On Saturday 20 December 2008 00:12:08 ext Siarhei Siamashka wrote: [...] > We had a talk with Jaska Uimonen here, and now I'm kind of delegated to > finish the work on this filtering function for SBC encoder (including the > final addition of ARM assembly optimizations). He provided me with his > last variant of code, which contains some more optimizations to reduce the > number of operations and also loops unrolling. I will add his changes to > the patch on next iteration. > > Now the question is how to best integrate a fixed filtering function to git > repository? If I just continue adding changes to the patch in order to make > it a faster, it will be also not so obvious to see how we got to these code > transformations just from the commit log. Next iteration done. Added support for 4 subbands, number of arithmetic operations reduced (but without loop unrolling for better code readability), precision improved for both 16-bit and 32-bit fixed point, 'neginv' macro is now more portable and faster. The rest is in the code comments. Best regards, Siarhei Siamashka
diff --git a/sbc/sbc.c b/sbc/sbc.c index 5411893..3d6a412 100644 --- a/sbc/sbc.c +++ b/sbc/sbc.c @@ -40,6 +40,7 @@ #include <string.h> #include <stdlib.h> #include <sys/types.h> +#include <limits.h> #include "sbc_math.h" #include "sbc_tables.h" @@ -93,7 +94,7 @@ struct sbc_decoder_state { struct sbc_encoder_state { int subbands; int position[2]; - int32_t X[2][160]; + int16_t X[2][160]; }; /* @@ -656,75 +657,56 @@ static void sbc_encoder_init(struct sbc_encoder_state *state, state->position[0] = state->position[1] = 9 * frame->subbands; } -static inline void _sbc_analyze_four(const int32_t *in, int32_t *out) +static inline void _sbc_analyze_four(const int16_t *in, int32_t *out) { - sbc_fixed_t t[8], s[5]; - - t[0] = SCALE4_STAGE1( /* Q8 */ - MULA(_sbc_proto_4[0], in[8] - in[32], /* Q18 */ - MUL( _sbc_proto_4[1], in[16] - in[24]))); - - t[1] = SCALE4_STAGE1( - MULA(_sbc_proto_4[2], in[1], - MULA(_sbc_proto_4[3], in[9], - MULA(_sbc_proto_4[4], in[17], - MULA(_sbc_proto_4[5], in[25], - MUL( _sbc_proto_4[6], in[33])))))); - - t[2] = SCALE4_STAGE1( - MULA(_sbc_proto_4[7], in[2], - MULA(_sbc_proto_4[8], in[10], - MULA(_sbc_proto_4[9], in[18], - MULA(_sbc_proto_4[10], in[26], - MUL( _sbc_proto_4[11], in[34])))))); - - t[3] = SCALE4_STAGE1( - MULA(_sbc_proto_4[12], in[3], - MULA(_sbc_proto_4[13], in[11], - MULA(_sbc_proto_4[14], in[19], - MULA(_sbc_proto_4[15], in[27], - MUL( _sbc_proto_4[16], in[35])))))); - - t[4] = SCALE4_STAGE1( - MULA(_sbc_proto_4[17], in[4] + in[36], - MULA(_sbc_proto_4[18], in[12] + in[28], - MUL( _sbc_proto_4[19], in[20])))); - - t[5] = SCALE4_STAGE1( - MULA(_sbc_proto_4[16], in[5], - MULA(_sbc_proto_4[15], in[13], - MULA(_sbc_proto_4[14], in[21], - MULA(_sbc_proto_4[13], in[29], - MUL( _sbc_proto_4[12], in[37])))))); - - /* don't compute t[6]... this term always multiplies - * with cos(pi/2) = 0 */ - - t[7] = SCALE4_STAGE1( - MULA(_sbc_proto_4[6], in[7], - MULA(_sbc_proto_4[5], in[15], - MULA(_sbc_proto_4[4], in[23], - MULA(_sbc_proto_4[3], in[31], - MUL( _sbc_proto_4[2], in[39])))))); - - s[0] = MUL( _anamatrix4[0], t[0] + t[4]); - s[1] = MUL( _anamatrix4[2], t[2]); - s[2] = MULA(_anamatrix4[1], t[1] + t[3], - MUL(_anamatrix4[3], t[5])); - s[3] = MULA(_anamatrix4[3], t[1] + t[3], - MUL(_anamatrix4[1], -t[5] + t[7])); - s[4] = MUL( _anamatrix4[3], t[7]); - - out[0] = SCALE4_STAGE2( s[0] + s[1] + s[2] + s[4]); /* Q0 */ - out[1] = SCALE4_STAGE2(-s[0] + s[1] + s[3]); - out[2] = SCALE4_STAGE2(-s[0] + s[1] - s[3]); - out[3] = SCALE4_STAGE2( s[0] + s[1] - s[2] - s[4]); + FIXED_A t1[4]; + FIXED_T t2[4]; + int i = 0, hop = 0; + + /* rounding coefficient */ + + t1[0] = t1[1] = t1[2] = t1[3] = + (FIXED_A)1 << (SBC_PROTO_FIXED4_SCALE-1); + + /* low pass polyphase filter */ + for (hop = 0; hop < 40; hop += 8) { + t1[0] += (FIXED_A)in[hop] * _sbc_proto_fixed4[hop]; + t1[1] += (FIXED_A)in[hop + 1] * _sbc_proto_fixed4[hop + 1]; + t1[2] += (FIXED_A)in[hop + 2] * _sbc_proto_fixed4[hop + 2]; + t1[1] += (FIXED_A)in[hop + 3] * _sbc_proto_fixed4[hop + 3]; + t1[0] += (FIXED_A)in[hop + 4] * _sbc_proto_fixed4[hop + 4]; + t1[3] += (FIXED_A)in[hop + 5] * _sbc_proto_fixed4[hop + 5]; + t1[3] += (FIXED_A)in[hop + 7] * _sbc_proto_fixed4[hop + 7]; + } + + /* scaling */ + t2[0] = t1[0] >> SBC_PROTO_FIXED4_SCALE; + t2[1] = t1[1] >> SBC_PROTO_FIXED4_SCALE; + t2[2] = t1[2] >> SBC_PROTO_FIXED4_SCALE; + t2[3] = t1[3] >> SBC_PROTO_FIXED4_SCALE; + + /* do the cos transform */ + for (i = 0, hop = 0; i < 4; hop += 8, i++) { + /* rounding coefficient */ + t1[i] = (FIXED_A)1 << (SBC_COS_TABLE_FIXED4_SCALE-1-SCALE_OUT_BITS); + + t1[i] += (FIXED_A)t2[0] * cos_table_fixed_4[0 + hop]; + t1[i] += (FIXED_A)t2[1] * cos_table_fixed_4[1 + hop]; + t1[i] += (FIXED_A)t2[2] * cos_table_fixed_4[2 + hop]; + t1[i] += (FIXED_A)t2[3] * cos_table_fixed_4[5 + hop]; + } + + /* scaling */ + out[0] = t1[0] >> (SBC_COS_TABLE_FIXED4_SCALE-SCALE_OUT_BITS); + out[1] = t1[1] >> (SBC_COS_TABLE_FIXED4_SCALE-SCALE_OUT_BITS); + out[2] = t1[2] >> (SBC_COS_TABLE_FIXED4_SCALE-SCALE_OUT_BITS); + out[3] = t1[3] >> (SBC_COS_TABLE_FIXED4_SCALE-SCALE_OUT_BITS); } static inline void sbc_analyze_four(struct sbc_encoder_state *state, struct sbc_frame *frame, int ch, int blk) { - int32_t *x = &state->X[ch][state->position[ch]]; + int16_t *x = &state->X[ch][state->position[ch]]; int16_t *pcm = &frame->pcm_sample[ch][blk * 4]; /* Input 4 Audio Samples */ @@ -740,133 +722,80 @@ static inline void sbc_analyze_four(struct sbc_encoder_state *state, state->position[ch] = 36; } -static inline void _sbc_analyze_eight(const int32_t *in, int32_t *out) +static inline void _sbc_analyze_eight(const int16_t *in, int32_t *out) { - sbc_fixed_t t[8], s[8]; - - t[0] = SCALE8_STAGE1( /* Q10 */ - MULA(_sbc_proto_8[0], (in[16] - in[64]), /* Q18 = Q18 * Q0 */ - MULA(_sbc_proto_8[1], (in[32] - in[48]), - MULA(_sbc_proto_8[2], in[4], - MULA(_sbc_proto_8[3], in[20], - MULA(_sbc_proto_8[4], in[36], - MUL( _sbc_proto_8[5], in[52]))))))); - - t[1] = SCALE8_STAGE1( - MULA(_sbc_proto_8[6], in[2], - MULA(_sbc_proto_8[7], in[18], - MULA(_sbc_proto_8[8], in[34], - MULA(_sbc_proto_8[9], in[50], - MUL(_sbc_proto_8[10], in[66])))))); - - t[2] = SCALE8_STAGE1( - MULA(_sbc_proto_8[11], in[1], - MULA(_sbc_proto_8[12], in[17], - MULA(_sbc_proto_8[13], in[33], - MULA(_sbc_proto_8[14], in[49], - MULA(_sbc_proto_8[15], in[65], - MULA(_sbc_proto_8[16], in[3], - MULA(_sbc_proto_8[17], in[19], - MULA(_sbc_proto_8[18], in[35], - MULA(_sbc_proto_8[19], in[51], - MUL( _sbc_proto_8[20], in[67]))))))))))); - - t[3] = SCALE8_STAGE1( - MULA( _sbc_proto_8[21], in[5], - MULA( _sbc_proto_8[22], in[21], - MULA( _sbc_proto_8[23], in[37], - MULA( _sbc_proto_8