To boost throughput on devices with internal queueing and in scenarios where device idling is not strictly needed, bfq immediately starts serving a new bfq_queue if the in-service bfq_queue remains without pending I/O, even if new I/O may arrive soon for the latter queue. Then, if such I/O actually arrives soon, bfq preempts the new in-service bfq_queue so as to give the previous queue a chance to go on being served (in case the previous queue should actually be the one to be served, according to its timestamps). However, the in-service bfq_queue, say Q, may also be without further budget when it remains also pending I/O. Since bfq changes budgets dynamically to fit the needs of bfq_queues, this happens more often than one may expect. If this happens, then there is no point in trying to go on serving Q when new I/O arrives for it soon: Q would be expired immediately after being selected for service. This would only cause useless overhead. This commit avoids such a useless selection. Signed-off-by: Paolo Valente <paolo.valente@xxxxxxxxxx> --- block/bfq-iosched.c | 10 +++++++++- 1 file changed, 9 insertions(+), 1 deletion(-) diff --git a/block/bfq-iosched.c b/block/bfq-iosched.c index c7a4a15c7c19..9ea2c4f42501 100644 --- a/block/bfq-iosched.c +++ b/block/bfq-iosched.c @@ -1380,7 +1380,15 @@ static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, { struct bfq_entity *entity = &bfqq->entity; - if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) { + /* + * In the next compound condition, we check also whether there + * is some budget left, because otherwise there is no point in + * trying to go on serving bfqq with this same budget: bfqq + * would be expired immediately after being selected for + * service. This would only cause useless overhead. + */ + if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time && + bfq_bfqq_budget_left(bfqq) > 0) { /* * We do not clear the flag non_blocking_wait_rq here, as * the latter is used in bfq_activate_bfqq to signal -- 2.20.1