On Wed 29 Apr 11:14 PDT 2020, Amit Kucheria wrote: > tsens-common.c has outlived its usefuless. It was created expecting lots > of custom routines per version of the TSENS IP. We haven't needed those, > there is now only data in the version-specific files. > > Merge the code for tsens-common.c into tsens.c. As a result, > - Remove any unnecessary forward declarations in tsens.h. > - Add a Linaro copyright to tsens.c. > - Fixup the Makefile to remove tsens-common.c. > - Where it made sense, fix some 80-column alignments in the > tsens-common.c code being copied over. > > There is no functional change with this patch. > Reviewed-by: Bjorn Andersson <bjorn.andersson@xxxxxxxxxx> Regards, Bjorn > Signed-off-by: Amit Kucheria <amit.kucheria@xxxxxxxxxx> > --- > drivers/thermal/qcom/Makefile | 4 +- > drivers/thermal/qcom/tsens-common.c | 843 ---------------------------- > drivers/thermal/qcom/tsens.c | 838 +++++++++++++++++++++++++++ > drivers/thermal/qcom/tsens.h | 5 - > 4 files changed, 840 insertions(+), 850 deletions(-) > delete mode 100644 drivers/thermal/qcom/tsens-common.c > > diff --git a/drivers/thermal/qcom/Makefile b/drivers/thermal/qcom/Makefile > index 7c8dc6e366936..ec86eef7f6a6b 100644 > --- a/drivers/thermal/qcom/Makefile > +++ b/drivers/thermal/qcom/Makefile > @@ -1,6 +1,6 @@ > # SPDX-License-Identifier: GPL-2.0-only > obj-$(CONFIG_QCOM_TSENS) += qcom_tsens.o > > -qcom_tsens-y += tsens.o tsens-common.o tsens-v0_1.o \ > - tsens-8960.o tsens-v2.o tsens-v1.o > +qcom_tsens-y += tsens.o tsens-v2.o tsens-v1.o tsens-v0_1.o \ > + tsens-8960.o > obj-$(CONFIG_QCOM_SPMI_TEMP_ALARM) += qcom-spmi-temp-alarm.o > diff --git a/drivers/thermal/qcom/tsens-common.c b/drivers/thermal/qcom/tsens-common.c > deleted file mode 100644 > index 172545366636e..0000000000000 > --- a/drivers/thermal/qcom/tsens-common.c > +++ /dev/null > @@ -1,843 +0,0 @@ > -// SPDX-License-Identifier: GPL-2.0 > -/* > - * Copyright (c) 2015, The Linux Foundation. All rights reserved. > - */ > - > -#include <linux/debugfs.h> > -#include <linux/err.h> > -#include <linux/io.h> > -#include <linux/nvmem-consumer.h> > -#include <linux/of_address.h> > -#include <linux/of_platform.h> > -#include <linux/platform_device.h> > -#include <linux/regmap.h> > -#include "tsens.h" > - > -/** > - * struct tsens_irq_data - IRQ status and temperature violations > - * @up_viol: upper threshold violated > - * @up_thresh: upper threshold temperature value > - * @up_irq_mask: mask register for upper threshold irqs > - * @up_irq_clear: clear register for uppper threshold irqs > - * @low_viol: lower threshold violated > - * @low_thresh: lower threshold temperature value > - * @low_irq_mask: mask register for lower threshold irqs > - * @low_irq_clear: clear register for lower threshold irqs > - * @crit_viol: critical threshold violated > - * @crit_thresh: critical threshold temperature value > - * @crit_irq_mask: mask register for critical threshold irqs > - * @crit_irq_clear: clear register for critical threshold irqs > - * > - * Structure containing data about temperature threshold settings and > - * irq status if they were violated. > - */ > -struct tsens_irq_data { > - u32 up_viol; > - int up_thresh; > - u32 up_irq_mask; > - u32 up_irq_clear; > - u32 low_viol; > - int low_thresh; > - u32 low_irq_mask; > - u32 low_irq_clear; > - u32 crit_viol; > - u32 crit_thresh; > - u32 crit_irq_mask; > - u32 crit_irq_clear; > -}; > - > -char *qfprom_read(struct device *dev, const char *cname) > -{ > - struct nvmem_cell *cell; > - ssize_t data; > - char *ret; > - > - cell = nvmem_cell_get(dev, cname); > - if (IS_ERR(cell)) > - return ERR_CAST(cell); > - > - ret = nvmem_cell_read(cell, &data); > - nvmem_cell_put(cell); > - > - return ret; > -} > - > -/* > - * Use this function on devices where slope and offset calculations > - * depend on calibration data read from qfprom. On others the slope > - * and offset values are derived from tz->tzp->slope and tz->tzp->offset > - * resp. > - */ > -void compute_intercept_slope(struct tsens_priv *priv, u32 *p1, > - u32 *p2, u32 mode) > -{ > - int i; > - int num, den; > - > - for (i = 0; i < priv->num_sensors; i++) { > - dev_dbg(priv->dev, > - "%s: sensor%d - data_point1:%#x data_point2:%#x\n", > - __func__, i, p1[i], p2[i]); > - > - priv->sensor[i].slope = SLOPE_DEFAULT; > - if (mode == TWO_PT_CALIB) { > - /* > - * slope (m) = adc_code2 - adc_code1 (y2 - y1)/ > - * temp_120_degc - temp_30_degc (x2 - x1) > - */ > - num = p2[i] - p1[i]; > - num *= SLOPE_FACTOR; > - den = CAL_DEGC_PT2 - CAL_DEGC_PT1; > - priv->sensor[i].slope = num / den; > - } > - > - priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) - > - (CAL_DEGC_PT1 * > - priv->sensor[i].slope); > - dev_dbg(priv->dev, "%s: offset:%d\n", __func__, priv->sensor[i].offset); > - } > -} > - > -static inline u32 degc_to_code(int degc, const struct tsens_sensor *s) > -{ > - u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR); > - > - pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc); > - return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE); > -} > - > -static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s) > -{ > - int degc, num, den; > - > - num = (adc_code * SLOPE_FACTOR) - s->offset; > - den = s->slope; > - > - if (num > 0) > - degc = num + (den / 2); > - else if (num < 0) > - degc = num - (den / 2); > - else > - degc = num; > - > - degc /= den; > - > - return degc; > -} > - > -/** > - * tsens_hw_to_mC - Return sign-extended temperature in mCelsius. > - * @s: Pointer to sensor struct > - * @field: Index into regmap_field array pointing to temperature data > - * > - * This function handles temperature returned in ADC code or deciCelsius > - * depending on IP version. > - * > - * Return: Temperature in milliCelsius on success, a negative errno will > - * be returned in error cases > - */ > -static int tsens_hw_to_mC(const struct tsens_sensor *s, int field) > -{ > - struct tsens_priv *priv = s->priv; > - u32 resolution; > - u32 temp = 0; > - int ret; > - > - resolution = priv->fields[LAST_TEMP_0].msb - > - priv->fields[LAST_TEMP_0].lsb; > - > - ret = regmap_field_read(priv->rf[field], &temp); > - if (ret) > - return ret; > - > - /* Convert temperature from ADC code to milliCelsius */ > - if (priv->feat->adc) > - return code_to_degc(temp, s) * 1000; > - > - /* deciCelsius -> milliCelsius along with sign extension */ > - return