[24], in[53], - MULA( _sbc_proto_8[25], in[69], - MULA(-_sbc_proto_8[15], in[15], - MULA(-_sbc_proto_8[14], in[31], - MULA(-_sbc_proto_8[13], in[47], - MULA(-_sbc_proto_8[12], in[63], - MUL( -_sbc_proto_8[11], in[79]))))))))))); - - t[4] = SCALE8_STAGE1( - MULA( _sbc_proto_8[26], in[6], - MULA( _sbc_proto_8[27], in[22], - MULA( _sbc_proto_8[28], in[38], - MULA( _sbc_proto_8[29], in[54], - MULA( _sbc_proto_8[30], in[70], - MULA(-_sbc_proto_8[10], in[14], - MULA(-_sbc_proto_8[9], in[30], - MULA(-_sbc_proto_8[8], in[46], - MULA(-_sbc_proto_8[7], in[62], - MUL( -_sbc_proto_8[6], in[78]))))))))))); - - t[5] = SCALE8_STAGE1( - MULA( _sbc_proto_8[31], in[7], - MULA( _sbc_proto_8[32], in[23], - MULA( _sbc_proto_8[33], in[39], - MULA( _sbc_proto_8[34], in[55], - MULA( _sbc_proto_8[35], in[71], - MULA(-_sbc_proto_8[20], in[13], - MULA(-_sbc_proto_8[19], in[29], - MULA(-_sbc_proto_8[18], in[45], - MULA(-_sbc_proto_8[17], in[61], - MUL( -_sbc_proto_8[16], in[77]))))))))))); - - t[6] = SCALE8_STAGE1( - MULA( _sbc_proto_8[36], (in[8] + in[72]), - MULA( _sbc_proto_8[37], (in[24] + in[56]), - MULA( _sbc_proto_8[38], in[40], - MULA(-_sbc_proto_8[39], in[12], - MULA(-_sbc_proto_8[5], in[28], - MULA(-_sbc_proto_8[4], in[44], - MULA(-_sbc_proto_8[3], in[60], - MUL( -_sbc_proto_8[2], in[76]))))))))); - - t[7] = SCALE8_STAGE1( - MULA( _sbc_proto_8[35], in[9], - MULA( _sbc_proto_8[34], in[25], - MULA( _sbc_proto_8[33], in[41], - MULA( _sbc_proto_8[32], in[57], - MULA( _sbc_proto_8[31], in[73], - MULA(-_sbc_proto_8[25], in[11], - MULA(-_sbc_proto_8[24], in[27], - MULA(-_sbc_proto_8[23], in[43], - MULA(-_sbc_proto_8[22], in[59], - MUL( -_sbc_proto_8[21], in[75]))))))))))); - - s[0] = MULA( _anamatrix8[0], t[0], - MUL( _anamatrix8[1], t[6])); - s[1] = MUL( _anamatrix8[7], t[1]); - s[2] = MULA( _anamatrix8[2], t[2], - MULA( _anamatrix8[3], t[3], - MULA( _anamatrix8[4], t[5], - MUL( _anamatrix8[5], t[7])))); - s[3] = MUL( _anamatrix8[6], t[4]); - s[4] = MULA( _anamatrix8[3], t[2], - MULA(-_anamatrix8[5], t[3], - MULA(-_anamatrix8[2], t[5], - MUL( -_anamatrix8[4], t[7])))); - s[5] = MULA( _anamatrix8[4], t[2], - MULA(-_anamatrix8[2], t[3], - MULA( _anamatrix8[5], t[5], - MUL( _anamatrix8[3], t[7])))); - s[6] = MULA( _anamatrix8[1], t[0], - MUL( -_anamatrix8[0], t[6])); - s[7] = MULA( _anamatrix8[5], t[2], - MULA(-_anamatrix8[4], t[3], - MULA( _anamatrix8[3], t[5], - MUL( -_anamatrix8[2], t[7])))); - - out[0] = SCALE8_STAGE2( s[0] + s[1] + s[2] + s[3]); - out[1] = SCALE8_STAGE2( s[1] - s[3] + s[4] + s[6]); - out[2] = SCALE8_STAGE2( s[1] - s[3] + s[5] - s[6]); - out[3] = SCALE8_STAGE2(-s[0] + s[1] + s[3] + s[7]); - out[4] = SCALE8_STAGE2(-s[0] + s[1] + s[3] - s[7]); - out[5] = SCALE8_STAGE2( s[1] - s[3] - s[5] - s[6]); - out[6] = SCALE8_STAGE2( s[1] - s[3] - s[4] + s[6]); - out[7] = SCALE8_STAGE2( s[0] + s[1] - s[2] + s[3]); + FIXED_A t1[8]; + FIXED_T t2[8]; + int i, hop; + + /* rounding coefficient */ + t1[0] = t1[1] = t1[2] = t1[3] = t1[4] = t1[5] = t1[6] = t1[7] = + (FIXED_A)1 << (SBC_PROTO_FIXED8_SCALE-1); + + /* low pass polyphase filter */ + for (hop = 0; hop < 80; hop += 16) { + t1[0] += (FIXED_A)in[hop] * _sbc_proto_fixed8[hop]; + t1[1] += (FIXED_A)in[hop + 1] * _sbc_proto_fixed8[hop + 1]; + t1[2] += (FIXED_A)in[hop + 2] * _sbc_proto_fixed8[hop + 2]; + t1[3] += (FIXED_A)in[hop + 3] * _sbc_proto_fixed8[hop + 