Re: [PATCH V2 3/5] arm64: dts: qcom: sc7280: Add RPMh regulators for sc7280-idp

[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

 



On Mon, Mar 15, 2021 at 07:24:12PM +0530, satya priya wrote:
> Add regulator devices for SC7280 as RPMh regulators. This ensures
> that consumers are able to modify the physical state of PMIC
> regulators.
> 
> Signed-off-by: satya priya <skakit@xxxxxxxxxxxxxx>
> ---
> Changes in V2:
>  - Corrected the indentation for "compatible" and "qcom,pmic-id" under
>    pm8350c-regulators as per Konrad's comment.
> 
>  arch/arm64/boot/dts/qcom/sc7280-idp.dts | 212 ++++++++++++++++++++++++++++++++
>  1 file changed, 212 insertions(+)
> 
> diff --git a/arch/arm64/boot/dts/qcom/sc7280-idp.dts b/arch/arm64/boot/dts/qcom/sc7280-idp.dts
> index 428f863..78effe5 100644
> --- a/arch/arm64/boot/dts/qcom/sc7280-idp.dts
> +++ b/arch/arm64/boot/dts/qcom/sc7280-idp.dts
> @@ -22,6 +22,218 @@
>  	};
>  };
>  
> +&apps_rsc {
> +	pm7325-regulators {
> +		compatible = "qcom,pm7325-rpmh-regulators";
> +		qcom,pmic-id = "b";
> +
> +		vreg_s1b_1p8: smps1 {
> +			regulator-min-microvolt = <1856000>;

For most LDOs their 'Active minimum voltage' is specified as their
minimum, however for S1B and S8B it's the 'Nominal voltage. Is that
intentional?

There might be a misunderstanding on my side what the values in the
datasheet actually mean, see my comment at the end.

> +			regulator-max-microvolt = <2040000>;
> +		};
> +
> +		vreg_s7b_0p9: smps7 {
> +			regulator-min-microvolt = <535000>;

According to the datasheet the minimum voltage of the S7B regulator
is 904 mV.

> +			regulator-max-microvolt = <1120000>;
> +		};
> +
> +		vreg_s8b_1p2: smps8 {
> +			regulator-min-microvolt = <1256000>;
> +			regulator-max-microvolt = <1500000>;
> +		};
> +
> +		vreg_l1b_0p8: ldo1 {
> +			regulator-min-microvolt = <825000>;
> +			regulator-max-microvolt = <925000>;
> +		};
> +
> +		vreg_l2b_3p0: ldo2 {
> +			regulator-min-microvolt = <2700000>;
> +			regulator-max-microvolt = <3544000>;
> +		};

Another question that came up for sc7180-trogdor regulators,
whose core regulator config was derived from sc7180-idp: the
label suggests that this regulator is supposed to supply 3V,
however the range spans from 2.7 to 3.54V. Shouldn't it be
narrower around 3V? Same for other some regulators.

> +
> +		vreg_l6b_1p2: ldo6 {
> +			regulator-min-microvolt = <1140000>;

The datasheet says the minimum for L6B is 1.2V.

> +			regulator-max-microvolt = <1260000>;
> +		};
> +
> +		vreg_l7b_2p9: ldo7 {
> +			regulator-min-microvolt = <2960000>;
> +			regulator-max-microvolt = <2960000>;
> +		};

This regulator has a fixed voltage in difference to the others, why
is that?

> +
> +		vreg_l8b_0p9: ldo8 {
> +			regulator-min-microvolt = <870000>;
> +			regulator-max-microvolt = <970000>;
> +		};
> +
> +		vreg_l9b_1p2: ldo9 {
> +			regulator-min-microvolt = <1080000>;
> +			regulator-max-microvolt = <1304000>;
> +		};
> +
> +		vreg_l11b_1p7: ldo11 {
> +			regulator-min-microvolt = <1504000>;

The datasheet says the mininum voltage for L11B is 1.776V.

> +			regulator-max-microvolt = <2000000>;
> +		};
> +
> +		vreg_l12b_0p8: ldo12 {
> +			regulator-min-microvolt = <751000>;
> +			regulator-max-microvolt = <824000>;
> +		};
> +
> +		vreg_l13b_0p8: ldo13 {
> +			regulator-min-microvolt = <530000>;
> +			regulator-max-microvolt = <824000>;

The max for L13B is 880mV, is this a copy and paste from L12B?

> +		};
> +
> +		vreg_l14b_1p2: ldo14 {
> +			regulator-min-microvolt = <1080000>;

The datasheet says the mininum voltage for L14B is 1.2V.

> +			regulator-max-microvolt = <1304000>;
> +		};
> +
> +		vreg_l15b_0p8: ldo15 {
> +			regulator-min-microvolt = <765000>;
> +			regulator-max-microvolt = <1020000>;
> +		};
> +
> +		vreg_l16b_1p2: ldo16 {
> +			regulator-min-microvolt = <1100000>;

The datasheet says the mininum voltage for L16B is 1.2V.

> +			regulator-max-microvolt = <1300000>;
> +		};
> +
> +		vreg_l17b_1p8: ldo17 {
> +			regulator-min-microvolt = <1700000>;

The datasheet says the mininum voltage for L17B is 1.8V.

> +			regulator-max-microvolt = <1900000>;
> +		};
> +
> +		vreg_l18b_1p8: ldo18 {
> +			regulator-min-microvolt = <1800000>;
> +			regulator-max-microvolt = <2000000>;
> +		};
> +
> +		vreg_l19b_1p8: ldo19 {
> +			regulator-min-microvolt = <1800000>;
> +			regulator-max-microvolt = <1800000>;

Is a fixed voltage intentional here?

> +		};
> +	};
> +
> +	pm8350c-regulators {
> +		compatible = "qcom,pm8350c-rpmh-regulators";

I can't find the datasheet for this chip, skipping this part.


> +	pmr735a-regulators {
> +		compatible = "qcom,pmr735a-rpmh-regulators";
> +		qcom,pmic-id = "e";
> +
> +		vreg_l2e_1p2: ldo2 {
> +			regulator-min-microvolt = <1200000>;
> +			regulator-max-microvolt = <1200000>;
> +		};
> +
> +		vreg_l3e_0p9: ldo3 {
> +			regulator-min-microvolt = <912000>;
> +			regulator-max-microvolt = <1020000>;

According to the datasheet min and max for L3E is 1.2V. The
datasheet lists different voltages for 'SM8350 lineup' and
'SM8xyz' lineup though, does that mean that the voltages
aren't limitations of what the regulators can provide but
what their consumers support?

There are also deltas for the remaining regulators, but now
I'm in doubt about what the info in the datasheet actually
means.

> +		};
> +
> +		vreg_l4e_1p7: ldo4 {
> +			regulator-min-microvolt = <1776000>;
> +			regulator-max-microvolt = <1890000>;
> +		};
> +
> +		vreg_l5e_0p8: ldo5 {
> +			regulator-min-microvolt = <800000>;
> +			regulator-max-microvolt = <800000>;
> +		};
> +
> +		vreg_l6e_0p8: ldo6 {
> +			regulator-min-microvolt = <480000>;
> +			regulator-max-microvolt = <904000>;
> +		};
> +	};
> +};
> +
>  &qupv3_id_0 {
>  	status = "okay";
>  };



[Index of Archives]     [Linux ARM Kernel]     [Linux ARM]     [Linux Omap]     [Fedora ARM]     [Linux for Sparc]     [IETF Annouce]     [Security]     [Bugtraq]     [Linux MIPS]     [ECOS]     [Asterisk Internet PBX]     [Linux API]

  Powered by Linux