Hello Om, On 12/07/2023, Om Prakash Singh wrote: > On 11/22/2023 11:08 AM, Gaurav Kashyap wrote: > > Inline storage encryption requires deriving a sw secret from the > > hardware wrapped keys. For non-wrapped keys, this can be directly done > > as keys are in the clear. > > > > However, when keys are hardware wrapped, it can be unwrapped by > HWKM > > (Hardware Key Manager) which is accessible only from Qualcomm > > Trustzone. Hence, it also makes sense that the software secret is also > > derived there and returned to the linux kernel . This can be invoked > > by using the crypto profile APIs provided by the block layer. > > > > Signed-off-by: Gaurav Kashyap <quic_gaurkash@xxxxxxxxxxx> > > --- > > drivers/firmware/qcom/qcom_scm.c | 71 > ++++++++++++++++++++++++++ > > drivers/firmware/qcom/qcom_scm.h | 1 + > > include/linux/firmware/qcom/qcom_scm.h | 2 + > > 3 files changed, 74 insertions(+) > > > > diff --git a/drivers/firmware/qcom/qcom_scm.c > > b/drivers/firmware/qcom/qcom_scm.c > > index 520de9b5633a..6dfb913f3e33 100644 > > --- a/drivers/firmware/qcom/qcom_scm.c > > +++ b/drivers/firmware/qcom/qcom_scm.c > > @@ -1214,6 +1214,77 @@ int qcom_scm_ice_set_key(u32 index, const u8 > *key, u32 key_size, > > } > > EXPORT_SYMBOL_GPL(qcom_scm_ice_set_key); > > > > +/** > > + * qcom_scm_derive_sw_secret() - Derive software secret from wrapped > > +key > > + * @wkey: the hardware wrapped key inaccessible to software > > + * @wkey_size: size of the wrapped key > > + * @sw_secret: the secret to be derived which is exactly the secret > > +size > > + * @sw_secret_size: size of the sw_secret > > + * > > + * Derive a software secret from a hardware wrapped key for software > > +crypto > > + * operations. > > + * For wrapped keys, the key needs to be unwrapped, in order to > > +derive a > > + * software secret, which can be done in the hardware from a secure > > +execution > > + * environment. > > + * > > + * For more information on sw secret, please refer to "Hardware-wrapped > keys" > > + * section of Documentation/block/inline-encryption.rst. > > + * > > + * Return: 0 on success; -errno on failure. > > + */ > > +int qcom_scm_derive_sw_secret(const u8 *wkey, size_t wkey_size, > > + u8 *sw_secret, size_t sw_secret_size) { > > + struct qcom_scm_desc desc = { > > + .svc = QCOM_SCM_SVC_ES, > > + .cmd = QCOM_SCM_ES_DERIVE_SW_SECRET, > > + .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_RW, > > + QCOM_SCM_VAL, QCOM_SCM_RW, > > + QCOM_SCM_VAL), > > + .args[1] = wkey_size, > > + .args[3] = sw_secret_size, > > + .owner = ARM_SMCCC_OWNER_SIP, > > + }; > > + > > + void *wkey_buf, *secret_buf; > > + dma_addr_t wkey_phys, secret_phys; > > + int ret; > > + > > + /* > > + * Like qcom_scm_ice_set_key(), we use dma_alloc_coherent() to > properly > > + * get a physical address, while guaranteeing that we can zeroize the > > + * key material later using memzero_explicit(). > > + */ > > + wkey_buf = dma_alloc_coherent(__scm->dev, wkey_size, > &wkey_phys, GFP_KERNEL); > > + if (!wkey_buf) > > + return -ENOMEM; > > + secret_buf = dma_alloc_coherent(__scm->dev, sw_secret_size, > &secret_phys, GFP_KERNEL); > > + if (!secret_buf) { > > + ret = -ENOMEM; > > + goto err_free_wrapped; > > + } > > + > > + memcpy(wkey_buf, wkey, wkey_size); > > + desc.args[0] = wkey_phys; > > + desc.args[2] = secret_phys; > > + > > + ret = qcom_scm_call(__scm->dev, &desc, NULL); > > + if (!ret) > > + memcpy(sw_secret, secret_buf, sw_secret_size); > > + > > + memzero_explicit(secret_buf, sw_secret_size); > > + > > + dma_free_coherent(__scm->dev, sw_secret_size, secret_buf, > > +secret_phys); > > + > > +err_free_wrapped: > > + memzero_explicit(wkey_buf, wkey_size); > In error handling case the operation is being performed on unallocated > memory. The flow comes here only when secret_buf allocation fails. And at that point, wkey_buf is already allocated. Wkey_buf failure errors out directly after allocation failure. > > + > > + dma_free_coherent(__scm->dev, wkey_size, wkey_buf, > wkey_phys); > > + > > + return ret; > > +} > > +EXPORT_SYMBOL(qcom_scm_derive_sw_secret); > > + > > /** > > * qcom_scm_hdcp_available() - Check if secure environment supports > HDCP. > > * > > diff --git a/drivers/firmware/qcom/qcom_scm.h > > b/drivers/firmware/qcom/qcom_scm.h > > index 4532907e8489..c75456aa6ac5 100644 > > --- a/drivers/firmware/qcom/qcom_scm.h > > +++ b/drivers/firmware/qcom/qcom_scm.h > > @@ -121,6 +121,7 @@ int scm_legacy_call(struct device *dev, const struct > qcom_scm_desc *desc, > > #define QCOM_SCM_SVC_ES 0x10 /* Enterprise > Security */ > > #define QCOM_SCM_ES_INVALIDATE_ICE_KEY 0x03 > > #define QCOM_SCM_ES_CONFIG_SET_ICE_KEY 0x04 > > +#define QCOM_SCM_ES_DERIVE_SW_SECRET 0x07 > > > > #define QCOM_SCM_SVC_HDCP 0x11 > > #define QCOM_SCM_HDCP_INVOKE 0x01 > > diff --git a/include/linux/firmware/qcom/qcom_scm.h > > b/include/linux/firmware/qcom/qcom_scm.h > > index ccaf28846054..c65f2d61492d 100644 > > --- a/include/linux/firmware/qcom/qcom_scm.h > > +++ b/include/linux/firmware/qcom/qcom_scm.h > > @@ -103,6 +103,8 @@ bool qcom_scm_ice_available(void); > > int qcom_scm_ice_invalidate_key(u32 index); > > int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size, > > enum qcom_scm_ice_cipher cipher, u32 > data_unit_size); > > +int qcom_scm_derive_sw_secret(const u8 *wkey, size_t wkey_size, > > + u8 *sw_secret, size_t sw_secret_size); > > > > bool qcom_scm_hdcp_available(void); > > int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, > > u32 *resp);