3]; + + t1[4] += (FIXED_A)in[hop + 4] * _sbc_proto_fixed8[hop + 4]; + + t1[0] += (FIXED_A)in[hop + 8] * _sbc_proto_fixed8[hop + 8]; + t1[1] += (FIXED_A)in[hop + 7] * _sbc_proto_fixed8[hop + 7]; + t1[2] += (FIXED_A)in[hop + 6] * _sbc_proto_fixed8[hop + 6]; + t1[3] += (FIXED_A)in[hop + 5] * _sbc_proto_fixed8[hop + 5]; + + t1[5] += (FIXED_A)in[hop + 9] * _sbc_proto_fixed8[hop + 9]; + t1[6] += (FIXED_A)in[hop + 10] * _sbc_proto_fixed8[hop + 10]; + t1[7] += (FIXED_A)in[hop + 11] * _sbc_proto_fixed8[hop + 11]; + + t1[5] += (FIXED_A)in[hop + 15] * _sbc_proto_fixed8[hop + 15]; + t1[6] += (FIXED_A)in[hop + 14] * _sbc_proto_fixed8[hop + 14]; + t1[7] += (FIXED_A)in[hop + 13] * _sbc_proto_fixed8[hop + 13]; + } + + /* scaling */ + t2[0] = t1[0] >> SBC_PROTO_FIXED8_SCALE; + t2[1] = t1[1] >> SBC_PROTO_FIXED8_SCALE; + t2[2] = t1[2] >> SBC_PROTO_FIXED8_SCALE; + t2[3] = t1[3] >> SBC_PROTO_FIXED8_SCALE; + t2[4] = t1[4] >> SBC_PROTO_FIXED8_SCALE; + t2[5] = t1[5] >> SBC_PROTO_FIXED8_SCALE; + t2[6] = t1[6] >> SBC_PROTO_FIXED8_SCALE; + t2[7] = t1[7] >> SBC_PROTO_FIXED8_SCALE; + + /* do the cos transform */ + for (i = 0, hop = 0; i < 8; hop += 16, i++) { + /* rounding coefficient */ + t1[i] = (FIXED_A)1 << (SBC_COS_TABLE_FIXED8_SCALE-1-SCALE_OUT_BITS); + + t1[i] += (FIXED_A)t2[0] * cos_table_fixed_8[0 + hop]; + t1[i] += (FIXED_A)t2[1] * cos_table_fixed_8[1 + hop]; + t1[i] += (FIXED_A)t2[2] * cos_table_fixed_8[2 + hop]; + t1[i] += (FIXED_A)t2[3] * cos_table_fixed_8[3 + hop]; + t1[i] += (FIXED_A)t2[4] * cos_table_fixed_8[4 + hop]; + t1[i] += (FIXED_A)t2[5] * cos_table_fixed_8[9 + hop]; + t1[i] += (FIXED_A)t2[6] * cos_table_fixed_8[10 + hop]; + t1[i] += (FIXED_A)t2[7] * cos_table_fixed_8[11 + hop]; + } + + /* scaling */ + out[0] = t1[0] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[1] = t1[1] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[2] = t1[2] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[3] = t1[3] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[4] = t1[4] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[5] = t1[5] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[6] = t1[6] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); + out[7] = t1[7] >> (SBC_COS_TABLE_FIXED8_SCALE-SCALE_OUT_BITS); } static inline void sbc_analyze_eight(struct sbc_encoder_state *state, struct sbc_frame *frame, int ch, int blk) { - int32_t *x = &state->X[ch][state->position[ch]]; + int16_t *x = &state->X[ch][state->position[ch]]; int16_t *pcm = &frame->pcm_sample[ch][blk * 8]; /* Input 8 Audio Samples */ @@ -1006,7 +935,7 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) frame->scale_factor[ch][sb] = 0; scalefactor[ch][sb] = 2; for (blk = 0; blk < frame->blocks; blk++) { - while (scalefactor[ch][sb] < fabs(frame->sb_sample_f[blk][ch][sb])) { + while ((scalefactor[ch][sb] << SCALE_OUT_BITS) <= neginv(frame->sb_sample_f[blk][ch][sb])) { frame->scale_factor[ch][sb]++; scalefactor[ch][sb] *= 2; } @@ -1040,11 +969,11 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) frame->sb_sample_f[blk][1][sb]) >> 1; /* calculate scale_factor_j and scalefactor_j for joint case */ - while (scalefactor_j[0] < fabs(sb_sample_j[blk][0])) { + while ((scalefactor_j[0] << SCALE_OUT_BITS) <= neginv(sb_sample_j[blk][0])) { scale_factor_j[0]++; scalefactor_j[0] *= 2; } - while (scalefactor_j[1] < fabs(sb_sample_j[blk][1])) { + while ((scalefactor_j[1] << SCALE_OUT_BITS) <= neginv(sb_sample_j[blk][1])) { scale_factor_j[1]++; scalefactor_j[1] *= 2; } @@ -1100,11 +1029,11 @@ static int sbc_pack_frame(uint8_t *data, struct sbc_frame *frame, size_t len) for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (levels[ch][sb] > 0) { - audio_sample = - (uint16_t) (((((int64_t)frame->sb_sample_f[blk][ch][sb]*levels[ch][sb]) >> - (frame->scale_factor[ch][sb] + 1)) + - levels[ch][sb]) >> 1); - PUT_BITS(audio_sample & levels[ch][sb], bits[ch][sb]); + int32_t sample = frame->sb_sample_f[blk][ch][sb]; + int32_t s_shift = (frame->scale_factor[ch][sb] + 1 + SCALE_OUT_BITS); + int32_t ls = levels[ch][sb]; + audio_sample = ((((int64_t)1 << s_shift) + sample) * ls) >> (s_shift + 1); + PUT_BITS(audio_sample, bits[ch][sb]); } } } diff --git a/sbc/sbc_math.h b/sbc/sbc_math.h index b3d87a6..f3937ce 100644 --- a/sbc/sbc_math.h +++ b/sbc/sbc_math.h @@ -23,37 +23,30 @@ * */ -#define fabs(x) ((x) < 0 ? -(x) : (x)) /* C does not provide an explicit arithmetic shift right but this will always be correct and every compiler *should* generate optimal code */ #define ASR(val, bits) ((-2 >> 1 == -1) ? \ ((int32_t)(val)) >> (bits) : ((int32_t) (val)) / (1 << (bits))) -#define SCALE_PROTO4_TBL 15 -#define SCALE_ANA4_TBL 17 -#define SCALE_PROTO8_TBL 16 -#define SCALE_ANA8_TBL 17 +#define neginv(x) ((-2 >> 1 == -1) ? \ + ((((int32_t)(x)) >> 31) ^ (int32_t)(x)) : \ + ((x >= 0) ? (x) : -(x)-1)) + +#define SCALE_OUT_BITS 14 + #define SCALE_SPROTO4_TBL 12 #define SCALE_SPROTO8_TBL 14 #define SCALE_NPROTO4_TBL 11 #define SCALE_NPROTO8_TBL 11 -#define SCALE4_STAGE1_BITS 15 -#define SCALE4_STAGE2_BITS 16 #define SCALE4_STAGED1_BITS 15 #define SCALE4_STAGED2_BITS 16 -#define SCALE8_STAGE1_BITS 15 -#define SCALE8_STAGE2_BITS 15 #define SCALE8_STAGED1_BITS 15 #define SCALE8_STAGED2_BITS 16 typedef int32_t sbc_fixed_t; -#define SCALE4_STAGE1(src) ASR(src, SCALE4_STAGE1_BITS) -#define SCALE4_STAGE2(src) ASR(src, SCALE4_STAGE2_BITS) #define SCALE4_STAGED1(src) ASR(src, SCALE4_STAGED1_BITS) #define SCALE4_STAGED2(src) ASR(src, SCALE4_STAGED2_BITS) -#define SCALE8_STAGE1(src) ASR(src, SCALE8_STAGE1_BITS) -#define SCALE8_STAGE2(src) ASR(src, SCALE8_STAGE2_BITS) #define SCALE8_STAGED1(src) ASR(src, SCALE8_STAGED1_BITS) #define SCALE8_STAGED2(src) ASR(src, SCALE8_STAGED2_BITS) diff --git a/sbc/sbc_tables.h b/sbc/sbc_tables.h index f5daaa7..9c96732 100644 --- a/sbc/sbc_tables.h +++ b/sbc/sbc_tables.h @@ -40,40 +40,11 @@ static const int sbc_offset8[4][8] = { }; -#define SP4(val) (((int32_t)(val))/17658) /* Used to be #define SP4(val) ASR(val, SCALE_PROTO4_TBL) but causes wrong gain */ -#define SA4(val) ASR(val, SCALE_ANA4_TBL) -#define SP8(val) (((int32_t)(val))/57740) /* Used to be #define SP8(val) ASR(val, SCALE_PROTO8_TBL) but causes wrong gain */ -#define SA8(val) ASR(val, SCALE_ANA8_TBL) #define SS4(val) ASR(val, SCALE_SPROTO4_TBL) #define SS8(val) ASR(val, SCALE_SPROTO8_TBL) #define SN4(val) ASR(val, SCALE_NPROTO4_TBL) #define SN8(val) ASR(val, SCALE_NPROTO8_TBL) -static const int32_t _sbc_proto_4[20] = { - SP4(0x02cb3e8c), SP4(0x22b63dc0), SP4(0x002329cc), SP4(0x053b7548), - SP4(0x31eab940), SP4(0xec1f5e60), SP4(0xff3773a8), SP4(0x0061c5a7), - SP4(0x07646680), SP4(0x3f239480), SP4(0xf89f23a8), SP4(0x007a4737), - SP4(0x00b32807), SP4(0x083ddc80), SP4(0x4825e480), SP4(0x0191e578), - SP4(0x00ff11ca), SP4(0x00fb7991), SP4(0x069fdc58), SP4(0x4b584000) -}; - -static