Here's a set of patches implements a rewrite of the fscache driver and a matching rewrite of the cachefiles driver, significantly simplifying the code compared to what's upstream, removing the complex operation scheduling and object state machine in favour of something much smaller and simpler. The patchset is structured such that the first few patches disable fscache use by the network filesystems using it, remove the cachefiles driver entirely and as much of the fscache driver as can be got away with without causing build failures in the network filesystems. The patches after that recreate fscache and then cachefiles, attempting to add the pieces in a logical order. Finally, the filesystems are reenabled and then the very last patch changes the documentation. WHY REWRITE? ============ Fscache's operation scheduling API was intended to handle sequencing of cache operations, which were all required (where possible) to run asynchronously in parallel with the operations being done by the network filesystem, whilst allowing the cache to be brought online and offline and to interrupt service for invalidation. With the advent of the tmpfile capacity in the VFS, however, an opportunity arises to do invalidation much more simply, without having to wait for I/O that's actually in progress: Cachefiles can simply create a tmpfile, cut over the file pointer for the backing object attached to a cookie and abandon the in-progress I/O, dismissing it upon completion. Future work here would involve using Omar Sandoval's vfs_link() with AT_LINK_REPLACE[1] to allow an extant file to be displaced by a new hard link from a tmpfile as currently I have to unlink the old file first. These patches can also simplify the object state handling as I/O operations to the cache don't all have to be brought to a stop in order to invalidate a file. To that end, and with an eye on to writing a new backing cache model in the future, I've taken the opportunity to simplify the indexing structure. I've separated the index cookie concept from the file cookie concept by C type now. The former is now called a "volume cookie" (struct fscache_volume) and there is a container of file cookies. There are then just the two levels. All the index cookie levels are collapsed into a single volume cookie, and this has a single printable string as a key. For instance, an AFS volume would have a key of something like "afs,example.com,1000555", combining the filesystem name, cell name and volume ID. This is freeform, but must not have '/' chars in it. I've also eliminated all pointers back from fscache into the network filesystem. This required the duplication of a little bit of data in the cookie (cookie key, coherency data and file size), but it's not actually that much. This gets rid of problems with making sure we keep netfs data structures around so that the cache can access them. These patches mean that most of the code that was in the drivers before is simply gone and those drivers are now almost entirely new code. That being the case, there doesn't seem any particular reason to try and maintain bisectability across it. Further, there has to be a point in the middle where things are cut over as there's a single point everything has to go through (ie. /dev/cachefiles) and it can't be in use by two drivers at once. ISSUES YET OUTSTANDING ====================== There are some issues still outstanding, unaddressed by this patchset, that will need fixing in future patchsets, but that don't stop this series from being usable: (1) The cachefiles driver needs to stop using the backing filesystem's metadata to store information about what parts of the cache are populated. This is not reliable with modern extent-based filesystems. Fixing this is deferred to a separate patchset as it involves negotiation with the network filesystem and the VM as to how much data to download to fulfil a read - which brings me on to (2)... (2) NFS and CIFS do not take account of how the cache would like I/O to be structured to meet its granularity requirements. Previously, the cache used page granularity, which was fine as the network filesystems also dealt in page granularity, and the backing filesystem (ext4, xfs or whatever) did whatever it did out of sight. However, we now have folios to deal with and the cache will now have to store its own metadata to track its contents. The change I'm looking at making for cachefiles is to store content bitmaps in one or more xattrs and making a bit in the map correspond to something like a 256KiB block. However, the size of an xattr and the fact that they have