eligible entity with + * the smallest finish time + * @st: the service tree to select from. + * + * This function searches the first schedulable entity, starting from the + * root of the tree and going on the left every time on this side there is + * a subtree with at least one eligible (start >= vtime) entity. The path on + * the right is followed only if a) the left subtree contains no eligible + * entities and b) no eligible entity has been found yet. + */ +static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st) +{ + struct bfq_entity *entry, *first = NULL; + struct rb_node *node = st->active.rb_node; + + while (node != NULL) { + entry = rb_entry(node, struct bfq_entity, rb_node); +left: + if (!bfq_gt(entry->start, st->vtime)) + first = entry; + + if (node->rb_left != NULL) { + entry = rb_entry(node->rb_left, + struct bfq_entity, rb_node); + if (!bfq_gt(entry->min_start, st->vtime)) { + node = node->rb_left; + goto left; + } + } + if (first != NULL) + break; + node = node->rb_right; + } + + return first; +} + +/** + * __bfq_lookup_next_entity - return the first eligible entity in @st. + * @st: the service tree. + * + * Update the virtual time in @st and return the first eligible entity + * it contains. + */ +static struct bfq_entity *__bfq_lookup_next_entity(struct bfq_service_tree *st, + bool force) +{ + struct bfq_entity *entity, *new_next_in_service = NULL; + + if (RB_EMPTY_ROOT(&st->active)) + return NULL; + + bfq_update_vtime(st); + entity = bfq_first_active_entity(st); + + /* + * If the chosen entity does not match with the sched_data's + * next_in_service and we are forcedly serving the IDLE priority + * class tree, bubble up budget update. + */ + if (unlikely(force && entity != entity->sched_data->next_in_service)) { + new_next_in_service = entity; + for_each_entity(new_next_in_service) + bfq_update_budget(new_next_in_service); + } + + return entity; +} + +/** + * bfq_lookup_next_entity - return the first eligible entity in @sd. + * @sd: the sched_data. + * @extract: if true the returned entity will be also extracted from @sd. + * + * NOTE: since we cache the next_in_service entity at each level of the + * hierarchy, the complexity of the lookup can be decreased with + * absolutely no effort just returning the cached next_in_service value; + * we prefer to do full lookups to test the consistency of * the data + * structures. + */ +static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd, + int extract, + struct bfq_data *bfqd) +{ + struct bfq_service_tree *st = sd->service_tree; + struct bfq_entity *entity; + int i = 0; + + if (bfqd != NULL && + jiffies - bfqd->bfq_class_idle_last_service > BFQ_CL_IDLE_TIMEOUT) { + entity = __bfq_lookup_next_entity(st + BFQ_IOPRIO_CLASSES - 1, + true); + if (entity != NULL) { + i = BFQ_IOPRIO_CLASSES - 1; + bfqd->bfq_class_idle_last_service = jiffies; + sd->next_in_service = entity; + } + } + for (; i < BFQ_IOPRIO_CLASSES; i++) { + entity = __bfq_lookup_next_entity(st + i, false); + if (entity != NULL) { + if (extract) { + bfq_check_next_in_service(sd, entity); + bfq_active_extract(st + i, entity); + sd->in_service_entity = entity; + sd->next_in_service = NULL; + } + break; + } + } + + return entity; +} + +/* + * Get next queue for service. + */ +static struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd) +{ + struct bfq_entity *entity = NULL; + struct bfq_sched_data *sd; + struct bfq_queue *bfqq; + + if (bfqd->busy_queues == 0) + return NULL; + + sd = &bfqd->sched_data; + for (; sd != NULL; sd = entity->my_sched_data) { + entity = bfq_lookup_next_entity(sd, 1, bfqd); + entity->service = 0; + } + + bfqq = bfq_entity_to_bfqq(entity); + + return bfqq; +} + +static void __bfq_bfqd_reset_in_service(struct bfq_data *bfqd) +{ + if (bfqd->in_service_bic != NULL) { + put_io_context(bfqd->in_service_bic->icq.ioc); + bfqd->in_service_bic = NULL; + } + + bfqd->in_service_queue = NULL; + del_timer(&bfqd->idle_slice_timer); +} + +static void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, + int requeue) +{ + struct bfq_entity *entity = &bfqq->entity; + + if (bfqq == bfqd->in_service_queue) + __bfq_bfqd_reset_in_service(bfqd); + + bfq_deactivate_entity(entity, requeue); +} + +static