const int32_t _anamatrix4[4] = { - SA4(0x2d413cc0), SA4(0x3b20d780), SA4(0x40000000), SA4(0x187de2a0) -}; - -static const int32_t _sbc_proto_8[40] = { - SP8(0x02e5cd20), SP8(0x22d0c200), SP8(0x006bfe27), SP8(0x07808930), - SP8(0x3f1c8800), SP8(0xf8810d70), SP8(0x002cfdc6), SP8(0x055acf28), - SP8(0x31f566c0), SP8(0xebfe57e0), SP8(0xff27c437), SP8(0x001485cc), - SP8(0x041c6e58), SP8(0x2a7cfa80), SP8(0xe4c4a240), SP8(0xfe359e4c), - SP8(0x0048b1f8), SP8(0x0686ce30), SP8(0x38eec5c0), SP8(0xf2a1b9f0), - SP8(0xffe8904a), SP8(0x0095698a), SP8(0x0824a480), SP8(0x443b3c00), - SP8(0xfd7badc8), SP8(0x00d3e2d9), SP8(0x00c183d2), SP8(0x084e1950), - SP8(0x4810d800), SP8(0x017f43fe), SP8(0x01056dd8), SP8(0x00e9cb9f), - SP8(0x07d7d090), SP8(0x4a708980), SP8(0x0488fae8), SP8(0x0113bd20), - SP8(0x0107b1a8), SP8(0x069fb3c0), SP8(0x4b3db200), SP8(0x00763f48) -}; - static const int32_t sbc_proto_4_40m0[] = { SS4(0x00000000), SS4(0xffa6982f), SS4(0xfba93848), SS4(0x0456c7b8), SS4(0x005967d1), SS4(0xfffb9ac7), SS4(0xff589157), SS4(0xf9c2a8d8), @@ -116,11 +87,6 @@ static const int32_t sbc_proto_8_80m1[] = { SS8(0x0d9daee0), SS8(0xeac182c0), SS8(0xfdf1c8d4), SS8(0xfff5bd1a) }; -static const int32_t _anamatrix8[8] = { - SA8(0x3b20d780), SA8(0x187de2a0), SA8(0x3ec52f80), SA8(0x3536cc40), - SA8(0x238e7680), SA8(0x0c7c5c20), SA8(0x2d413cc0), SA8(0x40000000) -}; - static const int32_t synmatrix4[8][4] = { { SN4(0x05a82798), SN4(0xfa57d868), SN4(0xfa57d868), SN4(0x05a82798) }, { SN4(0x030fbc54), SN4(0xf89be510), SN4(0x07641af0), SN4(0xfcf043ac) }, @@ -166,3 +132,169 @@ static const int32_t synmatrix8[16][8] = { { SN8(0xf9592678), SN8(0x018f8b84), SN8(0x07d8a5f0), SN8(0x0471ced0), SN8(0xfb8e3130), SN8(0xf8275a10), SN8(0xfe70747c), SN8(0x06a6d988) } }; + +//#define SBC_HIGH_PRECISION + +#ifdef SBC_HIGH_PRECISION +# define FIXED_A int64_t /* data type for fixed point accumulator */ +# define FIXED_T int32_t /* data type for fixed point constants */ +# define SBC_FIXED8_EXTRA_BITS 16 +#else +# define FIXED_A int32_t /* data type for fixed point accumulator */ +# define FIXED_T int16_t /* data type for fixed point constants */ +# define SBC_FIXED8_EXTRA_BITS 0 +#endif + +/* A2DP specification: Section 12.8 Tables + * + * Original values are premultiplied by 4 for better precision (that is the + * maximum which is possible without overflows) + * + * Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15 + * in order to compensate the same change applied to cos_table_fixed_8 + */ +#define SBC_PROTO_FIXED8_SCALE (sizeof(FIXED_T)*CHAR_BIT-1-SBC_FIXED8_EXTRA_BITS+2) +#define F(x) (FIXED_A)((x*4)*((FIXED_A)1<<(sizeof(FIXED_T)*CHAR_BIT-1))+0.5) +static const FIXED_T _sbc_proto_fixed8[80] = { + F(0.00000000E+00), F(1.56575398E-04), F(3.43256425E-04), F(5.54620202E-04), + -F(8.23919506E-04), F(1.13992507E-03), F(1.47640169E-03), F(1.78371725E-03), + F(2.01182542E-03), F(2.10371989E-03), F(1.99454554E-03), F(1.61656283E-03), + F(9.02154502E-04), F(1.78805361E-04), F(1.64973098E-03), F(3.49717454E-03), + + F(5.65949473E-03), F(8.02941163E-03), F(1.04584443E-02), F(1.27472335E-02), + -F(1.46525263E-02), F(1.59045603E-02), F(1.62208471E-02), F(1.53184106E-02), + F(1.29371806E-02), F(8.85757540E-03), F(2.92408442E-03),-F(4.91578024E-03), + -F(1.46404076E-02), F(2.61098752E-