to be read/updated in one go means that I'm looking at covering 1GiB of data per 512-byte map and storing each map in an xattr. Cachefiles has the potential to grow into a fully fledged filesystem of its very own if I'm not careful. However, I'm also looking at changing things even more radically and going to a different model of how the cache is arranged and managed - one that's more akin to the way, say, openafs does things - which brings me on to (3)... (3) The way cachefilesd does culling is very inefficient for large caches and it would be better to move it into the kernel if I can as cachefilesd has to keep asking the kernel if it can cull a file. Changing the way the backend works would allow this to be addressed. BITS THAT MAY BE CONTROVERSIAL ============================== There are some bits I've added that may be controversial: (1) I've provided a flag, S_KERNEL_FILE, that cachefiles uses to check if a files is already being used by some other kernel service (e.g. a duplicate cachefiles cache in the same directory) and reject it if it is. This isn't entirely necessary, but it helps prevent accidental data corruption. I don't want to use S_SWAPFILE as that has other effects, but quite possibly swapon() should set S_KERNEL_FILE too. Note that it doesn't prevent userspace from interfering, though perhaps it should. (I have made it prevent a marked directory from being rmdir-able). (2) Cachefiles wants to keep the backing file for a cookie open whilst we might need to write to it from network filesystem writeback. The problem is that the network filesystem unuses its cookie when its file is closed, and so we have nothing pinning the cachefiles file open and it will get closed automatically after a short time to avoid EMFILE/ENFILE problems. Reopening the cache file, however, is a problem if this is being done due to writeback triggered by exit(). Some filesystems will oops if we try to open a file in that context because they want to access current->fs or suchlike. To get around this, I added the following: (A) An inode flag, I_PINNING_FSCACHE_WB, to be set on a network filesystem inode to indicate that we have a usage count on the cookie caching that inode. (B) A flag in struct writeback_control, unpinned_fscache_wb, that is set when __writeback_single_inode() clears the last dirty page from i_pages - at which point it clears I_PINNING_FSCACHE_WB and sets this flag. This has to be done here so that clearing I_PINNING_FSCACHE_WB can be done atomically with the check of PAGECACHE_TAG_DIRTY that clears I_DIRTY_PAGES. (C) A function, fscache_set_page_dirty(), which if it is not set, sets I_PINNING_FSCACHE_WB and calls fscache_use_cookie() to pin the cache resources. (D) A function, fscache_unpin_writeback(), to be called by ->write_inode() to unuse the cookie. (E) A function, fscache_clear_inode_writeback(), to be called when the inode is evicted, before clear_inode() is called. This cleans up any lingering I_PINNING_FSCACHE_WB. The network filesystem can then use these tools to make sure that fscache_write_to_cache() can write locally modified data to the cache as well as to the server. For the future, I'm working on write helpers for netfs lib that should allow this facility to be removed by keeping track of the dirty regions separately - but that's incomplete at the moment and is also going to be affected by folios, one way or another, since it deals with pages. These patches can be found also on: https://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs.git/log/?h=fscache-rewrite David Link: https://lore.kernel.org/r/cover.1580251857.git.osandov@xxxxxx/ [1] References ========== These patches have been published for review before, firstly as part of a larger set: Link: https://lore.kernel.org/r/158861203563.340223.7585359869938129395.stgit@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/159465766378.1376105.11619976251039287525.stgit@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/159465784033.1376674.18106463693989811037.stgit@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/159465821598.1377938.2046362270225008168.stgit@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/160588455242.3465195.3214733858273019178.stgit@xxxxxxxxxxxxxxxxxxxxxx/ Then as a cut-down set: Link: https://lore.kernel.org/r/161118128472.1232039.11746799833066425131.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v1 Link: https://lore.kernel.org/r/161161025063.2537118.2009249444682241405.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v2 Link: https://lore.kernel.org/r/161340385320.1303470.2392622971006879777.