On Fri, 18 Mar 2016 16:49:04 +0100 Boris Brezillon <boris.brezillon@xxxxxxxxxxxxxxxxxx> wrote: > Hi Archit, > > On Wed, 3 Feb 2016 14:29:50 +0530 > Archit Taneja <architt@xxxxxxxxxxxxxx> wrote: > > > +/* > > + * NAND controller page layout info > > + * > > + * Layout with ECC enabled: > > + * > > + * |----------------------| |---------------------------------| > > + * | xx.......yy| | *********xx.......yy| > > + * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| > > + * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| > > + * | xx.......yy| | *********xx.......yy| > > + * |----------------------| |---------------------------------| > > + * codeword 1,2..n-1 codeword n > > + * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> > > + * > > + * n = Number of codewords in the page > > + * . = ECC bytes > > + * * = Spare/free bytes > > + * x = Unused byte(s) > > + * y = Reserved byte(s) > > + * > > + * 2K page: n = 4, spare = 16 bytes > > + * 4K page: n = 8, spare = 32 bytes > > + * 8K page: n = 16, spare = 64 bytes > > + * > > + * the qcom nand controller operates at a sub page/codeword level. each > > + * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. > > + * the number of ECC bytes vary based on the ECC strength and the bus width. > > + * > > + * the first n - 1 codewords contains 516 bytes of user data, the remaining > > + * 12/16 bytes consist of ECC and reserved data. The nth codeword contains > > + * both user data and spare(oobavail) bytes that sum up to 516 bytes. > > + * > > + * When we access a page with ECC enabled, the reserved bytes(s) are not > > + * accessible at all. When reading, we fill up these unreadable positions > > + * with 0xffs. When writing, the controller skips writing the inaccessible > > + * bytes. > > + * > > + * Layout with ECC disabled: > > + * > > + * |------------------------------| |---------------------------------------| > > + * | yy xx.......| | bb *********xx.......| > > + * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| > > + * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| > > + * | yy xx.......| | bb *********xx.......| > > + * |------------------------------| |---------------------------------------| > > + * codeword 1,2..n-1 codeword n > > + * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> > > + * > > + * n = Number of codewords in the page > > + * . = ECC bytes > > + * * = Spare/free bytes > > + * x = Unused byte(s) > > + * y = Dummy Bad Bock byte(s) > > + * b = Real Bad Block byte(s) > > + * size1/size2 = function of codeword size and 'n' > > + * > > + * when the ECC block is disabled, one reserved byte (or two for 16 bit bus > > + * width) is now accessible. For the first n - 1 codewords, these are dummy Bad > > + * Block Markers. In the last codeword, this position contains the real BBM > > + * > > + * In order to have a consistent layout between RAW and ECC modes, we assume > > + * the following OOB layout arrangement: > > + * > > + * |-----------| |--------------------| > > + * |yyxx.......| |bb*********xx.......| > > + * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| > > + * |yyxx.......| |bb*********xx.......| > > + * |yyxx.......| |bb*********xx.......| > > + * |-----------| |--------------------| > > + * first n - 1 nth OOB region > > + * OOB regions > > + * > > + * n = Number of codewords in the page > > + * . = ECC bytes > > + * * = FREE OOB bytes > > + * y = Dummy bad block byte(s) (inaccessible when ECC enabled) > > + * x = Unused byte(s) > > + * b = Real bad block byte(s) (inaccessible when ECC enabled) > > + * > > + * This layout is read as is when ECC is disabled. When ECC is enabled, the > > + * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, > > + * and assumed as 0xffs when we read a page/oob. The ECC, unused and > > + * dummy/real bad block bytes are grouped as ecc bytes in nand_ecclayout (i.e, > > + * ecc->bytes is the sum of the three). > > + */ > > + > > +static struct nand_ecclayout * > > +qcom_nand_create_layout(struct qcom_nand_host *host) > > +{ > > + struct nand_chip *chip = &host->chip; > > + struct mtd_info *mtd = nand_to_mtd(chip); > > + struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); > > + struct nand_ecc_ctrl *ecc = &chip->ecc; > > + struct nand_ecclayout *layout; > > + int i, j, steps, pos = 0, shift = 0; > > + > > + layout = devm_kzalloc(nandc->dev, sizeof(*layout), GFP_KERNEL); > > + if (!layout) > > + return NULL; > > + > > + steps = mtd->writesize / ecc->size; > > + layout->eccbytes = steps * ecc->bytes; > > + > > + layout->oobfree[0].offset = (steps - 1) * ecc->bytes + host->bbm_size; > > + layout->oobfree[0].length = steps << 2; > > + layout->oobavail = steps << 2; > > + > > + /* > > + * the oob bytes in the first n - 1 codewords are all grouped together > > + * in the format: > > + * DUMMY_BBM + UNUSED + ECC > > + */ > > + for (i = 0; i < steps - 1; i++) { > > + for (j = 0; j < ecc->bytes; j++) > > + layout->eccpos[pos++] = i * ecc->bytes + j; > > + } > > + > > + /* > > + * the oob bytes in the last codeword are grouped in the format: > > + * BBM + FREE OOB + UNUSED + ECC > > + */ > > + > > + /* fill up the bbm positions */ > > + for (j = 0; j < host->bbm_size; j++) > > + layout->eccpos[pos++] = i * ecc->bytes + j; > > + > > + /* > > + * fill up the ecc and reserved positions, their indices are offseted > > + * by the free oob region > > + */ > > + shift = layout->oobfree[0].length + host->bbm_size; > > + > > + for (j = 0; j < (host->ecc_bytes_hw + host->spare_bytes); j++) > > + layout->eccpos[pos++] = i * ecc->bytes + shift + j; > > + > > + return layout; > > +} > > I'm trying to move this layout definition to the mtd_ooblayout_ops > approach, and I wonder why you decided to take such a complicated > representation. > AFAIU, in each ECC step you have 512 bytes of data, X ECC+reserved > bytes (you decided to consider all of them as ECC bytes, which is fine > by me) and 4 usable/free bytes. Am I correct? > > If that's the case, then why not exposing the following layout. > > eccregion[i] = { > .offset = i * (ecc->bytes + 4); > .length = ecc->bytes; > } > > oobfreeregion[i] = { > .offset = (i * (ecc->bytes + 4)) + ecc->bytes; > .length = 4; > } > > Are there any userspace tools relying on the ooblayout you're currently > exposing (remember that the exposed OOB layout is not necessarily > what you see on the media)? Okay, I think we already had this discussion :). I'm still not happy with the exposed layout (it would be much easier to reserve 4 free bytes per chunk, and declare each chunk as containing 512 data bytes + 4 oob bytes + X ECC/reserved bytes), but IIRC, your ROM code (and/or bootloader) is already using this layout :-(. -- Boris Brezillon, Free Electrons Embedded Linux and Kernel engineering http://free-electrons.com -- To unsubscribe from this list: send the line "unsubscribe linux-arm-msm" in the body of a message to majordomo@xxxxxxxxxxxxxxx More majordomo info at http://vger.kernel.org/majordomo-info.html