02), F(3.90751381E-02), F(5.31873032E-02), + + F(6.79989431E-02), F(8.29847578E-02), F(9.75753918E-02), F(1.11196689E-01), + -F(1.23264548E-01), F(1.33264415E-01), F(1.40753505E-01), F(1.45389847E-01), + F(1.46955068E-01), F(1.45389847E-01), F(1.40753505E-01), F(1.33264415E-01), + F(1.23264548E-01),-F(1.11196689E-01),-F(9.75753918E-02),-F(8.29847578E-02), + + -F(6.79989431E-02),-F(5.31873032E-02),-F(3.90751381E-02),-F(2.61098752E-02), + F(1.46404076E-02),-F(4.91578024E-03), F(2.92408442E-03), F(8.85757540E-03), + F(1.29371806E-02), F(1.53184106E-02), F(1.62208471E-02), F(1.59045603E-02), + F(1.46525263E-02),-F(1.27472335E-02),-F(1.04584443E-02),-F(8.02941163E-03), + + -F(5.65949473E-03),-F(3.49717454E-03),-F(1.64973098E-03),-F(1.78805361E-04), + -F(9.02154502E-04), F(1.61656283E-03), F(1.99454554E-03), F(2.10371989E-03), + F(2.01182542E-03), F(1.78371725E-03), F(1.47640169E-03), F(1.13992507E-03), + F(8.23919506E-04),-F(5.54620202E-04),-F(3.43256425E-04),-F(1.56575398E-04), +}; +#undef F + +/* + * To produce this cosine matrix in Octave: + * + * b = zeros(8, 16); + * for i = 0:7 for j = 0:15 b(i+1, j+1) = cos( (i + 0.5) * (j - 4) * (pi/8) ) endfor endfor; + * printf("%.10f, ", b'); + * + * Note: in each block of 16 numbers sign was changed for elements 4, 13, 14, 15. + * Change of sign for element 4 allows to replace constant 1.0 (not representable + * in Q15 format) with -1.0 (fine with Q15). + * Changed signs for elements 13, 14, 15 allow to have more similar constants + * and simplify subband filter function code. + */ +#define SBC_COS_TABLE_FIXED8_SCALE (sizeof(FIXED_T)*CHAR_BIT-1+SBC_FIXED8_EXTRA_BITS) +#define F(x) (FIXED_A)((x)*((FIXED_A)1<<(sizeof(FIXED_T)*CHAR_BIT-1))+0.5) +static const FIXED_T cos_table_fixed_8[128] = { + F(0.7071067812), F(0.8314696123), F(0.9238795325), F(0.9807852804), + -F(1.0000000000), F(0.9807852804), F(0.9238795325), F(0.8314696123), + F(0.7071067812), F(0.5555702330), F(0.3826834324), F(0.1950903220), + F(0.0000000000), F(0.1950903220), F(0.3826834324), F(0.5555702330), + + -F(0.7071067812),-F(0.1950903220), F(0.3826834324), F(0.8314696123), + -F(1.0000000000), F(0.8314696123), F(0.3826834324),-F(0.1950903220), + -F(0.7071067812),-F(0.9807852804),-F(0.9238795325),-F(0.5555702330), + -F(0.0000000000),-F(0.5555702330),-F(0.9238795325),-F(0.9807852804), + + -F(0.7071067812),-F(0.9807852804),-F(0.3826834324), F(0.5555702330), + -F(1.0000000000), F(0.5555702330),-F(0.3826834324),-F(0.9807852804), + -F(0.7071067812), F(0.1950903220), F(0.9238795325), F(0.8314696123), + F(0.0000000000), F(0.8314696123), F(0.9238795325), F(0.1950903220), + + F(0.7071067812),-F(0.5555702330),-F(0.9238795325), F(0.1950903220), + -F(1.0000000000), F(0.1950903220),-F(0.9238795325),-F(0.5555702330), + F(0.7071067812), F(0.8314696123),-F(0.3826834324),-F(0.9807852804), + -F(0.0000000000),-F(0.9807852804),-F(0.3826834324), F(0.8314696123), + + F(0.7071067812), F(0.5555702330),-F(0.9238795325),-F(0.1950903220), + -F(1.0000000000),-F(0.1950903220),-F(0.9238795325), F(0.5555702330), + F(0.7071067812),-F(0.8314696123),-F(0.3826834324), F(0.9807852804), + F(0.0000000000), F(0.9807852804),-F(0.3826834324),-F(0.8314696123), + + -F(0.7071067812), F(0.9807852804),-F(0.3826834324),-F(0.5555702330), + -F(1.0000000000),-F(0.5555702330),-F(0.3826834324), F(0.9807852804), + -F(0.7071067812),-F(0.1950903220), F(0.9238795325),-F(0.8314696123), + -F(0.0000000000),-F(0.8314696123), F(0.9238795325),-F(0.1950903220), + + -F(0.7071067812), F(0.1950903220), F(0.3826834324),-F(0.8314696123), + -F(1.0000000000),-F(0.8314696123), F(0.3826834324), F(0.1950903220), + -F(0.7071067812), F(0.9807852804),-F(0.9238795325), F(0.5555702330), + -F(0.0000000000), F(0.5555702330),-F(0.9238795325), F(0.9807852804), + + F(0.7071067812),-F(0.8314696123), F(0.9238795325),-F(0.9807852804), + -F(1.0000000000),-F(0.9807852804), F(0.9238795325),-F(0.8314696123), + F(0.7071067812),-F(0.5555702330), F(0.3826834324),-F(0.1950903220), + -F(0.0000000000),-F(0.1950903220), F(0.3826834324),-F(0.5555702330), +}; +#undef F + +/* A2DP specification: Section 12.8 Tables + * + * Original values are premultiplied by 2 for better precision (that is the + * maximum which is possible without overflows) + * + * Note: in each block of 8 numbers sign was changed for elements 2 and 7 + * in order to compensate the same change applied to cos_table_fixed_4 + */ +#define SBC_PROTO_FIXED4_SCALE (sizeof(FIXED_T)*CHAR_BIT-1-SBC_FIXED8_EXTRA_BITS+1) +#define F(x) (FIXED_A)((x*2)*((FIXED_A)1<<(sizeof(FIXED_T)*CHAR_BIT-1))+0.5) +static const FIXED_T _sbc_proto_fixed4[40] = { + F(0.00000000E+00), F(5.36548976E-04),-F(1.49188357E-03), F(2.73370904E-03), + F(3.83720193E-03), F(3.89205149E-03), F(1.86581691E-03), F(3.06012286E-03), + + F(1.09137620E-02), F(2.04385087E-02),-F(2.88757392E-02), F(3.21939290E-02), + F(2.58767811E-02), F(6.13245186E-03),-F(2.88217274E-02), F(7.76463494E-02), + + F(1.35593274E-01), F(1.94987841E-01),-F(2.46636662E-01), F(2.81828203E-01), + F(2.94315332E-01), F(2.81828203E-01), F(2.46636662E-01),-F(1.94987841E-01), + + -F(1.35593274E-01),-F(7.76463494E-02), F(2.88217274E-02), F(6.13245186E-03), + F(2.58767811E-02), F(3.21939290E-02), F(2.88757392E-02),-F(2.04385087E-02), + + -F(1.09137620E-02),-F(3.06012286E-03),-F(1.86581691E-03), F(3.89205149E-03), + F(3.83720193E-03), F(2.73370904E-03), F(1.49188357E-03),-F(5.36548976E-04), +}; +#undef F + +/* + * To produce this cosine matrix in Octave: + * + * b = zeros(4, 8); + * for i = 0:3 for j = 0:7 b(i+1, j+1) = cos( (i + 0.5) * (j - 2) * (pi/4) ) endfor endfor; + * printf("F(%.10f), ", b'); + * + * Note: in each block of 8 numbers sign was changed for elements 2 and 7. + * Change of sign for element 2 allows to replace constant 1.0 (not representable + * in Q15 format) with -1.0 (fine with Q15). + * Changed sign for element 7 allows to have more similar constants + * and simplify subband filter function code. + */ +#define SBC_COS_TABLE_FIXED4_SCALE (sizeof(FIXED_T)*CHAR_BIT-1+SBC_FIXED8_EXTRA_BITS) +#define F(x) (FIXED_A)((x)*((FIXED_A)1<<(sizeof(FIXED_T)*CHAR_BIT-1))+0.5) +static const FIXED_T cos_table_fixed_4[32] = { + F(0.7071067812), F(0.9238795325),-F(1.0000000000), F(0.9238795325), + F(0.7071067812), F(0.3826834324), F(0.0000000000), F(0.3826834324), + + -F(0.7071067812), F(0.3826834324),-F(1.0000000000), F(0.3826834324), + -F(0.7071067812),-F(0.9238795325),-F(0.0000000000),-F(0.9238795325), + + -F(0.7071067812),-F(0.3826834324),-F(1.0000000000),-F(0.3826834324), + -F(0.7071067812), F(0.9238795325), F(0.0000000000), F(0.9238795325), + + F(0.7071067812),-F(0.9238795325),-F(1.0000000000),-F(0.9238795325), + F(0.7071067812),-F(0.3826834324),-F(0.0000000000),-F(0.3826834324), +}; +#undef F