On Tue, Oct 30, 2018 at 08:36:35AM -0600, Jens Axboe wrote: > On 10/30/18 8:26 AM, Keith Busch wrote: > > On Mon, Oct 29, 2018 at 10:37:35AM -0600, Jens Axboe wrote: > >> diff --git a/kernel/irq/affinity.c b/kernel/irq/affinity.c > >> index f4f29b9d90ee..2046a0f0f0f1 100644 > >> --- a/kernel/irq/affinity.c > >> +++ b/kernel/irq/affinity.c > >> @@ -180,6 +180,7 @@ irq_create_affinity_masks(int nvecs, const struct irq_affinity *affd) > >> int curvec, usedvecs; > >> cpumask_var_t nmsk, npresmsk, *node_to_cpumask; > >> struct cpumask *masks = NULL; > >> + int i, nr_sets; > >> > >> /* > >> * If there aren't any vectors left after applying the pre/post > >> @@ -210,10 +211,23 @@ irq_create_affinity_masks(int nvecs, const struct irq_affinity *affd) > >> get_online_cpus(); > >> build_node_to_cpumask(node_to_cpumask); > >> > >> - /* Spread on present CPUs starting from affd->pre_vectors */ > >> - usedvecs = irq_build_affinity_masks(affd, curvec, affvecs, > >> - node_to_cpumask, cpu_present_mask, > >> - nmsk, masks); > >> + /* > >> + * Spread on present CPUs starting from affd->pre_vectors. If we > >> + * have multiple sets, build each sets affinity mask separately. > >> + */ > >> + nr_sets = affd->nr_sets; > >> + if (!nr_sets) > >> + nr_sets = 1; > >> + > >> + for (i = 0, usedvecs = 0; i < nr_sets; i++) { > >> + int this_vecs = affd->sets ? affd->sets[i] : affvecs; > >> + int nr; > >> + > >> + nr = irq_build_affinity_masks(affd, curvec, this_vecs, > >> + node_to_cpumask, cpu_present_mask, > >> + nmsk, masks + usedvecs); > >> + usedvecs += nr; > >> + } > > > > > > While the code below returns the appropriate number of possible vectors > > when a set requested too many, the above code is still using the value > > from the set, which may exceed 'nvecs' used to kcalloc 'masks', so > > 'masks + usedvecs' may go out of bounds. > > How so? nvecs must the max number of vecs, the sum of the sets can't > exceed that value. 'nvecs' is what irq_calc_affinity_vectors() returns, which is the min of either the requested max or the sum of the set, and the sum of the set isn't guaranteed to be the smaller value.