sign_extend32(temp, resolution) * 100; > -} > - > -/** > - * tsens_mC_to_hw - Convert temperature to hardware register value > - * @s: Pointer to sensor struct > - * @temp: temperature in milliCelsius to be programmed to hardware > - * > - * This function outputs the value to be written to hardware in ADC code > - * or deciCelsius depending on IP version. > - * > - * Return: ADC code or temperature in deciCelsius. > - */ > -static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp) > -{ > - struct tsens_priv *priv = s->priv; > - > - /* milliC to adc code */ > - if (priv->feat->adc) > - return degc_to_code(temp / 1000, s); > - > - /* milliC to deciC */ > - return temp / 100; > -} > - > -static inline enum tsens_ver tsens_version(struct tsens_priv *priv) > -{ > - return priv->feat->ver_major; > -} > - > -static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id, > - enum tsens_irq_type irq_type, bool enable) > -{ > - u32 index = 0; > - > - switch (irq_type) { > - case UPPER: > - index = UP_INT_CLEAR_0 + hw_id; > - break; > - case LOWER: > - index = LOW_INT_CLEAR_0 + hw_id; > - break; > - case CRITICAL: > - /* No critical interrupts before v2 */ > - return; > - } > - regmap_field_write(priv->rf[index], enable ? 0 : 1); > -} > - > -static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id, > - enum tsens_irq_type irq_type, bool enable) > -{ > - u32 index_mask = 0, index_clear = 0; > - > - /* > - * To enable the interrupt flag for a sensor: > - * - clear the mask bit > - * To disable the interrupt flag for a sensor: > - * - Mask further interrupts for this sensor > - * - Write 1 followed by 0 to clear the interrupt > - */ > - switch (irq_type) { > - case UPPER: > - index_mask = UP_INT_MASK_0 + hw_id; > - index_clear = UP_INT_CLEAR_0 + hw_id; > - break; > - case LOWER: > - index_mask = LOW_INT_MASK_0 + hw_id; > - index_clear = LOW_INT_CLEAR_0 + hw_id; > - break; > - case CRITICAL: > - index_mask = CRIT_INT_MASK_0 + hw_id; > - index_clear = CRIT_INT_CLEAR_0 + hw_id; > - break; > - } > - > - if (enable) { > - regmap_field_write(priv->rf[index_mask], 0); > - } else { > - regmap_field_write(priv->rf[index_mask], 1); > - regmap_field_write(priv->rf[index_clear], 1); > - regmap_field_write(priv->rf[index_clear], 0); > - } > -} > - > -/** > - * tsens_set_interrupt - Set state of an interrupt > - * @priv: Pointer to tsens controller private data > - * @hw_id: Hardware ID aka. sensor number > - * @irq_type: irq_type from enum tsens_irq_type > - * @enable: false = disable, true = enable > - * > - * Call IP-specific function to set state of an interrupt > - * > - * Return: void > - */ > -static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id, > - enum tsens_irq_type irq_type, bool enable) > -{ > - dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__, > - irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW", > - enable ? "en" : "dis"); > - if (tsens_version(priv) > VER_1_X) > - tsens_set_interrupt_v2(priv, hw_id, irq_type, enable); > - else > - tsens_set_interrupt_v1(priv, hw_id, irq_type, enable); > -} > - > -/** > - * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold > - * @priv: Pointer to tsens controller private data > - * @hw_id: Hardware ID aka. sensor number > - * @d: Pointer to irq state data > - * > - * Return: 0 if threshold was not violated, 1 if it was violated and negative > - * errno in case of errors > - */ > -static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id, > - struct tsens_irq_data *d) > -{ > - int ret; > - > - ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol); > - if (ret) > - return ret; > - > - if (priv->feat->crit_int) { > - ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id], > - &d->crit_viol); > - if (ret) > - return ret; > - } > - > - if (d->up_viol || d->low_viol || d->crit_viol) > - return 1; > - > - return 0; > -} > - > -static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id, > - const struct tsens_sensor *s, > - struct tsens_irq_data *d) > -{ > - int ret; > - > - ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear); > - if (ret) > - return ret; > - if (tsens_version(priv) > VER_1_X) { > - ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id], > - &d->crit_irq_clear); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id], > - &d->crit_irq_mask); > - if (ret) > - return ret; > - > - d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id); > - } else { > - /* No mask register on older TSENS */ > - d->up_irq_mask = 0; > - d->low_irq_mask = 0; > - d->crit_irq_clear = 0; > - d->crit_irq_mask = 0; > - d->crit_thresh = 0; > - } > - > - d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id); > - d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id); > - > - dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n", > - hw_id, __func__, > - (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", > - d->low_viol, d->up_viol, d->crit_viol, > - d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear, > - d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask); > - dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__, > - (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", > - d->low_thresh, d->up_thresh, d->crit_thresh); > - > - return 0; > -} > - > -static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver) > -{ > - if (ver > VER_1_X) > - return mask & (1 << hw_id); > - > - /* v1, v0.1 don't have a irq mask register */ > - return 0; > -} > - > -/** > - * tsens_critical_irq_thread() - Threaded handler for critical interrupts > - * @irq: irq number > - * @data: tsens controller private data > - * > - * Check FSM watchdog bark status and clear if needed. > - * Check all sensors to find ones that violated their critical threshold limits. > - * Clear and then re-enable the interrupt. > - * > - * The level-triggered interrupt might deassert if the temperature returned to > - * within the threshold limits by the time the handler got scheduled. We > - * consider the irq to have been handled in that case. > - * > - * Return: IRQ_HANDLED > - */ > -irqreturn_t tsens_critical_irq_thread(int irq, void *data) > -{ > - struct tsens_priv *priv = data; > - struct tsens_irq_data d; > - int temp, ret, i; > - u32 wdog_status, wdog_count; > - > - if (priv->feat->has_watchdog) { > - ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS], > - &wdog_status); > - if (ret) > - return ret; > - > - if (wdog_status) { > - /* Clear WDOG interrupt */ > - regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1); > - regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0); > - ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT], > - &wdog_count); > - if (ret) > - return ret; > - if (wdog_count) > - dev_dbg(priv->dev, "%s: watchdog count: %d\n", > - __func__, wdog_count); > - > - /* Fall through to handle critical interrupts if any */ > - } > - } > - > - for (i = 0; i < priv->num_sensors; i++) { > - const struct tsens_sensor *s = &priv->sensor[i]; > - u32 hw_id = s->hw_id; > - > - if (IS_ERR(s->tzd)) > - continue; > - if (!tsens_threshold_violated(priv, hw_id, &d)) > - continue; > - ret = get_temp_tsens_valid(s, &temp); > - if (ret) { > - dev_err(priv->dev, "[%u] %s: error reading sensor\n", > - hw_id, __func__); > - continue; > - } > - > - tsens_read_irq_state(priv, hw_id, s, &d); > - if (d.crit_viol && > - !