void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) +{ + struct bfq_entity *entity = &bfqq->entity; + + bfq_activate_entity(entity); +} + +/* + * Called when the bfqq no longer has requests pending, remove it from + * the service tree. + */ +static void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq, + int requeue) +{ + bfq_log_bfqq(bfqd, bfqq, "del from busy"); + + bfq_clear_bfqq_busy(bfqq); + + bfqd->busy_queues--; + + bfq_deactivate_bfqq(bfqd, bfqq, requeue); +} + +/* + * Called when an inactive queue receives a new request. + */ +static void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq) +{ + bfq_log_bfqq(bfqd, bfqq, "add to busy"); + + bfq_activate_bfqq(bfqd, bfqq); + + bfq_mark_bfqq_busy(bfqq); + bfqd->busy_queues++; +} diff --git a/block/bfq.h b/block/bfq.h new file mode 100644 index 0000000..bd146b6 --- /dev/null +++ b/block/bfq.h @@ -0,0 +1,467 @@ +/* + * BFQ-v0 for 3.15.0: data structures and common functions prototypes. + * + * Based on ideas and code from CFQ: + * Copyright (C) 2003 Jens Axboe <axboe@xxxxxxxxx> + * + * Copyright (C) 2008 Fabio Checconi <fabio@xxxxxxxxxxxxxxxx> + * Paolo Valente <paolo.valente@xxxxxxxxxx> + */ + +#ifndef _BFQ_H +#define _BFQ_H + +#include <linux/blktrace_api.h> +#include <linux/hrtimer.h> +#include <linux/ioprio.h> +#include <linux/rbtree.h> + +#define BFQ_IOPRIO_CLASSES 3 +#define BFQ_CL_IDLE_TIMEOUT (HZ/5) + +#define BFQ_MIN_WEIGHT 1 +#define BFQ_MAX_WEIGHT 1000 + +#define BFQ_DEFAULT_GRP_WEIGHT 10 +#define BFQ_DEFAULT_GRP_IOPRIO 0 +#define BFQ_DEFAULT_GRP_CLASS IOPRIO_CLASS_BE + +struct bfq_entity; + +/** + * struct bfq_service_tree - per ioprio_class service tree. + * @active: tree for active entities (i.e., those backlogged). + * @idle: tree for idle entities (i.e., those not backlogged, with V <= F_i). + * @first_idle: idle entity with minimum F_i. + * @last_idle: idle entity with maximum F_i. + * @vtime: scheduler virtual time. + * @wsum: scheduler weight sum; active and idle entities contribute to it. + * + * Each service tree represents a B-WF2Q+ scheduler on its own. Each + * ioprio_class has its own independent scheduler, and so its own + * bfq_service_tree. All the fields are protected by the queue lock + * of the containing bfqd. + */ +struct bfq_service_tree { + struct rb_root active; + struct rb_root idle; + + struct bfq_entity *first_idle; + struct bfq_entity *last_idle; + + u64 vtime; + unsigned long wsum; +}; + +/** + * struct bfq_sched_data - multi-class scheduler. + * @in_service_entity: entity in service. + * @next_in_service: head-of-the-line entity in the scheduler. + * @service_tree: array of service trees, one per ioprio_class. + * + * bfq_sched_data is the basic scheduler queue. It supports three + * ioprio_classes, and can be used either as a toplevel queue or as + * an intermediate queue on a hierarchical setup. + * @next_in_service points to the active entity of the sched_data + * service trees that will be scheduled next. + * + * The supported ioprio_classes are the same as in CFQ, in descending + * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE. + * Requests from higher priority queues are served before all the + * requests from lower priority queues; among requests of the same + * queue requests are served according to B-WF2Q+. + * All the fields are protected by the queue lock of the containing bfqd. + */ +struct bfq_sched_data { + struct bfq_entity *in_service_entity; + struct bfq_entity *next_in_service; + struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES]; +}; + +/** + * struct bfq_entity - schedulable entity. + * @rb_node: service_tree member. + * @on_st: flag, true if the entity is on a tree (either the active or + * the idle one of its service_tree). + * @finish: B-WF2Q+ finish timestamp (aka F_i). + * @start: B-WF2Q+ start timestamp (aka S_i). + * @tree: tree the entity is enqueued into; %NULL if not on a tree. + * @min_start: minimum start time of the (active) subtree rooted at + * this entity; used for O(log N) lookups into active trees. + * @service: service received during the last round of service. + * @budget: budget used to calculate F_i; F_i = S_i + @budget / @weight. + * @weight: weight of the queue + * @parent: