The struct timecounter::cycle_last is a 64 bit variable, read by timecounter_cyc2time(), and written by timecounter_read(). On 32 bit architectures this is not atomic. Add a spinlock to protect access to struct timecounter::cycle_last. In the gs_usb_timestamp_read() callback the lock is dropped to execute a sleeping synchronous USB transfer. This is safe, as the variable we want to protect is accessed during this call. Fixes: 45dfa45f52e6 ("can: gs_usb: add RX and TX hardware timestamp support") Cc: John Whittington <git@xxxxxxxxxxxxxxxxxxxx> Signed-off-by: Marc Kleine-Budde <mkl@xxxxxxxxxxxxxx> --- drivers/net/can/usb/gs_usb.c | 23 ++++++++++++++++++----- 1 file changed, 18 insertions(+), 5 deletions(-) diff --git a/drivers/net/can/usb/gs_usb.c b/drivers/net/can/usb/gs_usb.c index 12e7437a9496..fe4116bf925b 100644 --- a/drivers/net/can/usb/gs_usb.c +++ b/drivers/net/can/usb/gs_usb.c @@ -286,6 +286,7 @@ struct gs_can { /* time counter for hardware timestamps */ struct cyclecounter cc; struct timecounter tc; + spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */ struct delayed_work timestamp; u32 feature; @@ -401,14 +402,18 @@ static inline int gs_usb_get_timestamp(const struct gs_can *dev, return 0; } -static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) +static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock) { - const struct gs_can *dev; + struct gs_can *dev = container_of(cc, struct gs_can, cc); u32 timestamp = 0; int err; - dev = container_of(cc, struct gs_can, cc); + lockdep_assert_held(&dev->tc_lock); + + /* drop lock for synchronous USB transfer */ + spin_unlock_bh(&dev->tc_lock); err = gs_usb_get_timestamp(dev, ×tamp); + spin_lock_bh(&dev->tc_lock); if (err) netdev_err(dev->netdev, "Error %d while reading timestamp. HW timestamps may be inaccurate.", @@ -423,19 +428,24 @@ static void gs_usb_timestamp_work(struct work_struct *work) struct gs_can *dev; dev = container_of(delayed_work, struct gs_can, timestamp); + spin_lock_bh(&dev->tc_lock); timecounter_read(&dev->tc); + spin_unlock_bh(&dev->tc_lock); schedule_delayed_work(&dev->timestamp, GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); } -static void gs_usb_skb_set_timestamp(const struct gs_can *dev, +static void gs_usb_skb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, u32 timestamp) { struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); u64 ns; + spin_lock_bh(&dev->tc_lock); ns = timecounter_cyc2time(&dev->tc, timestamp); + spin_unlock_bh(&dev->tc_lock); + hwtstamps->hwtstamp = ns_to_ktime(ns); } @@ -448,7 +458,10 @@ static void gs_usb_timestamp_init(struct gs_can *dev) cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ); cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift); + spin_lock_init(&dev->tc_lock); + spin_lock_bh(&dev->tc_lock); timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns()); + spin_unlock_bh(&dev->tc_lock); INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work); schedule_delayed_work(&dev->timestamp, @@ -485,7 +498,7 @@ static void gs_update_state(struct gs_can *dev, struct can_frame *cf) } } -static void gs_usb_set_timestamp(const struct gs_can *dev, struct sk_buff *skb, +static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, const struct gs_host_frame *hf) { u32 timestamp; -- 2.35.1