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) { > - /* Mask critical interrupts, unused on Linux */ > - tsens_set_interrupt(priv, hw_id, CRITICAL, false); > - } > - } > - > - return IRQ_HANDLED; > -} > - > -/** > - * tsens_irq_thread - Threaded interrupt handler for uplow interrupts > - * @irq: irq number > - * @data: tsens controller private data > - * > - * Check all sensors to find ones that violated their threshold limits. If the > - * temperature is still outside the limits, call thermal_zone_device_update() to > - * update the thresholds, else re-enable the interrupts. > - * > - * The level-triggered interrupt might deassert if the temperature returned to > - * within the threshold limits by the time the handler got scheduled. We > - * consider the irq to have been handled in that case. > - * > - * Return: IRQ_HANDLED > - */ > -irqreturn_t tsens_irq_thread(int irq, void *data) > -{ > - struct tsens_priv *priv = data; > - struct tsens_irq_data d; > - bool enable = true, disable = false; > - unsigned long flags; > - int temp, ret, i; > - > - for (i = 0; i < priv->num_sensors; i++) { > - bool trigger = false; > - const struct tsens_sensor *s = &priv->sensor[i]; > - u32 hw_id = s->hw_id; > - > - if (IS_ERR(s->tzd)) > - continue; > - if (!tsens_threshold_violated(priv, hw_id, &d)) > - continue; > - ret = get_temp_tsens_valid(s, &temp); > - if (ret) { > - dev_err(priv->dev, "[%u] %s: error reading sensor\n", hw_id, __func__); > - continue; > - } > - > - spin_lock_irqsave(&priv->ul_lock, flags); > - > - tsens_read_irq_state(priv, hw_id, s, &d); > - > - if (d.up_viol && > - !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) { > - tsens_set_interrupt(priv, hw_id, UPPER, disable); > - if (d.up_thresh > temp) { > - dev_dbg(priv->dev, "[%u] %s: re-arm upper\n", > - hw_id, __func__); > - tsens_set_interrupt(priv, hw_id, UPPER, enable); > - } else { > - trigger = true; > - /* Keep irq masked */ > - } > - } else if (d.low_viol && > - !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) { > - tsens_set_interrupt(priv, hw_id, LOWER, disable); > - if (d.low_thresh < temp) { > - dev_dbg(priv->dev, "[%u] %s: re-arm low\n", > - hw_id, __func__); > - tsens_set_interrupt(priv, hw_id, LOWER, enable); > - } else { > - trigger = true; > - /* Keep irq masked */ > - } > - } > - > - spin_unlock_irqrestore(&priv->ul_lock, flags); > - > - if (trigger) { > - dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n", > - hw_id, __func__, temp); > - thermal_zone_device_update(s->tzd, > - THERMAL_EVENT_UNSPECIFIED); > - } else { > - dev_dbg(priv->dev, "[%u] %s: no violation: %d\n", > - hw_id, __func__, temp); > - } > - } > - > - return IRQ_HANDLED; > -} > - > -int tsens_set_trips(void *_sensor, int low, int high) > -{ > - struct tsens_sensor *s = _sensor; > - struct tsens_priv *priv = s->priv; > - struct device *dev = priv->dev; > - struct tsens_irq_data d; > - unsigned long flags; > - int high_val, low_val, cl_high, cl_low; > - u32 hw_id = s->hw_id; > - > - dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n", > - hw_id, __func__, low, high); > - > - cl_high = clamp_val(high, -40000, 120000); > - cl_low = clamp_val(low, -40000, 120000); > - > - high_val = tsens_mC_to_hw(s, cl_high); > - low_val = tsens_mC_to_hw(s, cl_low); > - > - spin_lock_irqsave(&priv->ul_lock, flags); > - > - tsens_read_irq_state(priv, hw_id, s, &d); > - > - /* Write the new thresholds and clear the status */ > - regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val); > - regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val); > - tsens_set_interrupt(priv, hw_id, LOWER, true); > - tsens_set_interrupt(priv, hw_id, UPPER, true); > - > - spin_unlock_irqrestore(&priv->ul_lock, flags); > - > - dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n", > - hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high); > - > - return 0; > -} > - > -int tsens_enable_irq(struct tsens_priv *priv) > -{ > - int ret; > - int val = tsens_version(priv) > VER_1_X ? 7 : 1; > - > - ret = regmap_field_write(priv->rf[INT_EN], val); > - if (ret < 0) > - dev_err(priv->dev, "%s: failed to enable interrupts\n", __func__); > - > - return ret; > -} > - > -void tsens_disable_irq(struct tsens_priv *priv) > -{ > - regmap_field_write(priv->rf[INT_EN], 0); > -} > - > -int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp) > -{ > - struct tsens_priv *priv = s->priv; > - int hw_id = s->hw_id; > - u32 temp_idx = LAST_TEMP_0 + hw_id; > - u32 valid_idx = VALID_0 + hw_id; > - u32 valid; > - int ret; > - > - ret = regmap_field_read(priv->rf[valid_idx], &valid); > - if (ret) > - return ret; > - while (!valid) { > - /* Valid bit is 0 for 6 AHB clock cycles. > - * At 19.2MHz, 1 AHB clock is ~60ns. > - * We should enter this loop very, very rarely. > - */ > - ndelay(400); > - ret = regmap_field_read(priv->rf[valid_idx], &valid); > - if (ret) > - return ret; > - } > - > - /* Valid bit is set, OK to read the temperature */ > - *temp = tsens_hw_to_mC(s, temp_idx); > - > - return 0; > -} > - > -int get_temp_common(const struct tsens_sensor *s, int *temp) > -{ > - struct tsens_priv *priv = s->priv; > - int hw_id = s->hw_id; > - int last_temp = 0, ret; > - > - ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp); > - if (ret) > - return ret; > - > - *temp = code_to_degc(last_temp, s) * 1000; > - > - return 0; > -} > - > -#ifdef CONFIG_DEBUG_FS > -static int dbg_sensors_show(struct seq_file *s, void *data) > -{ > - struct platform_device *pdev = s->private; > - struct tsens_priv *priv = platform_get_drvdata(pdev); > - int i; > - > - seq_printf(s, "max: %2d\nnum: %2d\n\n", > - priv->feat->max_sensors, priv->num_sensors); > - > - seq_puts(s, " id slope offset\n--------------------------\n"); > - for (i = 0; i < priv->num_sensors; i++) { > - seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id, > - priv->sensor[i].slope, priv->sensor[i].offset); > - } > - > - return 0; > -} > - > -static int dbg_version_show(struct seq_file *s, void *data) > -{ > - struct platform_device *pdev = s->private; > - struct tsens_priv *priv = platform_get_drvdata(pdev); > - u32 maj_ver, min_ver, step_ver; > - int ret; > - > - if (tsens_version(priv) > VER_0_1) { > - ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver); > - if (ret) > - return ret; > - ret = regmap_field_read(priv->rf[VER_STEP], &step_ver); > - if (ret) > - return ret; > - seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver); > - } else { > - seq_puts(s, "0.1.0\n"); > - } > - > - return 0; > -} > - > -DEFINE_SHOW_ATTRIBUTE(dbg_version); > -DEFINE_SHOW_ATTRIBUTE(dbg_sensors); > - > -static void tsens_debug_init(struct platform_device *pdev) > -{ > - struct tsens_priv *priv = platform_get_drvdata(pdev); > - struct dentry *root, *file; > - > - root = debugfs_lookup("tsens", NULL); > - if (!root) > - priv->debug_root = debugfs_create_dir("tsens", NULL); > - else > - priv->debug_root = root; > - > - file = debugfs_lookup("version", priv->debug_root); > - if (!file) > - debugfs_create_file("version", 0444, priv->debug_root, > - pdev, &dbg_version_fops); > - > - /* A directory for each instance of the TSENS IP */ > - priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root); > - debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops); > -} > -#else > -static inline void tsens_debug_init(struct platform_device *pdev) {} > -#endif > - > -static const struct regmap_config tsens_config = { > - .name = "tm", > - .reg_bits = 32, > - .val_bits = 32, > - .reg_stride = 4, > -}; > - > -static const struct regmap_config tsens_srot_config = { > - .name = "srot", > - .reg_bits = 32, > - .val_bits = 32, > - .reg_stride = 4, > -}; > - > -int __init init_common(struct tsens_priv *priv) > -{ > - void __iomem *tm_base, *srot_base; > - struct device *dev = priv->dev; > - u32 ver_minor; > - struct resource *res; > - u32 enabled; > - int ret, i, j; > - struct platform_device *op = of_find_device_by_node(priv->dev->of_node); > - > - if (!op) > - return -EINVAL; > - > - if (op->num_resources > 1) { > - /* DT with separate SROT and TM address space */ > - priv->tm_offset = 0; > - res = platform_get_resource(op, IORESOURCE_MEM, 1); > - srot_base = devm_ioremap_resource(dev, res); > - if (IS_ERR(srot_base)) { > - ret = PTR_ERR(srot_base); > - goto err_put_device; > - } > - > - priv->srot_map = devm_regmap_init_mmio(dev, srot_base, > - &tsens_srot_config); > - if (IS_ERR(priv->srot_map)) { > - ret = PTR_ERR(priv->srot_map); > - goto err_put_device; > - } > - } else { > - /* old DTs where SROT and TM were in a contiguous 2K block */ > - priv->tm_offset = 0x1000; > - } > - > - res = platform_get_resource(op, IORESOURCE_MEM, 0); > - tm_base = devm_ioremap_resource(dev, res); > - if (IS_ERR(tm_base)) { > - ret = PTR_ERR(tm_base); > - goto err_put_device; > - } > - > - priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config); > - if (IS_ERR(priv->tm_map)) { > - ret = PTR_ERR(priv->tm_map); > - goto err_put_device; > - } > - > - if (tsens_version(priv) > VER_0_1) { > - for (i = VER_MAJOR; i <= VER_STEP; i++) { > - priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map, > - priv->fields[i]); > - if (IS_ERR(priv->rf[i])) > - return PTR_ERR(priv->rf[i]); > - } > - ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor); > - if (ret) > - goto err_put_device; > - } > - > - priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map, > - priv->fields[TSENS_EN]); > - if (IS_ERR(priv->rf[TSENS_EN])) { > - ret = PTR_ERR(priv->rf[TSENS_EN]); > - goto err_put_device; > - } > - ret = regmap_field_read(priv->rf[TSENS_EN], &enabled); > - if (ret) > - goto err_put_device; > - if (!enabled) { > - dev_err(dev, "%s: device not enabled\n", __func__); > - ret = -ENODEV; > - goto err_put_device; > - } > - > - priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map, > - priv->fields[SENSOR_EN]); > - if (IS_ERR(priv->rf[SENSOR_EN])) { > - ret = PTR_ERR(priv->rf[SENSOR_EN]); > - goto err_put_device; > - } > - priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map, > - priv->fields[INT_EN]); > - if (IS_ERR(priv->rf[INT_EN])) { > - ret = PTR_ERR(priv->rf[INT_EN]); > - goto err_put_device; > - } > - > - /* This loop might need changes if enum regfield_ids is reordered */ > - for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) { > - for (i = 0; i < priv->feat->max_sensors; i++) { > - int idx = j + i; > - > - priv->rf[idx] = devm_regmap_field_alloc(dev, priv->tm_map, > - priv->fields[idx]); > - if (IS_ERR(priv->rf[idx])) { > - ret = PTR_ERR(priv->rf[idx]); > - goto err_put_device; > - } > - } > - } > - > - if (priv->feat->crit_int) { > - /* Loop might need changes if enum regfield_ids is reordered */ > - for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) { > - for (i = 0; i < priv->feat->max_sensors; i++) { > - int idx = j + i; > - > - priv->rf[idx] = > - devm_regmap_field_alloc(dev, > - priv->tm_map, > - priv->fields[idx]); > - if (IS_ERR(priv->rf[idx])) { > - ret = PTR_ERR(priv->rf[idx]); > - goto err_put_device; > - } > - } > - } > - } > - > - if (tsens_version(priv) > VER_1_X && ver_minor > 2) { > - /* Watchdog is present only on v2.3+ */ > - priv->feat->has_watchdog = 1; > - for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) { > - priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map, > - priv->fields[i]); > - if (IS_ERR(priv->rf[i])) { > - ret = PTR_ERR(priv->rf[i]); > - goto err_put_device; > - } > - } > - /* > - * Watchdog is already enabled, unmask the bark. > - * Disable cycle completion monitoring > - */ > - regmap_field_write(priv->rf[WDOG_BARK_MASK], 0); > - regmap_field_write(priv->rf[CC_MON_MASK], 1); > - } > - > - spin_lock_init(&priv->ul_lock); > - tsens_enable_irq(priv); > - tsens_debug_init(op); > - > -err_put_device: > - put_device(&op->dev); > - return ret; > -} > diff --git a/drivers/thermal/qcom/tsens.c