Re: Where do the 60 degrees for stereo come from?

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Fri, Jun 24, 2011 at 01:58:47PM +0200, Philipp Überbacher wrote:

> I found a bit of explanation of wave propagation in one of my books, but
> it seems to differ slightly. It basically takes energy and heat into
> account and says (simplified) that there are basically two states, one
> without motion but increased pressure and heat, one with maximum motion
> and little pressure/heat, and everything in between. I guess this
> corresponds to P() and V() in your explanation?

Can't say without seeing your book. P() and V() certainly
are not 'two states', they are two components of a single
state. You can create any combination of P and V at a
given point.
 
But for a _single source_ they are related, and you
could map them to voltage and current, with the quotient
being the acoustic impedance (as in Ohm's law).

Again, for the P and V fields generated by a single source
at suffient distance, or a plane wave, P and V are in
phase. Their maxima occur at the same points at any time.

It's very common misconception that the energy in a wave
'alternates' between potential energy (at a P maximum)
and kinetic energy (at a V maximum) as it does for e.g.
a pendulum. Even the Wikipedia article on acoustic waves
gets this wrong. In fact the power is proportional to the
product of P and V (as it is to the product of voltage
and current). If the two were 90 degrees out of phase
the average power would be zero.


> I guess this sort of analysis or model is used for more complex systems
> like ambisonics as well?

Yes. In ambisonics the P/V ratio, divided by its expected value for
a plane wave (i.e. the acoustic impedance), is called 'rV'. A good
decoder is designed to generate rV = 1 for low frequencies. It's
done by adding an antiphase signal in a direction opposite to the
intended source. This increases the vector sum of V, and decreases
the sum of P, so they can be made to match again.


Ciao,

-- 
FA

_______________________________________________
Linux-audio-user mailing list
Linux-audio-user@xxxxxxxxxxxxxxxxxxxx
http://lists.linuxaudio.org/listinfo/linux-audio-user



[Index of Archives]     [Linux Sound]     [ALSA Users]     [Pulse Audio]     [ALSA Devel]     [Sox Users]     [Linux Media]     [Kernel]     [Photo Sharing]     [Gimp]     [Yosemite News]     [Linux Media]

  Powered by Linux