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v3 Link: https://lore.kernel.org/r/161539526152.286939.8589700175877370401.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v4 Link: https://lore.kernel.org/r/161653784755.2770958.11820491619308713741.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v5 I split out a set to just restructure the I/O, which got merged back in to this one: Link: https://lore.kernel.org/r/163363935000.1980952.15279841414072653108.stgit@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/163189104510.2509237.10805032055807259087.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v2 Link: https://lore.kernel.org/r/163363935000.1980952.15279841414072653108.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v3 Link: https://lore.kernel.org/r/163551653404.1877519.12363794970541005441.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v4 ... and a larger set to do the conversion, also merged back into this one: Link: https://lore.kernel.org/r/163456861570.2614702.14754548462706508617.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v1 Link: https://lore.kernel.org/r/163492911924.1038219.13107463173777870713.stgit@xxxxxxxxxxxxxxxxxxxxxx/ # v2 Proposals/information about the design have been published here: Link: https://lore.kernel.org/r/24942.1573667720@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/2758811.1610621106@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/1441311.1598547738@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/160655.1611012999@xxxxxxxxxxxxxxxxxxxxxx/ And requests for information: Link: https://lore.kernel.org/r/3326.1579019665@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/4467.1579020509@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/3577430.1579705075@xxxxxxxxxxxxxxxxxxxxxx/ I've posted partial patches to try and help 9p and cifs along: Link: https://lore.kernel.org/r/1514086.1605697347@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/1794123.1605713481@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/241017.1612263863@xxxxxxxxxxxxxxxxxxxxxx/ Link: https://lore.kernel.org/r/270998.1612265397@xxxxxxxxxxxxxxxxxxxxxx/ --- Dave Wysochanski (1): nfs: Convert to new fscache volume/cookie API David Howells (63): fscache, cachefiles: Disable configuration cachefiles: Delete the cachefiles driver pending rewrite fscache: Remove the contents of the fscache driver, pending rewrite netfs: Display the netfs inode number in the netfs_read tracepoint netfs: Pass a flag to ->prepare_write() to say if there's no alloc'd space fscache: Introduce new driver fscache: Implement a hash function fscache: Implement cache registration fscache: Implement volume registration fscache: Implement cookie registration fscache: Implement cache-level access helpers fscache: Implement volume-level access helpers fscache: Implement cookie-level access helpers fscache: Implement functions add/remove a cache fscache: Provide and use cache methods to lookup/create/free a volume fscache: Add a function for a cache backend to note an I/O error fscache: Implement simple cookie state machine fscache: Implement cookie user counting and resource pinning fscache: Implement cookie invalidation fscache: Provide a means to begin an operation fscache: Count data storage objects in a cache fscache: Provide read/write stat counters for the cache fscache: Provide a function to let the netfs update its coherency data netfs: Pass more information on how to deal with a hole in the cache fscache: Implement raw I/O interface fscache: Implement higher-level write I/O interface vfs, fscache: Implement pinning of cache usage for writeback fscache: Provide a function to note the release of a page fscache: Provide a function to resize a cookie cachefiles: Introduce rewritten driver cachefiles: Define structs cachefiles: Add some error injection support cachefiles: Add a couple of tracepoints for logging errors cachefiles: Add cache error reporting macro cachefiles: Add security derivation cachefiles: Register a miscdev and parse commands over it cachefiles: Provide a function to check how much space there is vfs, cachefiles: Mark a backing file in use with an inode flag cachefiles: Implement a function to get/create a directory in the cache cachefiles: Implement cache registration and withdrawal cachefiles: Implement volume support cachefiles: Add tracepoints for calls to the VFS cachefiles: Implement object lifecycle funcs cachefiles: Implement key to filename encoding cachefiles: Implement metadata/coherency data storage in xattrs cachefiles: Mark a backing file in use with