b/drivers/thermal/qcom/tsens.c > index 2f77d235cf735..8d3e94d2a9ed4 100644 > --- a/drivers/thermal/qcom/tsens.c > +++ b/drivers/thermal/qcom/tsens.c > @@ -1,19 +1,857 @@ > // SPDX-License-Identifier: GPL-2.0 > /* > * Copyright (c) 2015, The Linux Foundation. All rights reserved. > + * Copyright (c) 2019, 2020, Linaro Ltd. > */ > > #include <linux/debugfs.h> > #include <linux/err.h> > +#include <linux/io.h> > #include <linux/module.h> > +#include <linux/nvmem-consumer.h> > #include <linux/of.h> > +#include <linux/of_address.h> > #include <linux/of_platform.h> > #include <linux/platform_device.h> > #include <linux/pm.h> > +#include <linux/regmap.h> > #include <linux/slab.h> > #include <linux/thermal.h> > #include "tsens.h" > > +/** > + * struct tsens_irq_data - IRQ status and temperature violations > + * @up_viol: upper threshold violated > + * @up_thresh: upper threshold temperature value > + * @up_irq_mask: mask register for upper threshold irqs > + * @up_irq_clear: clear register for uppper threshold irqs > + * @low_viol: lower threshold violated > + * @low_thresh: lower threshold temperature value > + * @low_irq_mask: mask register for lower threshold irqs > + * @low_irq_clear: clear register for lower threshold irqs > + * @crit_viol: critical threshold violated > + * @crit_thresh: critical threshold temperature value > + * @crit_irq_mask: mask register for critical threshold irqs > + * @crit_irq_clear: clear register for critical threshold irqs > + * > + * Structure containing data about temperature threshold settings and > + * irq status if they were violated. > + */ > +struct tsens_irq_data { > + u32 up_viol; > + int up_thresh; > + u32 up_irq_mask; > + u32 up_irq_clear; > + u32 low_viol; > + int low_thresh; > + u32 low_irq_mask; > + u32 low_irq_clear; > + u32 crit_viol; > + u32 crit_thresh; > + u32 crit_irq_mask; > + u32 crit_irq_clear; > +}; > + > +char *qfprom_read(struct device *dev, const char *cname) > +{ > + struct nvmem_cell *cell; > + ssize_t data; > + char *ret; > + > + cell = nvmem_cell_get(dev, cname); > + if (IS_ERR(cell)) > + return ERR_CAST(cell); > + > + ret = nvmem_cell_read(cell, &data); > + nvmem_cell_put(cell); > + > + return ret; > +} > + > +/* > + * Use this function on devices where slope and offset calculations > + * depend on calibration data read from qfprom. On others the slope > + * and offset values are derived from tz->tzp->slope and tz->tzp->offset > + * resp. > + */ > +void compute_intercept_slope(struct tsens_priv *priv, u32 *p1, > + u32 *p2, u32 mode) > +{ > + int i; > + int num, den; > + > + for (i = 0; i < priv->num_sensors; i++) { > + dev_dbg(priv->dev, > + "%s: sensor%d - data_point1:%#x data_point2:%#x\n", > + __func__, i, p1[i], p2[i]); > + > + priv->sensor[i].slope = SLOPE_DEFAULT; > + if (mode == TWO_PT_CALIB) { > + /* > + * slope (m) = adc_code2 - adc_code1 (y2 - y1)/ > + * temp_120_degc - temp_30_degc (x2 - x1) > + */ > + num = p2[i] - p1[i]; > + num *= SLOPE_FACTOR; > + den = CAL_DEGC_PT2 - CAL_DEGC_PT1; > + priv->sensor[i].slope = num / den; > + } > + > + priv->sensor[i].offset = (p1[i] * SLOPE_FACTOR) - > + (CAL_DEGC_PT1 * > + priv->sensor[i].slope); > + dev_dbg(priv->dev, "%s: offset:%d\n", __func__, > + priv->sensor[i].offset); > + } > +} > + > +static inline u32 degc_to_code(int degc, const struct tsens_sensor *s) > +{ > + u64 code = div_u64(((u64)degc * s->slope + s->offset), SLOPE_FACTOR); > + > + pr_debug("%s: raw_code: 0x%llx, degc:%d\n", __func__, code, degc); > + return clamp_val(code, THRESHOLD_MIN_ADC_CODE, THRESHOLD_MAX_ADC_CODE); > +} > + > +static inline int code_to_degc(u32 adc_code, const struct tsens_sensor *s) > +{ > + int degc, num, den; > + > + num = (adc_code * SLOPE_FACTOR) - s->offset; > + den = s->slope; > + > + if (num > 0) > + degc = num + (den / 2); > + else if (num < 0) > + degc = num - (den / 2); > + else > + degc = num; > + > + degc /= den; > + > + return degc; > +} > + > +/** > + * tsens_hw_to_mC - Return sign-extended temperature in mCelsius. > + * @s: Pointer to sensor struct > + * @field: Index into regmap_field array pointing to temperature data > + * > + * This function handles temperature returned in ADC code or deciCelsius > + * depending on IP version. > + * > + * Return: Temperature in milliCelsius on success, a negative errno will > + * be returned in error cases > + */ > +static int tsens_hw_to_mC(const struct tsens_sensor *s, int field) > +{ > + struct tsens_priv *priv = s->priv; > + u32 resolution; > + u32 temp = 0; > + int ret; > + > + resolution = priv->fields[LAST_TEMP_0].msb - > + priv->fields[LAST_TEMP_0].lsb; > + > + ret = regmap_field_read(priv->rf[field], &temp); > + if (ret) > + return ret; > + > + /* Convert temperature from ADC code to milliCelsius */ > + if (priv->feat->adc) > + return code_to_degc(temp, s) * 1000; > + > + /* deciCelsius -> milliCelsius along with sign extension */ > + return sign_extend32(temp, resolution) * 100; > +} > + > +/** > + * tsens_mC_to_hw - Convert temperature to hardware register value > + * @s: Pointer to sensor struct > + * @temp: temperature in milliCelsius to be programmed to hardware > + * > + * This function outputs the value to be written to hardware in ADC code > + * or deciCelsius depending on IP version. > + * > + * Return: ADC code or temperature in deciCelsius. > + */ > +static int tsens_mC_to_hw(const struct tsens_sensor *s, int temp) > +{ > + struct tsens_priv *priv = s->priv; > + > + /* milliC to adc code */ > + if (priv->feat->adc) > + return degc_to_code(temp / 1000, s); > + > + /* milliC to deciC */ > + return temp / 100; > +} > + > +static inline enum tsens_ver tsens_version(struct tsens_priv *priv) > +{ > + return priv->feat->ver_major; > +} > + > +static void tsens_set_interrupt_v1(struct tsens_priv *priv, u32 hw_id, > + enum tsens_irq_type irq_type, bool enable) > +{ > + u32 index = 0; > + > + switch (irq_type) { > + case UPPER: > + index = UP_INT_CLEAR_0 + hw_id; > + break; > + case LOWER: > + index = LOW_INT_CLEAR_0 + hw_id; > + break; > + case CRITICAL: > + /* No critical interrupts before v2 */ > + return; > + } > + regmap_field_write(priv->rf[index], enable ? 