parent entity, for hierarchical scheduling. + * @my_sched_data: for non-leaf nodes in the hierarchy, the + * associated scheduler queue, %NULL on leaf nodes. + * @sched_data: the scheduler queue this entity belongs to. + * @ioprio: the ioprio in use. + * @new_weight: when a weight change is requested, the new weight value. + * @orig_weight: original weight, used to implement weight boosting + * @new_ioprio: when an ioprio change is requested, the new ioprio value. + * @ioprio_class: the ioprio_class in use. + * @new_ioprio_class: when an ioprio_class change is requested, the new + * ioprio_class value. + * @ioprio_changed: flag, true when the user requested a weight, ioprio or + * ioprio_class change. + * + * A bfq_entity is used to represent a bfq_queue (leaf node in the upper + * level scheduler). Each entity belongs to the sched_data of the parent + * group hierarchy. Non-leaf entities have also their own sched_data, + * stored in @my_sched_data. + * + * Each entity stores independently its priority values; this would + * allow different weights on different devices, but this + * functionality is not exported to userspace by now. Priorities and + * weights are updated lazily, first storing the new values into the + * new_* fields, then setting the @ioprio_changed flag. As soon as + * there is a transition in the entity state that allows the priority + * update to take place the effective and the requested priority + * values are synchronized. + * + * The weight value is calculated from the ioprio to export the same + * interface as CFQ. When dealing with ``well-behaved'' queues (i.e., + * queues that do not spend too much time to consume their budget + * and have true sequential behavior, and when there are no external + * factors breaking anticipation) the relative weights at each level + * of the hierarchy should be guaranteed. All the fields are + * protected by the queue lock of the containing bfqd. + */ +struct bfq_entity { + struct rb_node rb_node; + + int on_st; + + u64 finish; + u64 start; + + struct rb_root *tree; + + u64 min_start; + + unsigned long service, budget; + unsigned short weight, new_weight; + unsigned short orig_weight; + + struct bfq_entity *parent; + + struct bfq_sched_data *my_sched_data; + struct bfq_sched_data *sched_data; + + unsigned short ioprio, new_ioprio; + unsigned short ioprio_class, new_ioprio_class; + + int ioprio_changed; +}; + +/** + * struct bfq_queue - leaf schedulable entity. + * @ref: reference counter. + * @bfqd: parent bfq_data. + * @sort_list: sorted list of pending requests. + * @next_rq: if fifo isn't expired, next request to serve. + * @queued: nr of requests queued in @sort_list. + * @allocated: currently allocated requests. + * @meta_pending: pending metadata requests. + * @fifo: fifo list of requests in sort_list. + * @entity: entity representing this queue in the scheduler. + * @max_budget: maximum budget allowed from the feedback mechanism. + * @budget_timeout: budget expiration (in jiffies). + * @dispatched: number of requests on the dispatch list or inside driver. + * @flags: status flags. + * @bfqq_list: node for active/idle bfqq list inside our bfqd. + * @seek_samples: number of seeks sampled + * @seek_total: sum of the distances of the seeks sampled + * @seek_mean: mean seek distance + * @last_request_pos: position of the last request enqueued + * @pid: pid of the process owning the queue, used for logging purposes. + * + * A bfq_queue is a leaf request queue; it can be associated with an + * io_context or more, if it is async. + */ +struct bfq_queue { + atomic_t ref; + struct bfq_data *bfqd; + + struct rb_root sort_list; + struct request *next_rq; + int queued[2]; + int allocated[2]; + int meta_pending; + struct list_head fifo; + + struct bfq_entity entity; + + unsigned long max_budget; + unsigned long budget_timeout; + + int dispatched; + + unsigned int flags; + + struct list_head bfqq_list; + + unsigned int seek_samples; + u64 seek_total; + sector_t seek_mean; + sector_t last_request_pos; + + pid_t pid; +}; + +/** + * struct bfq_ttime - per process thinktime stats. + * @ttime_total: total process thinktime + * @ttime_samples: number of thinktime samples + * @ttime_mean: average