an inode flag cachefiles: Implement culling daemon commands cachefiles: Implement backing file wrangling cachefiles: Implement begin and end I/O operation cachefiles: Implement cookie resize for truncate cachefiles: Implement the I/O routines cachefiles: Allow cachefiles to actually function fscache, cachefiles: Display stats of no-space events fscache, cachefiles: Display stat of culling events afs: Handle len being extending over page end in write_begin/write_end afs: Fix afs_write_end() to handle len > page size afs: Convert afs to use the new fscache API afs: Copy local writes to the cache when writing to the server afs: Skip truncation on the server of data we haven't written yet 9p: Use fscache indexing rewrite and reenable caching 9p: Copy local writes to the cache when writing to the server cifs: Support fscache indexing rewrite (untested) fscache: Rewrite documentation .../filesystems/caching/backend-api.rst | 847 ++++------ .../filesystems/caching/cachefiles.rst | 6 +- Documentation/filesystems/caching/fscache.rst | 525 ++----- Documentation/filesystems/caching/index.rst | 4 +- .../filesystems/caching/netfs-api.rst | 1082 ++++--------- Documentation/filesystems/caching/object.rst | 313 ---- .../filesystems/caching/operations.rst | 210 --- Documentation/filesystems/netfs_library.rst | 15 + fs/9p/Kconfig | 2 +- fs/9p/cache.c | 184 +-- fs/9p/cache.h | 25 +- fs/9p/v9fs.c | 14 +- fs/9p/v9fs.h | 13 +- fs/9p/vfs_addr.c | 52 +- fs/9p/vfs_dir.c | 11 + fs/9p/vfs_file.c | 3 +- fs/9p/vfs_inode.c | 24 +- fs/9p/vfs_inode_dotl.c | 3 +- fs/9p/vfs_super.c | 3 + fs/afs/Kconfig | 2 +- fs/afs/Makefile | 3 - fs/afs/cache.c | 68 - fs/afs/cell.c | 12 - fs/afs/file.c | 31 +- fs/afs/inode.c | 101 +- fs/afs/internal.h | 35 +- fs/afs/main.c | 14 - fs/afs/super.c | 1 + fs/afs/volume.c | 15 +- fs/afs/write.c | 100 +- fs/cachefiles/Kconfig | 7 + fs/cachefiles/Makefile | 6 +- fs/cachefiles/bind.c | 278 ---- fs/cachefiles/cache.c | 378 +++++ fs/cachefiles/daemon.c | 180 +-- fs/cachefiles/error_inject.c | 46 + fs/cachefiles/interface.c | 747 ++++----- fs/cachefiles/internal.h | 265 ++-- fs/cachefiles/io.c | 330 ++-- fs/cachefiles/key.c | 202 ++- fs/cachefiles/main.c | 22 +- fs/cachefiles/namei.c | 1221 +++++++-------- fs/cachefiles/rdwr.c | 972 ------------ fs/cachefiles/security.c | 2 +- fs/cachefiles/volume.c | 118 ++ fs/cachefiles/xattr.c | 369 ++--- fs/cifs/Kconfig | 2 +- fs/cifs/Makefile | 2 +- fs/cifs/cache.c | 105 -- fs/cifs/cifsfs.c | 11 +- fs/cifs/cifsglob.h | 5 +- fs/cifs/connect.c | 8 - fs/cifs/file.c | 64 +- fs/cifs/fscache.c | 315 +--- fs/cifs/fscache.h | 102 +- fs/cifs/inode.c | 18 +- fs/fs-writeback.c | 8 + fs/fscache/Makefile | 6 +- fs/fscache/cache.c | 618 ++++---- fs/fscache/cookie.c | 1385 +++++++++-------- fs/fscache/fsdef.c | 98 -- fs/fscache/internal.h | 315 +--- fs/fscache/io.c | 368 ++++- fs/fscache/main.c | 136 +- fs/fscache/netfs.c | 74 - fs/fscache/object.c | 1125 ------------- fs/fscache/operation.c | 633 -------- fs/fscache/page.c | 1242 --------------- fs/fscache/proc.c | 45 +- fs/fscache/stats.c | 293 +--- fs/fscache/volume.c | 509 ++++++ fs/namei.c | 3 +- fs/netfs/read_helper.c | 10 +- fs/nfs/Kconfig | 2 +- fs/nfs/Makefile | 2 +- fs/nfs/client.c | 4 - fs/nfs/direct.c | 2 + fs/nfs/file.c | 12 +- fs/nfs/fscache-index.c | 140 -- fs/nfs/fscache.c | 415 ++--- fs/nfs/fscache.h | 123 +- fs/nfs/inode.c | 11 +- fs/nfs/super.c | 7 +- fs/nfs/write.c | 1 + include/linux/fs.h | 4 + include/linux/fscache-cache.h | 614 ++------ include/linux/fscache.h | 1003 +++++------- include/linux/netfs.h | 15 +- include/linux/nfs_fs_sb.h | 9 +- include/linux/writeback.h | 1 + include/trace/events/cachefiles.h | 487 ++++-- include/trace/events/fscache.h | 627 ++++---- include/trace/events/netfs.h | 5 +- 93 files changed, 6651 insertions(+), 13194 deletions(-) delete mode 100644 Documentation/filesystems/caching/object.rst delete mode 100644 Documentation/filesystems/caching/operations.rst delete mode 100644 fs/afs/cache.c delete mode 100644 fs/cachefiles/bind.c create mode 100644 fs/cachefiles/cache.c create mode 100644 fs/cachefiles/error_inject.c delete mode 100644 fs/cachefiles/rdwr.c create mode 100644 fs/cachefiles/volume.c delete mode 100644 fs/cifs/cache.c delete mode 100644 fs/fscache/fsdef.c delete mode 100644 fs/fscache/netfs.c delete mode 100644 fs/fscache/object.c delete mode 100644 fs/fscache/operation.c delete mode 100644 fs/fscache/page.c create mode 100644 fs/fscache/volume.c delete mode 100644 fs/nfs/fscache-index.c -- Linux-cachefs mailing list Linux-cachefs@xxxxxxxxxx https://listman.redhat.com/mailman/listinfo/linux-cachefs