0 : 1); > +} > + > +static void tsens_set_interrupt_v2(struct tsens_priv *priv, u32 hw_id, > + enum tsens_irq_type irq_type, bool enable) > +{ > + u32 index_mask = 0, index_clear = 0; > + > + /* > + * To enable the interrupt flag for a sensor: > + * - clear the mask bit > + * To disable the interrupt flag for a sensor: > + * - Mask further interrupts for this sensor > + * - Write 1 followed by 0 to clear the interrupt > + */ > + switch (irq_type) { > + case UPPER: > + index_mask = UP_INT_MASK_0 + hw_id; > + index_clear = UP_INT_CLEAR_0 + hw_id; > + break; > + case LOWER: > + index_mask = LOW_INT_MASK_0 + hw_id; > + index_clear = LOW_INT_CLEAR_0 + hw_id; > + break; > + case CRITICAL: > + index_mask = CRIT_INT_MASK_0 + hw_id; > + index_clear = CRIT_INT_CLEAR_0 + hw_id; > + break; > + } > + > + if (enable) { > + regmap_field_write(priv->rf[index_mask], 0); > + } else { > + regmap_field_write(priv->rf[index_mask], 1); > + regmap_field_write(priv->rf[index_clear], 1); > + regmap_field_write(priv->rf[index_clear], 0); > + } > +} > + > +/** > + * tsens_set_interrupt - Set state of an interrupt > + * @priv: Pointer to tsens controller private data > + * @hw_id: Hardware ID aka. sensor number > + * @irq_type: irq_type from enum tsens_irq_type > + * @enable: false = disable, true = enable > + * > + * Call IP-specific function to set state of an interrupt > + * > + * Return: void > + */ > +static void tsens_set_interrupt(struct tsens_priv *priv, u32 hw_id, > + enum tsens_irq_type irq_type, bool enable) > +{ > + dev_dbg(priv->dev, "[%u] %s: %s -> %s\n", hw_id, __func__, > + irq_type ? ((irq_type == 1) ? "UP" : "CRITICAL") : "LOW", > + enable ? "en" : "dis"); > + if (tsens_version(priv) > VER_1_X) > + tsens_set_interrupt_v2(priv, hw_id, irq_type, enable); > + else > + tsens_set_interrupt_v1(priv, hw_id, irq_type, enable); > +} > + > +/** > + * tsens_threshold_violated - Check if a sensor temperature violated a preset threshold > + * @priv: Pointer to tsens controller private data > + * @hw_id: Hardware ID aka. sensor number > + * @d: Pointer to irq state data > + * > + * Return: 0 if threshold was not violated, 1 if it was violated and negative > + * errno in case of errors > + */ > +static int tsens_threshold_violated(struct tsens_priv *priv, u32 hw_id, > + struct tsens_irq_data *d) > +{ > + int ret; > + > + ret = regmap_field_read(priv->rf[UPPER_STATUS_0 + hw_id], &d->up_viol); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[LOWER_STATUS_0 + hw_id], &d->low_viol); > + if (ret) > + return ret; > + > + if (priv->feat->crit_int) { > + ret = regmap_field_read(priv->rf[CRITICAL_STATUS_0 + hw_id], > + &d->crit_viol); > + if (ret) > + return ret; > + } > + > + if (d->up_viol || d->low_viol || d->crit_viol) > + return 1; > + > + return 0; > +} > + > +static int tsens_read_irq_state(struct tsens_priv *priv, u32 hw_id, > + const struct tsens_sensor *s, > + struct tsens_irq_data *d) > +{ > + int ret; > + > + ret = regmap_field_read(priv->rf[UP_INT_CLEAR_0 + hw_id], &d->up_irq_clear); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[LOW_INT_CLEAR_0 + hw_id], &d->low_irq_clear); > + if (ret) > + return ret; > + if (tsens_version(priv) > VER_1_X) { > + ret = regmap_field_read(priv->rf[UP_INT_MASK_0 + hw_id], &d->up_irq_mask); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[LOW_INT_MASK_0 + hw_id], &d->low_irq_mask); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[CRIT_INT_CLEAR_0 + hw_id], > + &d->crit_irq_clear); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[CRIT_INT_MASK_0 + hw_id], > + &d->crit_irq_mask); > + if (ret) > + return ret; > + > + d->crit_thresh = tsens_hw_to_mC(s, CRIT_THRESH_0 + hw_id); > + } else { > + /* No mask register on older TSENS */ > + d->up_irq_mask = 0; > + d->low_irq_mask = 0; > + d->crit_irq_clear = 0; > + d->crit_irq_mask = 0; > + d->crit_thresh = 0; > + } > + > + d->up_thresh = tsens_hw_to_mC(s, UP_THRESH_0 + hw_id); > + d->low_thresh = tsens_hw_to_mC(s, LOW_THRESH_0 + hw_id); > + > + dev_dbg(priv->dev, "[%u] %s%s: status(%u|%u|%u) | clr(%u|%u|%u) | mask(%u|%u|%u)\n", > + hw_id, __func__, > + (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", > + d->low_viol, d->up_viol, d->crit_viol, > + d->low_irq_clear, d->up_irq_clear, d->crit_irq_clear, > + d->low_irq_mask, d->up_irq_mask, d->crit_irq_mask); > + dev_dbg(priv->dev, "[%u] %s%s: thresh: (%d:%d:%d)\n", hw_id, __func__, > + (d->up_viol || d->low_viol || d->crit_viol) ? "(V)" : "", > + d->low_thresh, d->up_thresh, d->crit_thresh); > + > + return 0; > +} > + > +static inline u32 masked_irq(u32 hw_id, u32 mask, enum tsens_ver ver) > +{ > + if (ver > VER_1_X) > + return mask & (1 << hw_id); > + > + /* v1, v0.1 don't have a irq mask register */ > + return 0; > +} > + > +/** > + * tsens_critical_irq_thread() - Threaded handler for critical interrupts > + * @irq: irq number > + * @data: tsens controller private data > + * > + * Check FSM watchdog bark status and clear if needed. > + * Check all sensors to find ones that violated their critical threshold limits. > + * Clear and then re-enable the interrupt. > + * > + * The level-triggered interrupt might deassert if the temperature returned to > + * within the threshold limits by the time the handler got scheduled. We > + * consider the irq to have been handled in that case. > + * > + * Return: IRQ_HANDLED > + */ > +irqreturn_t tsens_critical_irq_thread(int irq, void *data) > +{ > + struct tsens_priv *priv = data; > + struct tsens_irq_data d; > + int temp, ret, i; > + u32 wdog_status, wdog_count; > + > + if (priv->feat->has_watchdog) { > + ret = regmap_field_read(priv->rf[WDOG_BARK_STATUS], > + &wdog_status); > + if (ret) > + return ret; > + > + if (wdog_status) { > + /* Clear WDOG interrupt */ > + regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 1); > + regmap_field_write(priv->rf[WDOG_BARK_CLEAR], 0); > + ret = regmap_field_read(priv->rf[WDOG_BARK_COUNT], > + &wdog_count); > + if (ret) > + return ret; > + if (wdog_count) > + dev_dbg(priv->dev, "%s: watchdog count: %d\n", > + __func__, wdog_count); > + > + /* Fall through to handle critical interrupts if any */ > + } > + } > + > + for (i = 0; i < priv->num_sensors; i++) { > + const struct tsens_sensor *s = &priv->sensor[i]; > + u32 hw_id = s->hw_id; > + > + if (IS_ERR(s->tzd)) > + continue; > + if (!tsens_threshold_violated(priv, hw_id, &d)) > + continue; > + ret = get_temp_tsens_valid(s, &temp); > + if (ret) { > + dev_err(priv->dev, "[%u] %s: error reading sensor\n", > + hw_id, __func__); > + continue; > + } > + > + tsens_read_irq_state(priv, hw_id, s, &d); > + if (d.crit_viol && > + !masked_irq(hw_id, d.crit_irq_mask, tsens_version(priv))) { > + /* Mask critical interrupts, unused on Linux */ > + tsens_set_interrupt(priv, hw_id, CRITICAL, false); > + } > + } > + > + return IRQ_HANDLED; > +} > + > +/** > + * tsens_irq_thread - Threaded interrupt handler for uplow interrupts > + * @irq: irq number > + * @data: tsens controller private data > + * > + * Check all sensors to find ones that violated their threshold limits. If the > + * temperature is still outside the limits, call thermal_zone_device_update() to > + * update the thresholds, else re-enable the interrupts. > + * > + * The level-triggered interrupt might deassert if the temperature returned to > + * within the threshold limits by the time the handler got scheduled. We > + * consider the irq to have been handled in that case. > + * > + * Return: IRQ_HANDLED > + */ > +irqreturn_t tsens_irq_thread(int irq, void *data) > +{ > + struct tsens_priv *priv = data; > + struct tsens_irq_data d; > + bool enable = true, disable = false; > + unsigned long flags; > + int temp, ret, i; > + > + for (i = 0; i < priv->num_sensors; i++) { > + bool trigger = false; > + const struct tsens_sensor *s = &priv->sensor[i]; > + u32 hw_id = s->hw_id; > + > + if (IS_ERR(s->tzd)) > + continue; > + if (!tsens_threshold_violated(priv, hw_id, &d)) > + continue; > + ret = get_temp_tsens_valid(s, &temp); > + if (ret) { > + dev_err(priv->dev, "[%u] %s: error reading sensor\n", > + hw_id, __func__); > + continue; > + } > + > + spin_lock_irqsave(&priv->ul_lock, flags); > + > + tsens_read_irq_state(priv, hw_id, s, &d); > + > + if (d.up_viol && > + !masked_irq(hw_id, d.up_irq_mask, tsens_version(priv))) { > + tsens_set_interrupt(priv, hw_id, UPPER, disable); > + if (d.up_thresh > temp) { > + dev_dbg(priv->dev, "[%u] %s: re-arm upper\n", > + hw_id, __func__); > + tsens_set_interrupt(priv, hw_id, UPPER, enable); > + } else { > + trigger = true; > + /* Keep irq masked */ > + } > + } else if (d.low_viol && > + !masked_irq(hw_id, d.low_irq_mask, tsens_version(priv))) { > + tsens_set_interrupt(priv, hw_id, LOWER, disable); > + if (d.low_thresh < temp) { > + dev_dbg(priv->dev, "[%u] %s: re-arm low\n", > + hw_id, __func__); > + tsens_set_interrupt(priv, hw_id, LOWER, enable); > + } else { > + trigger = true; > + /* Keep irq masked */ > + } > + } > + > + spin_unlock_irqrestore(&priv->ul_lock, flags); > + > + if (trigger) { > + dev_dbg(priv->dev, "[%u] %s: TZ update trigger (%d mC)\n", > + hw_id, __func__, temp); > + thermal_zone_device_update(s->tzd, > + THERMAL_EVENT_UNSPECIFIED); > + } else { > + dev_dbg(priv->dev, "[%u] %s: no violation: %d\n", > + hw_id, __func__, temp); > + } > + } > + > + return IRQ_HANDLED; > +} > + > +int tsens_set_trips(void *_sensor, int low, int high) > +{ > + struct tsens_sensor *s = _sensor; > + struct tsens_priv *priv = s->priv; > + struct device *dev = priv->dev; > + struct tsens_irq_data d; > + unsigned long flags; > + int high_val, low_val, cl_high, cl_low; > + u32 hw_id = s->hw_id; > + > + dev_dbg(dev, "[%u] %s: proposed thresholds: (%d:%d)\n", > + hw_id, __func__, low, high); > + > + cl_high = clamp_val(high, -40000, 120000); > + cl_low = clamp_val(low, -40000, 120000); > + > + high_val = tsens_mC_to_hw(s, cl_high); > + low_val = tsens_mC_to_hw(s, cl_low); > + > + spin_lock_irqsave(&priv->ul_lock, flags); > + > + tsens_read_irq_state(priv, hw_id, s, &d); > + > + /* Write the new thresholds and clear the status */ > + regmap_field_write(priv->rf[LOW_THRESH_0 + hw_id], low_val); > + regmap_field_write(priv->rf[UP_THRESH_0 + hw_id], high_val); > + tsens_set_interrupt(priv, hw_id, LOWER, true); > + tsens_set_interrupt(priv, hw_id, UPPER, true); > + > + spin_unlock_irqrestore(&priv->ul_lock, flags); > + > + dev_dbg(dev, "[%u] %s: (%d:%d)->(%d:%d)\n", > + hw_id, __func__, d.low_thresh, d.up_thresh, cl_low, cl_high); > + > + return 0; > +} > + > +int tsens_enable_irq(struct tsens_priv *priv) > +{ > + int ret; > + int val = tsens_version(priv) > VER_1_X ? 7 : 1; > + > + ret = regmap_field_write(priv->rf[INT_EN], val); > + if (ret < 0) > + dev_err(priv->dev, "%s: failed to enable interrupts\n", > + __func__); > + > + return ret; > +} > + > +void tsens_disable_irq(struct tsens_priv *priv) > +{ > + regmap_field_write(priv->rf[INT_EN], 0); > +} > + > +int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp) > +{ > + struct tsens_priv *priv = s->priv; > + int hw_id = s->hw_id; > + u32 temp_idx = LAST_TEMP_0 + hw_id; > + u32 valid_idx = VALID_0 + hw_id; > + u32 valid; > + int ret; > + > + ret = regmap_field_read(priv->rf[valid_idx], &valid); > + if (ret) > + return ret; > + while (!valid) { > + /* Valid bit is 0 for 6 AHB clock cycles. > + * At 19.2MHz, 1 AHB clock is ~60ns. > + * We should enter this loop very, very rarely. > + */ > + ndelay(400); > + ret = regmap_field_read(priv->rf[valid_idx], &valid); > + if (ret) > + return ret; > + } > + > + /* Valid bit is set, OK to read the temperature */ > + *temp = tsens_hw_to_mC(s, temp_idx); > + > + return 0; > +} > + > +int get_temp_common(const struct tsens_sensor *s, int *temp) > +{ > + struct tsens_priv *priv = s->priv; > + int hw_id = s->hw_id; > + int last_temp = 0, ret; > + > + ret = regmap_field_read(priv->rf[LAST_TEMP_0 + hw_id], &last_temp); > + if (ret) > + return ret; > + > + *temp = code_to_degc(last_temp, s) * 1000; > + > + return 0; > +} > + > +#ifdef CONFIG_DEBUG_FS > +static int dbg_sensors_show(struct seq_file *s, void *data) > +{ > + struct platform_device *pdev = s->private; > + struct tsens_priv *priv = platform_get_drvdata(pdev); > + int i; > + > + seq_printf(s, "max: %2d\nnum: %2d\n\n", > + priv->feat->max_sensors, priv->num_sensors); > + > + seq_puts(s, " id slope offset\n--------------------------\n"); > + for (i = 0; i < priv->num_sensors; i++) { > + seq_printf(s, "%8d %8d %8d\n", priv->sensor[i].hw_id, > + priv->sensor[i].slope, priv->sensor[i].offset); > + } > + > + return 0; > +} > + > +static int dbg_version_show(struct seq_file *s, void *data) > +{ > + struct platform_device *pdev = s->private; > + struct tsens_priv *priv = platform_get_drvdata(pdev); > + u32 maj_ver, min_ver, step_ver; > + int ret; > + > + if (tsens_version(priv) > VER_0_1) { > + ret = regmap_field_read(priv->rf[VER_MAJOR], &maj_ver); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[VER_MINOR], &min_ver); > + if (ret) > + return ret; > + ret = regmap_field_read(priv->rf[VER_STEP], &step_ver); > + if (ret) > + return ret; > + seq_printf(s, "%d.