process thinktime + */ +struct bfq_ttime { + unsigned long last_end_request; + + unsigned long ttime_total; + unsigned long ttime_samples; + unsigned long ttime_mean; +}; + +/** + * struct bfq_io_cq - per (request_queue, io_context) structure. + * @icq: associated io_cq structure + * @bfqq: array of two process queues, the sync and the async + * @ttime: associated @bfq_ttime struct + */ +struct bfq_io_cq { + struct io_cq icq; /* must be the first member */ + struct bfq_queue *bfqq[2]; + struct bfq_ttime ttime; + int ioprio; +}; + +enum bfq_device_speed { + BFQ_BFQD_FAST, + BFQ_BFQD_SLOW, +}; + +/** + * struct bfq_data - per device data structure. + * @queue: request queue for the managed device. + * @sched_data: root @bfq_sched_data for the device. + * @busy_queues: number of bfq_queues containing requests (including the + * queue in service, even if it is idling). + * @queued: number of queued requests. + * @rq_in_driver: number of requests dispatched and waiting for completion. + * @sync_flight: number of sync requests in the driver. + * @max_rq_in_driver: max number of reqs in driver in the last + * @hw_tag_samples completed requests. + * @hw_tag_samples: nr of samples used to calculate hw_tag. + * @hw_tag: flag set to one if the driver is showing a queueing behavior. + * @budgets_assigned: number of budgets assigned. + * @idle_slice_timer: timer set when idling for the next sequential request + * from the queue in service. + * @unplug_work: delayed work to restart dispatching on the request queue. + * @in_service_queue: bfq_queue in service. + * @in_service_bic: bfq_io_cq (bic) associated with the @in_service_queue. + * @last_position: on-disk position of the last served request. + * @last_budget_start: beginning of the last budget. + * @last_idling_start: beginning of the last idle slice. + * @peak_rate: peak transfer rate observed for a budget. + * @peak_rate_samples: number of samples used to calculate @peak_rate. + * @bfq_max_budget: maximum budget allotted to a bfq_queue before + * rescheduling. + * @active_list: list of all the bfq_queues active on the device. + * @idle_list: list of all the bfq_queues idle on the device. + * @bfq_quantum: max number of requests dispatched per dispatch round. + * @bfq_fifo_expire: timeout for async/sync requests; when it expires + * requests are served in fifo order. + * @bfq_back_penalty: weight of backward seeks wrt forward ones. + * @bfq_back_max: maximum allowed backward seek. + * @bfq_slice_idle: maximum idling time. + * @bfq_user_max_budget: user-configured max budget value + * (0 for auto-tuning). + * @bfq_max_budget_async_rq: maximum budget (in nr of requests) allotted to + * async queues. + * @bfq_timeout: timeout for bfq_queues to consume their budget; used to + * to prevent seeky queues to impose long latencies to well + * behaved ones (this also implies that seeky queues cannot + * receive guarantees in the service domain; after a timeout + * they are charged for the whole allocated budget, to try + * to preserve a behavior reasonably fair among them, but + * without service-domain guarantees). + * @oom_bfqq: fallback dummy bfqq for extreme OOM conditions + * + * All the fields are protected by the @queue lock. + */ +struct bfq_data { + struct request_queue *queue; + + struct bfq_sched_data sched_data; + + int busy_queues; + int queued; + int rq_in_driver; + int sync_flight; + + int max_rq_in_driver; + int hw_tag_samples; + int hw_tag; + + int budgets_assigned; + + struct timer_list idle_slice_timer; + struct work_struct unplug_work; + + struct bfq_queue *in_service_queue; + struct bfq_io_cq *in_service_bic; + + sector_t last_position; + + ktime_t last_budget_start; + ktime_t last_idling_start; + int peak_rate_samples; + u64 peak_rate; + unsigned long bfq_max_budget; + + struct list_head active_list; + struct list_head idle_list; + + unsigned int bfq_quantum; + unsigned int bfq_fifo_expire[2]; + unsigned int bfq_back_penalty; + unsigned int bfq_back_max; + unsigned int bfq_slice_idle; + u64 bfq_class_idle_last_service; + + unsigned int bfq_user_max_budget; + unsigned int bfq_max_budget_async_rq; + unsigned int bfq_timeout[2]; + + struct bfq_queue oom_bfqq; +}; + +enum bfqq_state_flags { + BFQ_BFQQ_FLAG_busy = 0, /* has requests or is in service */ + BFQ_BFQQ_FLAG_wait_request, /* waiting for a request */ + BFQ_BFQQ_FLAG_must_alloc, /* must be allowed rq alloc */ + BFQ_BFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */ + BFQ_BFQQ_FLAG_idle_window, /* slice idling enabled */ + BFQ_BFQQ_FLAG_prio_changed, /* task priority has changed */ + BFQ_BFQQ_FLAG_sync, /* synchronous queue */ + BFQ_BFQQ_FLAG_budget_new, /* no completion with this budget */ +}; + +#define BFQ_BFQQ_FNS(name) \ +static inline void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ +{ \ + (bfqq)->flags |= (1 << BFQ_BFQQ_FLAG_##name); \ +} \ +static inline void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ +{ \ + (bfqq)->flags &= ~(1 << BFQ_BFQQ_FLAG_##name); \ +} \ +static inline int bfq_bfqq_##name(const struct bfq_queue *bfqq) \ +{ \ + return ((bfqq)->flags & (1 << BFQ_BFQQ_FLAG_##name)) != 0; \ +} + +BFQ_BFQQ_FNS(busy); +BFQ_BFQQ_FNS(wait_request); +BFQ_BFQQ_FNS(must_alloc); +BFQ_BFQQ_FNS(fifo_expire); +BFQ_BFQQ_FNS(idle_window); +BFQ_BFQQ_FNS(prio_changed); +BFQ_BFQQ_FNS(sync); +BFQ_BFQQ_FNS(budget_new); +#undef BFQ_BFQQ_FNS + +/* Logging facilities. */ +#define bfq_log_bfqq(bfqd, bfqq, fmt, args...) \ + blk_add_trace_msg((bfqd)->queue, "bfq%d " fmt, (bfqq)->pid, ##args) + +#define bfq_log(bfqd, fmt, args...) \ + blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args) + +/* Expiration reasons. */ +enum bfqq_expiration { + BFQ_BFQQ_TOO_IDLE = 0, /* + * queue has been idling for + * too long + */ + BFQ_BFQQ_BUDGET_TIMEOUT, /* budget took too long to be used */ + BFQ_BFQQ_BUDGET_EXHAUSTED, /* budget consumed */ + BFQ_BFQQ_NO_MORE_REQUESTS, /* the queue has no more requests */ +}; + +static inline struct bfq_service_tree * +bfq_entity_service_tree(struct bfq_entity *entity) +{ + struct bfq_sched_data *sched_data = entity->sched_data; + unsigned int idx = entity->ioprio_class - 1; + + return sched_data->service_tree + idx; +} + +static inline struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, + int is_sync) +{ + return bic->bfqq[!!is_sync]; +} + +static inline void bic_set_bfqq(struct bfq_io_cq *bic, + struct bfq_queue *bfqq, int is_sync) +{ + bic->bfqq[!!is_sync] = bfqq; +} + +static inline struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) +{ + return bic->icq.q->elevator->elevator_data; +} + +/** + * bfq_get_bfqd_locked - get a lock to a bfqd using a RCU protected pointer. + * @ptr: a pointer to a bfqd. + * @flags: storage for the flags to be saved. + * + * This function allows bfqg->bfqd to be protected by the + * queue lock of the bfqd they reference; the pointer is dereferenced + * under RCU, so the storage for bfqd is assured to be safe as long + * as the RCU read side critical section does not end. After the + * bfqd->queue->queue_lock is taken the pointer is rechecked, to be + * sure that no other writer accessed it. If we raced with a writer, + * the function returns NULL, with the queue unlocked, otherwise it + * returns the dereferenced pointer, with the queue locked. + */ +static inline struct bfq_data *bfq_get_bfqd_locked(void **ptr, + unsigned long *flags) +{ + struct bfq_data *bfqd; + + rcu_read_lock(); + bfqd = rcu_dereference(*(struct bfq_data **)ptr); + + if (bfqd != NULL) { + spin_lock_irqsave(bfqd->queue->queue_lock, *flags); + if (*ptr == bfqd) + goto out; + spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags); + } + + bfqd = NULL; +out: + rcu_read_unlock(); + return bfqd; +} + +static inline void bfq_put_bfqd_unlock(struct bfq_data *bfqd, + unsigned long *flags) +{ + spin_unlock_irqrestore(bfqd->queue->queue_lock, *flags); +} + +static void bfq_changed_ioprio(struct bfq_io_cq *bic); +static void bfq_put_queue(struct bfq_queue *bfqq); +static void bfq_dispatch_insert(struct request_queue *q, struct request *rq); +static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, int is_sync, + struct bfq_io_cq *bic, gfp_t gfp_mask); +static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq); + +#endif /* _BFQ_H */ -- 1.9.2 _______________________________________________ Containers mailing list Containers@xxxxxxxxxxxxxxxxxxxxxxxxxx https://lists.linuxfoundation.org/mailman/listinfo/containers