%d.%d\n", maj_ver, min_ver, step_ver); > + } else { > + seq_puts(s, "0.1.0\n"); > + } > + > + return 0; > +} > + > +DEFINE_SHOW_ATTRIBUTE(dbg_version); > +DEFINE_SHOW_ATTRIBUTE(dbg_sensors); > + > +static void tsens_debug_init(struct platform_device *pdev) > +{ > + struct tsens_priv *priv = platform_get_drvdata(pdev); > + struct dentry *root, *file; > + > + root = debugfs_lookup("tsens", NULL); > + if (!root) > + priv->debug_root = debugfs_create_dir("tsens", NULL); > + else > + priv->debug_root = root; > + > + file = debugfs_lookup("version", priv->debug_root); > + if (!file) > + debugfs_create_file("version", 0444, priv->debug_root, > + pdev, &dbg_version_fops); > + > + /* A directory for each instance of the TSENS IP */ > + priv->debug = debugfs_create_dir(dev_name(&pdev->dev), priv->debug_root); > + debugfs_create_file("sensors", 0444, priv->debug, pdev, &dbg_sensors_fops); > +} > +#else > +static inline void tsens_debug_init(struct platform_device *pdev) {} > +#endif > + > +static const struct regmap_config tsens_config = { > + .name = "tm", > + .reg_bits = 32, > + .val_bits = 32, > + .reg_stride = 4, > +}; > + > +static const struct regmap_config tsens_srot_config = { > + .name = "srot", > + .reg_bits = 32, > + .val_bits = 32, > + .reg_stride = 4, > +}; > + > +int __init init_common(struct tsens_priv *priv) > +{ > + void __iomem *tm_base, *srot_base; > + struct device *dev = priv->dev; > + u32 ver_minor; > + struct resource *res; > + u32 enabled; > + int ret, i, j; > + struct platform_device *op = of_find_device_by_node(priv->dev->of_node); > + > + if (!op) > + return -EINVAL; > + > + if (op->num_resources > 1) { > + /* DT with separate SROT and TM address space */ > + priv->tm_offset = 0; > + res = platform_get_resource(op, IORESOURCE_MEM, 1); > + srot_base = devm_ioremap_resource(dev, res); > + if (IS_ERR(srot_base)) { > + ret = PTR_ERR(srot_base); > + goto err_put_device; > + } > + > + priv->srot_map = devm_regmap_init_mmio(dev, srot_base, > + &tsens_srot_config); > + if (IS_ERR(priv->srot_map)) { > + ret = PTR_ERR(priv->srot_map); > + goto err_put_device; > + } > + } else { > + /* old DTs where SROT and TM were in a contiguous 2K block */ > + priv->tm_offset = 0x1000; > + } > + > + res = platform_get_resource(op, IORESOURCE_MEM, 0); > + tm_base = devm_ioremap_resource(dev, res); > + if (IS_ERR(tm_base)) { > + ret = PTR_ERR(tm_base); > + goto err_put_device; > + } > + > + priv->tm_map = devm_regmap_init_mmio(dev, tm_base, &tsens_config); > + if (IS_ERR(priv->tm_map)) { > + ret = PTR_ERR(priv->tm_map); > + goto err_put_device; > + } > + > + if (tsens_version(priv) > VER_0_1) { > + for (i = VER_MAJOR; i <= VER_STEP; i++) { > + priv->rf[i] = devm_regmap_field_alloc(dev, priv->srot_map, > + priv->fields[i]); > + if (IS_ERR(priv->rf[i])) > + return PTR_ERR(priv->rf[i]); > + } > + ret = regmap_field_read(priv->rf[VER_MINOR], &ver_minor); > + if (ret) > + goto err_put_device; > + } > + > + priv->rf[TSENS_EN] = devm_regmap_field_alloc(dev, priv->srot_map, > + priv->fields[TSENS_EN]); > + if (IS_ERR(priv->rf[TSENS_EN])) { > + ret = PTR_ERR(priv->rf[TSENS_EN]); > + goto err_put_device; > + } > + ret = regmap_field_read(priv->rf[TSENS_EN], &enabled); > + if (ret) > + goto err_put_device; > + if (!enabled) { > + dev_err(dev, "%s: device not enabled\n", __func__); > + ret = -ENODEV; > + goto err_put_device; > + } > + > + priv->rf[SENSOR_EN] = devm_regmap_field_alloc(dev, priv->srot_map, > + priv->fields[SENSOR_EN]); > + if (IS_ERR(priv->rf[SENSOR_EN])) { > + ret = PTR_ERR(priv->rf[SENSOR_EN]); > + goto err_put_device; > + } > + priv->rf[INT_EN] = devm_regmap_field_alloc(dev, priv->tm_map, > + priv->fields[INT_EN]); > + if (IS_ERR(priv->rf[INT_EN])) { > + ret = PTR_ERR(priv->rf[INT_EN]); > + goto err_put_device; > + } > + > + /* This loop might need changes if enum regfield_ids is reordered */ > + for (j = LAST_TEMP_0; j <= UP_THRESH_15; j += 16) { > + for (i = 0; i < priv->feat->max_sensors; i++) { > + int idx = j + i; > + > + priv->rf[idx] = devm_regmap_field_alloc(dev, > + priv->tm_map, > + priv->fields[idx]); > + if (IS_ERR(priv->rf[idx])) { > + ret = PTR_ERR(priv->rf[idx]); > + goto err_put_device; > + } > + } > + } > + > + if (priv->feat->crit_int) { > + /* Loop might need changes if enum regfield_ids is reordered */ > + for (j = CRITICAL_STATUS_0; j <= CRIT_THRESH_15; j += 16) { > + for (i = 0; i < priv->feat->max_sensors; i++) { > + int idx = j + i; > + > + priv->rf[idx] = > + devm_regmap_field_alloc(dev, > + priv->tm_map, > + priv->fields[idx]); > + if (IS_ERR(priv->rf[idx])) { > + ret = PTR_ERR(priv->rf[idx]); > + goto err_put_device; > + } > + } > + } > + } > + > + if (tsens_version(priv) > VER_1_X && ver_minor > 2) { > + /* Watchdog is present only on v2.3+ */ > + priv->feat->has_watchdog = 1; > + for (i = WDOG_BARK_STATUS; i <= CC_MON_MASK; i++) { > + priv->rf[i] = devm_regmap_field_alloc(dev, priv->tm_map, > + priv->fields[i]); > + if (IS_ERR(priv->rf[i])) { > + ret = PTR_ERR(priv->rf[i]); > + goto err_put_device; > + } > + } > + /* > + * Watchdog is already enabled, unmask the bark. > + * Disable cycle completion monitoring > + */ > + regmap_field_write(priv->rf[WDOG_BARK_MASK], 0); > + regmap_field_write(priv->rf[CC_MON_MASK], 1); > + } > + > + spin_lock_init(&priv->ul_lock); > + tsens_enable_irq(priv); > + tsens_debug_init(op); > + > +err_put_device: > + put_device(&op->dev); > + return ret; > +} > + > static int tsens_get_temp(void *data, int *temp) > { > struct tsens_sensor *s = data; > diff --git a/drivers/thermal/qcom/tsens.h b/drivers/thermal/qcom/tsens.h > index 502acf0e68285..59d01162c66af 100644 > --- a/drivers/thermal/qcom/tsens.h > +++ b/drivers/thermal/qcom/tsens.h > @@ -580,11 +580,6 @@ void compute_intercept_slope(struct tsens_priv *priv, u32 *pt1, u32 *pt2, u32 mo > int init_common(struct tsens_priv *priv); > int get_temp_tsens_valid(const struct tsens_sensor *s, int *temp); > int get_temp_common(const struct tsens_sensor *s, int *temp); > -int tsens_enable_irq(struct tsens_priv *priv); > -void tsens_disable_irq(struct tsens_priv *priv); > -int tsens_set_trips(void *_sensor, int low, int high); > -irqreturn_t tsens_irq_thread(int irq, void *data); > -irqreturn_t tsens_critical_irq_thread(int irq, void *data); > > /* TSENS target */ > extern struct tsens_plat_data data_8960; > -- > 2.20.1 >